Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,940)

Search Parameters:
Keywords = multi-vehicle simulation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 5727 KB  
Article
Multi-Objective Energy Management System in Smart Homes with Inverter-Based Air Conditioner Considering Costs, Peak-Average Ratio, and Battery Discharging Cycles of ESS and EV
by Moslem Dehghani, Seyyed Mohammad Bornapour, Felipe Ruiz and Jose Rodriguez
Energies 2025, 18(19), 5298; https://doi.org/10.3390/en18195298 - 7 Oct 2025
Abstract
The smart home contributions in energy management systems can help the microgrid operator overcome technical problems and ensure economically viable operation by flattening the load profile. The purpose of this paper is to propose a smart home energy management system (SHEMS) that enables [...] Read more.
The smart home contributions in energy management systems can help the microgrid operator overcome technical problems and ensure economically viable operation by flattening the load profile. The purpose of this paper is to propose a smart home energy management system (SHEMS) that enables smart homes to monitor, store, and manage energy efficiently. SHEMS relies heavily on energy storage systems (ESSs) and electric vehicles (EVs), which enable smart homes to be more flexible and enhance the reliability and efficiency of renewable energy sources. It is vital to study the optimal operation of batteries in SHEMS; hence, a multi-objective optimization approach for SHEMS and demand response programs is proposed to simultaneously reduce the daily bills, the peak-to-average ratio, and the number of battery discharging cycles of ESSs and EVs. An inverter-based air conditioner, photovoltaic system, ESS, and EV, shiftable and non-shiftable equipment are considered in the suggested smart home. In addition, the amount of energy purchased and sold throughout the day is taken into account in the suggested mathematical formulation based on the real-time market pricing. The suggested multi-objective problem is solved by an improved gray wolf optimizer, and various weather conditions, including rainy, sunny, and cloudy days, are also analyzed. Additionally, simulations indicate that the proposed method achieves optimal results, with three objectives shown on the Pareto front of the optimal solutions. Full article
(This article belongs to the Topic Smart Energy Systems, 2nd Edition)
Show Figures

Figure 1

28 pages, 10972 KB  
Article
Research on Multi-Timescale Optimization Scheduling of Integrated Energy Systems Considering Sustainability and Low-Carbon Characteristics
by He Jiang and Xingyu Liu
Sustainability 2025, 17(19), 8899; https://doi.org/10.3390/su17198899 - 7 Oct 2025
Abstract
The multi-timescale optimization dispatch method for integrated energy systems proposed in this paper balances sustainability and low-carbon characteristics. It first incorporates shared energy storage resources such as electric vehicles into system dispatch, fully leveraging their spatiotemporal properties to enhance dispatch flexibility and rapid [...] Read more.
The multi-timescale optimization dispatch method for integrated energy systems proposed in this paper balances sustainability and low-carbon characteristics. It first incorporates shared energy storage resources such as electric vehicles into system dispatch, fully leveraging their spatiotemporal properties to enhance dispatch flexibility and rapid response capabilities for integrating renewable energy and enabling clean power generation. Second, an incentive-penalty mechanism enables effective interaction between the system and the green certificate–carbon joint trading market. Penalties are imposed for failing to meet renewable energy consumption targets or exceeding carbon quotas, while rewards are granted for meeting or exceeding targets. This regulates the system’s renewable energy consumption level and carbon emissions, ensuring robust low-carbon performance. Third, this strategy considers the close coordination between heating, cooling, and electricity demand response measures with the integrated energy system, smoothing load fluctuations to achieve peak shaving and valley filling. Finally, through case study simulations and analysis, the advantages of the multi-timescale dispatch strategy proposed in this paper, in terms of economic feasibility, low-carbon characteristics, and sustainability, are verified. Full article
23 pages, 3751 KB  
Article
DAF-Aided ISAC Spatial Scattering Modulation for Multi-Hop V2V Networks
by Yajun Fan, Jiaqi Wu, Yabo Guo, Jing Yang, Le Zhao, Wencai Yan, Shangjun Yang, Haihua Ma and Chunhua Zhu
Sensors 2025, 25(19), 6189; https://doi.org/10.3390/s25196189 - 6 Oct 2025
Abstract
Integrated sensing and communication (ISAC) has emerged as a transformative technology for intelligent transportation systems. Index modulation (IM), recognized for its high robustness and energy efficiency (EE), has been successfully incorporated into ISAC systems. However, most existing IM-based ISAC schemes overlook the spatial [...] Read more.
Integrated sensing and communication (ISAC) has emerged as a transformative technology for intelligent transportation systems. Index modulation (IM), recognized for its high robustness and energy efficiency (EE), has been successfully incorporated into ISAC systems. However, most existing IM-based ISAC schemes overlook the spatial multiplexing potential of millimeter-wave channels and remain confined to single-hop vehicle-to-vehicle (V2V) setups, failing to address the challenges of energy consumption and noise accumulation in real-world multi-hop V2V networks with complex road topologies. To bridge this gap, we propose a spatial scattering modulation-based ISAC (ISAC-SSM) scheme and introduce it to multi-hop V2V networks. The proposed scheme leverages the sensed positioning information to select maximum signal-to-noise ratio relay vehicles and employs a detect-amplify-and-forward (DAF) protocol to mitigate noise propagation, while utilizing sensed angle data for Doppler compensation to enhance communication reliability. At each hop, the transmitter modulates index bits on the angular-domain spatial directions of scattering clusters, achieving higher EE. We initially derive a closed-form bit error rate expression and Chernoff upper bound for the proposed DAF ISAC-SSM under multi-hop V2V networks. Both theoretical analyses and Monte Carlo simulations have been made and demonstrate the superiority of DAF ISAC-SSM over existing alternatives in terms of EE and error performance. Specifically, in a two-hop network with 12 scattering clusters, compared with DAF ISAC-conventional spatial multiplexing, DAF ISAC-maximum beamforming, and DAF ISAC-random beamforming, the proposed DAF ISAC-SSM scheme can achieve a coding gain of 1.5 dB, 2 dB, and 4 dB, respectively. Moreover, it shows robust performance with less than a 1.5 dB error degradation under 0.018 Doppler shifts, thereby verifying its superiority in practical vehicular environments. Full article
15 pages, 1323 KB  
Article
A Hybrid Ant Colony Optimization and Dynamic Window Method for Real-Time Navigation of USVs
by Yuquan Xue, Liming Wang, Bi He, Shuo Yang, Yonghui Zhao, Xing Xu, Jiaxin Hou and Longmei Li
Sensors 2025, 25(19), 6181; https://doi.org/10.3390/s25196181 - 6 Oct 2025
Abstract
Unmanned surface vehicles (USVs) rely on multi-sensor perception, such as radar, LiDAR, GPS, and vision, to ensure safe and efficient navigation in complex maritime environments. Traditional ant colony optimization (ACO) for path planning, however, suffers from premature convergence, slow adaptation, and poor smoothness [...] Read more.
Unmanned surface vehicles (USVs) rely on multi-sensor perception, such as radar, LiDAR, GPS, and vision, to ensure safe and efficient navigation in complex maritime environments. Traditional ant colony optimization (ACO) for path planning, however, suffers from premature convergence, slow adaptation, and poor smoothness in cluttered waters, while the dynamic window approach (DWA) without global guidance can become trapped in local obstacle configurations. This paper presents a sensor-oriented hybrid method that couples an improved ACO for global route planning with an enhanced DWA for local, real-time obstacle avoidance. In the global stage, the ACO state–transition rule integrates path length, obstacle clearance, and trajectory smoothness heuristics, while a cosine-annealed schedule adaptively balances exploration and exploitation. Pheromone updating combines local and global mechanisms under bounded limits, with a stagnation detector to restore diversity. In the local stage, the DWA cost function is redesigned under USV kinematics to integrate velocity adaptability, trajectory smoothness, and goal-deviation, using obstacle data that would typically originate from onboard sensors. Simulation studies, where obstacle maps emulate sensor-detected environments, show that the proposed method achieves shorter paths, faster convergence, smoother trajectories, larger safety margins, and higher success rates against dynamic obstacles compared with standalone ACO or DWA. These results demonstrate the method’s potential for sensor-based, real-time USV navigation and collision avoidance in complex maritime scenarios. Full article
(This article belongs to the Section Sensors and Robotics)
Show Figures

Figure 1

25 pages, 1173 KB  
Article
Design of Terminal Guidance Law for Cooperative Multiple Vehicles Based on Prescribed Performance Control
by Fuqi Yang, Jikun Ye, Xirui Xue, Ruining Luo and Lei Shao
Aerospace 2025, 12(10), 898; https://doi.org/10.3390/aerospace12100898 - 5 Oct 2025
Abstract
To address the issue of jitter and oscillation of guidance command during multi-vehicle cooperative engagement with maneuvering platforms, this paper proposes a novel terminal guidance law with prescribed performance constraints for multiple cooperative vehicles, which explicitly considers both transient and steady-state performance. Firstly, [...] Read more.
To address the issue of jitter and oscillation of guidance command during multi-vehicle cooperative engagement with maneuvering platforms, this paper proposes a novel terminal guidance law with prescribed performance constraints for multiple cooperative vehicles, which explicitly considers both transient and steady-state performance. Firstly, based on the vehicle-target relative kinematics, with time and space as the main constraint indicators, a multi-vehicle cooperative guidance model is established in the inertial coordinate system. Secondly, combined with the sliding mode control theory, cooperative guidance laws are designed for both the line-of-sight (LOS) direction and the LOS normal direction, respectively, and the Lyapunov stability proof is given. Furthermore, to counteract the impact of target maneuvers on guidance performance, a non-homogeneous disturbance observer is designed to estimate target maneuver information that is difficult to obtain directly, which ensures that performance constraints are still satisfied under strong target maneuvering conditions. Simulation results demonstrate that the proposed guidance law enables multiple coordinated vehicles to successfully engage the target under different maneuvering modes, while satisfying the terminal time-space constraints. Compared with conventional sliding mode control methods exhibiting inherent chattering, the proposed approach employs a novel PPC-SMC hybrid structure to quantitatively constrain the transient convergence of cooperative errors. This structure enhances the multi-vehicle cooperative guidance performance by effectively eliminating chattering and oscillations in the guidance commands, thereby significantly improving the system’s transient behavior. Full article
(This article belongs to the Section Aeronautics)
15 pages, 4024 KB  
Article
Comparative Analysis of Efficiency and Harmonic Generation in Multiport Converters: Study of Two Operating Conditions
by Francisco J. Arizaga, Juan M. Ramírez, Janeth A. Alcalá, Julio C. Rosas-Caro and Armando G. Rojas-Hernández
World Electr. Veh. J. 2025, 16(10), 566; https://doi.org/10.3390/wevj16100566 - 2 Oct 2025
Abstract
This study presents a comparative analysis of efficiency and harmonic generation in Triple Active Bridge (TAB) converters under two operating configurations: Case I, with one input source and two loads, and Case II, with two input sources and one load. Two modulation strategies, [...] Read more.
This study presents a comparative analysis of efficiency and harmonic generation in Triple Active Bridge (TAB) converters under two operating configurations: Case I, with one input source and two loads, and Case II, with two input sources and one load. Two modulation strategies, Single-Phase Shift (SPS) and Dual-Phase Shift (DPS), are evaluated through frequency-domain modeling and simulations performed in MATLAB/Simulink. The analysis is complemented by experimental validation on a laboratory prototype. The results show that DPS reduces harmonic amplitudes, decreases conduction losses, and improves output waveform quality, leading to higher efficiency compared to SPS. Harmonic current spectra and total harmonic distortion (THD) are analyzed to quantify the impact of each modulation method. The findings highlight that DPS is more suitable for applications requiring stable power transfer and improved efficiency, such as renewable energy systems, electric vehicles, and multi-source DC microgrids. Full article
(This article belongs to the Section Power Electronics Components)
Show Figures

Figure 1

39 pages, 5013 KB  
Article
Evaluation of Connectivity Reliability of VANETs Considering Node Mobility and Multiple Failure Modes
by Junhai Cao, Yunlong Bian, Chengming He, Fusheng Liu, Dan Xu and Yiming Guo
Sensors 2025, 25(19), 6073; https://doi.org/10.3390/s25196073 - 2 Oct 2025
Abstract
As a subclass of Mobile Ad hoc Networks (MANETs), Vehicle Ad hoc Networks (VANETs) possess multi-hop relay communication and dynamic topology reconstruction capabilities and are widely applied in various social activities. When they are used as clusters to perform various disaster search and [...] Read more.
As a subclass of Mobile Ad hoc Networks (MANETs), Vehicle Ad hoc Networks (VANETs) possess multi-hop relay communication and dynamic topology reconstruction capabilities and are widely applied in various social activities. When they are used as clusters to perform various disaster search and rescue operations or communication relay, reliable, secure, and timely communication connectivity becomes particularly important. This paper focuses on the research of connectivity reliability in VANETs, emphasizing the impact of node movement characteristics and various failure modes on the connectivity reliability of VANETs: As a cluster, the nodes in VANETs have interactive relationships and no longer follow a random movement model, exhibiting regular movements of the network as a whole; the failure modes of nodes in VANETs include vehicular hardware/software failure, energy consumption failure, intentional attack, and isolation failure. Additionally, to optimize node communication energy consumption, the paper proposes a routing path identification algorithm. Finally, the paper presents a simulation algorithm for solving the connectivity reliability of VANETs. Through MATLAB simulation experiments, the effectiveness and correctness of the proposed algorithm are verified, and it is found that the attraction distance between nodes has a certain impact on the isolation failure mode and connectivity reliability. Full article
(This article belongs to the Special Issue Advanced Vehicular Ad Hoc Networks: 2nd Edition)
Show Figures

Figure 1

17 pages, 1302 KB  
Article
Multi-Objective Collaborative Optimization of Distribution Networks with Energy Storage and Electric Vehicles Using an Improved NSGA-II Algorithm
by Runquan He, Jiayin Hao, Heng Zhou and Fei Chen
Energies 2025, 18(19), 5232; https://doi.org/10.3390/en18195232 - 2 Oct 2025
Abstract
Grid-based distribution networks represent an advanced form of smart grids that enable modular, region-specific optimization of power resource allocation. This paper presents a novel planning framework aimed at the coordinated deployment of distributed generation, electrical loads, and energy storage systems, including both dispatchable [...] Read more.
Grid-based distribution networks represent an advanced form of smart grids that enable modular, region-specific optimization of power resource allocation. This paper presents a novel planning framework aimed at the coordinated deployment of distributed generation, electrical loads, and energy storage systems, including both dispatchable and non-dispatchable electric vehicles. A three-dimensional objective system is constructed, incorporating investment cost, reliability metrics, and network loss indicators, forming a comprehensive multi-objective optimization model. To solve this complex planning problem, an improved version of the NSGA-II is employed, integrating hybrid encoding, feasibility constraints, and fuzzy decision-making for enhanced solution quality. The proposed method is applied to the IEEE 33-bus distribution system to validate its practicality. Simulation results demonstrate that the framework effectively addresses key challenges in modern distribution networks, including renewable intermittency, dynamic load variation, resource coordination, and computational tractability. It significantly enhances system operational efficiency and electric vehicles charging flexibility under varying conditions. In the IEEE 33-bus test, the coordinated optimization (Scheme 4) reduced the expected load loss from 100 × 10−4 yuan to 51 × 10−4 yuan. Network losses also dropped from 2.7 × 10−4 yuan to 2.5 × 10−4 yuan. The findings highlight the model’s capability to balance economic investment and reliability, offering a robust solution for future intelligent distribution network planning and integrated energy resource management. Full article
Show Figures

Figure 1

23 pages, 3872 KB  
Article
Research on the Design Method of Laminated Glass Bridge Deck for Vehicle Applications
by Baojun Zhao, Jiang Xing, Gao Cheng and Jufeng Su
Buildings 2025, 15(19), 3541; https://doi.org/10.3390/buildings15193541 - 1 Oct 2025
Abstract
Owing to the light-transmitting, energy-saving, and load-bearing properties of glass, laminated glass has gradually been adopted as vehicle lane surfaces in scenarios such as multi-storey commercial complexes, glass walkways roads, and underground parking lots. However, currently, a mature design system for vehicle-borne glass [...] Read more.
Owing to the light-transmitting, energy-saving, and load-bearing properties of glass, laminated glass has gradually been adopted as vehicle lane surfaces in scenarios such as multi-storey commercial complexes, glass walkways roads, and underground parking lots. However, currently, a mature design system for vehicle-borne glass bridge decks is still lacking, and the existing design system for pedestrian glass bridge decks cannot be directly applied to vehicle-borne scenarios. Combining domestic and international specifications and research, this study focused on material selection, structural configuration, and structural calculation of vehicle-borne glass bridge decks, proposed a targeted design method, and verified it with engineering examples. The key conclusions are as follows: (1) Laminated glass for bridge decks should preferably use homogenized tempered glass with SGP as the interlayer material; the number of glass layers should be controlled between 3 and 5, the aspect ratio of glass panels should be maintained between 1 and 2, the thickness of a single glass panel should not be less than 8 mm, and the interlayer thickness should be between 0.76 mm and 2.28 mm. (2) This study proposes design loads, load combination methods, calculation models, design criteria, and the equivalent thickness calculation method for vehicle-borne glass bridge decks; meanwhile, it incorporates the adverse working condition of single-layer glass breakage into design considerations. (3) The design method shows good agreement with numerical simulation results: both PVB and SGP-laminated glass can meet the load-bearing capacity requirements, but SGP-laminated glass has a larger safety redundancy under the same thickness; after single-layer glass breakage, the bridge deck still has sufficient load-bearing capacity; the calculation results of the design method are slightly more conservative than the finite element calculation results, but the calculation of stress and deflection for SGP-laminated glass is relatively accurate. (4) Future research will further deepen the study on the impact of the long-term performance of laminated glass on the full-life-cycle of vehicle-borne glass bridge decks and improve this design method. Full article
Show Figures

Figure 1

21 pages, 8233 KB  
Article
Integrated Optimization of Ground Support Systems and UAV Task Planning for Efficient Forest Fire Inspection
by Ze Liu, Zhichao Shi, Wei Liu, Lu Zhang and Rui Wang
Drones 2025, 9(10), 684; https://doi.org/10.3390/drones9100684 - 1 Oct 2025
Abstract
With the increasing frequency and intensity of forest fires driven by climate change and human activities, efficient detection and rapid response have become critical for forest fire prevention. Effective fire detection, swift response, and timely rescue are vital for forest firefighting efforts. This [...] Read more.
With the increasing frequency and intensity of forest fires driven by climate change and human activities, efficient detection and rapid response have become critical for forest fire prevention. Effective fire detection, swift response, and timely rescue are vital for forest firefighting efforts. This paper proposes an unmanned aerial vehicle (UAV)-based forest fire inspection system that integrates a ground support system (GSS), aiming to enhance automation and flexibility in inspection tasks. A three-layer mixed-integer linear programming model is developed: the first layer focuses on the site selection and capacity planning of the GSS; the second layer defines the coverage scope of different GSS units; and the third layer plans the inspection routes of UAVs and coordinates multi-UAV collaborative tasks. For planning UAV patrol routes and collaborative tasks, a goal-driven greedy algorithm (GDGA) based on traditional greedy methods is proposed. Simulation experiments based on a real forest fire case in Turkey demonstrate that the proposed model reduces the total annual costs by 28.1% and 16.1% compared to task-only and renewable-only models, respectively, with a renewable energy penetration rate of 68.71%. The goal-driven greedy algorithm also shortens UAV patrol distances by 7.0% to 12.5% across different rotation angles. These results validate the effectiveness of the integrated model in improving inspection efficiency and economic benefits, thereby providing critical support for forest fire prevention. Full article
Show Figures

Figure 1

27 pages, 4866 KB  
Article
An Intelligent Control Framework for High-Power EV Fast Charging via Contrastive Learning and Manifold-Constrained Optimization
by Hao Tian, Tao Yan, Guangwu Dai, Min Wang and Xuejian Zhao
World Electr. Veh. J. 2025, 16(10), 562; https://doi.org/10.3390/wevj16100562 - 1 Oct 2025
Abstract
To address the complex trade-offs among charging efficiency, battery lifespan, energy efficiency, and safety in high-power electric vehicle (EV) fast charging, this paper presents an intelligent control framework based on contrastive learning and manifold-constrained multi-objective optimization. A multi-physics coupled electro-thermal-chemical model is formulated [...] Read more.
To address the complex trade-offs among charging efficiency, battery lifespan, energy efficiency, and safety in high-power electric vehicle (EV) fast charging, this paper presents an intelligent control framework based on contrastive learning and manifold-constrained multi-objective optimization. A multi-physics coupled electro-thermal-chemical model is formulated as a Mixed-Integer Nonlinear Programming (MINLP) problem, incorporating both continuous and discrete decision variables—such as charging power and cooling modes—into a unified optimization framework. An environment-adaptive optimization strategy is also developed. To enhance learning efficiency and policy safety, a contrastive learning–enhanced policy gradient (CLPG) algorithm is proposed to distinguish between high-quality and unsafe charging trajectories. A manifold-aware action generation network (MAN) is further introduced to enforce dynamic safety constraints under varying environmental and battery conditions. Simulation results demonstrate that the proposed framework reduces charging time to 18.3 min—47.7% faster than the conventional CC–CV method—while achieving 96.2% energy efficiency, 99.7% capacity retention, and zero safety violations. The framework also exhibits strong adaptability across wide temperature (−20 °C to 45 °C) and aging (SOH down to 70%) conditions, with real-time inference speed (6.76 ms) satisfying deployment requirements. This study provides a safe, efficient, and adaptive solution for intelligent high-power EV fast-charging. Full article
(This article belongs to the Section Charging Infrastructure and Grid Integration)
Show Figures

Figure 1

25 pages, 7537 KB  
Article
Research on Green Distribution Problems of Mixed Fleets Considering Multiple Charging Methods
by Lvjiang Yin, Ruixue Zhu and Dandan Jian
Energies 2025, 18(19), 5220; https://doi.org/10.3390/en18195220 - 1 Oct 2025
Abstract
Against the backdrop of global emissions reduction and transportation electrification, electric vehicles are gradually replacing traditional fuel vehicles for delivery. However, issues such as limited range and charging times often conflict with time window service requirements. To balance economic and environmental performance, mixed [...] Read more.
Against the backdrop of global emissions reduction and transportation electrification, electric vehicles are gradually replacing traditional fuel vehicles for delivery. However, issues such as limited range and charging times often conflict with time window service requirements. To balance economic and environmental performance, mixed fleets and multi-method charging strategies have emerged as viable approaches. This study addresses the problem by developing a mixed-integer programming model that incorporates multiple charging methods and carbon emission accounting. An Improved Adaptive Large Neighborhood Search (IALNS) algorithm is proposed, featuring multiple Removal and Insertion operators tailored for customers and charging stations, along with two local optimization operators. The algorithm’s superiority and applicability are validated through simulation and comparative analysis on benchmark instances and real-world data from an urban courier network. Sensitivity analysis further demonstrates that the proposed algorithm effectively coordinates vehicle type and charging mode selection, reducing total costs and carbon emissions while ensuring service quality. This approach provides practical reference value for operational decision-making in mixed fleet delivery. Full article
(This article belongs to the Special Issue Advanced Low-Carbon Energy Technologies)
Show Figures

Figure 1

22 pages, 1766 KB  
Article
A Leader-Assisted Decentralized Adaptive Formation Method for UAV Swarms Integrating a Pre-Trained Semantic Broadcast Communication Model
by Xing Xu, Bo Zhang and Rongpeng Li
Drones 2025, 9(10), 681; https://doi.org/10.3390/drones9100681 - 30 Sep 2025
Abstract
Multiple unmanned aerial vehicle (UAV) systems have attracted considerable research interest due to their broad applications, such as formation control. However, decentralized UAV formation faces challenges stemming from limited local observations, which may lead to consistency conflicts, and excessive communication. To address these [...] Read more.
Multiple unmanned aerial vehicle (UAV) systems have attracted considerable research interest due to their broad applications, such as formation control. However, decentralized UAV formation faces challenges stemming from limited local observations, which may lead to consistency conflicts, and excessive communication. To address these issues, this paper proposes SemanticBC-DecAF, a decentralized adaptive formation (DecAF) framework under a leader–follower architecture, incorporating a semantic broadcast communication (SemanticBC) mechanism. The framework consists of three modules: (1) a proximal policy optimization (PPO)-based semantic broadcast module, where the leader UAV transmits semantically encoded global obstacle images to followers to enhance their perception; (2) a YOLOv5-based detection and position estimation module, enabling followers to infer obstacle locations from recovered images; and (3) a multi-agent proximal policy optimization (MAPPO)-based formation module, which fuses global and local observations to achieve adaptive formation and obstacle avoidance. Experiments in the multi-agent simulation environment MPE show that the proposed framework significantly improves global perception and formation efficiency compared with methods that rely on local observations. Full article
(This article belongs to the Section Artificial Intelligence in Drones (AID))
35 pages, 5864 KB  
Article
Risk-Constrained Multi-Objective Deep Reinforcement Learning for AGV Path Planning in Rail Transit
by Zihan Yang and Huiyu Xiang
Appl. Syst. Innov. 2025, 8(5), 145; https://doi.org/10.3390/asi8050145 - 30 Sep 2025
Abstract
Sensor-rich Automated Guided Vehicles (AGVs) are increasingly deployed in logistics, yet large fleets relying on fixed tracks face high maintenance costs and frequent route conflicts. This study targets rail-based material handling and proposes an end-to-end multi-AGV navigation pipeline under realistic operational constraints. A [...] Read more.
Sensor-rich Automated Guided Vehicles (AGVs) are increasingly deployed in logistics, yet large fleets relying on fixed tracks face high maintenance costs and frequent route conflicts. This study targets rail-based material handling and proposes an end-to-end multi-AGV navigation pipeline under realistic operational constraints. A conflict-aware global planner, extended from the A* algorithm, generates feasible routes, while a multi-sensor perception stack integrates LiDAR and camera data to distinguish moving AGVs, static obstacles, and task targets. Based on this perception, a Deep Q-Network (DQN) policy with a tailored reward function enables real-time dynamic obstacle avoidance in complex traffic. Simulation results demonstrate that, compared with the Artificial Potential Field (APF) baseline, the proposed GG-DRL approach reduces collisions by ~70%, lowers planning time by 25–30%, shortens paths by 10–15%, and improves smoothness by 20–25%. On the Maze Benchmark Map, GG-DRL surpasses classical planners (e.g., RRT) and deep RL baselines (e.g., DDPG) in path quality, computation, and avoidance behavior, achieving an average path length of 81.12, computation time of 11.94 s, 5.2 avoidance maneuvers, and smoothness of 0.86. Robustness is maintained as a dynamic obstacles scale up to 30. These findings confirm that combining multi-sensor fusion with deep reinforcement learning enhances AGV safety, efficiency, and reliability, with broad potential for intelligent railway logistics. Full article
(This article belongs to the Special Issue Advancements in Deep Learning and Its Applications)
Show Figures

Figure 1

43 pages, 5662 KB  
Article
Coordinating V2V Energy Sharing for Electric Fleets via Multi-Granularity Modeling and Dynamic Spatiotemporal Matching
by Zhaonian Ye, Qike Han, Kai Han, Yongzhen Wang, Changlu Zhao, Haoran Yang and Jun Du
Sustainability 2025, 17(19), 8783; https://doi.org/10.3390/su17198783 - 30 Sep 2025
Abstract
The increasing adoption of electric delivery fleets introduces significant challenges related to uneven energy utilization and suboptimal scheduling efficiency. Vehicle-to-Vehicle (V2V) energy sharing presents a promising solution, but its effectiveness critically depends on precise matching and co-optimization within dynamic urban traffic environments. This [...] Read more.
The increasing adoption of electric delivery fleets introduces significant challenges related to uneven energy utilization and suboptimal scheduling efficiency. Vehicle-to-Vehicle (V2V) energy sharing presents a promising solution, but its effectiveness critically depends on precise matching and co-optimization within dynamic urban traffic environments. This paper proposes a hierarchical optimization framework to minimize total fleet operational costs, incorporating a comprehensive analysis that includes battery degradation. The core innovation of the framework lies in coupling high-level path planning with low-level real-time speed control. First, a high-fidelity energy consumption surrogate model is constructed through model predictive control simulations, incorporating vehicle dynamics and signal phase and timing information. Second, the spatiotemporal longest common subsequence algorithm is employed to match the spatio-temporal trajectories of energy-provider and energy-consumer vehicles. A battery aging model is integrated to quantify the long-term costs associated with different operational strategies. Finally, a multi-objective particle swarm optimization algorithm, integrated with MPC, co-optimizes the rendezvous paths and speed profiles. In a case study based on a logistics network, simulation results demonstrate that, compared to the conventional station-based charging mode, the proposed V2V framework reduces total fleet operational costs by a net 12.5% and total energy consumption by 17.4% while increasing the energy utilization efficiency of EV-Ps by 21.4%. This net saving is achieved even though the V2V strategy incurs a marginal increase in battery aging costs, which is overwhelmingly offset by substantial savings in logistical efficiency. This study provides an efficient and economical solution for the dynamic energy management of electric fleets under realistic traffic conditions, contributing to a more sustainable and resilient urban logistics ecosystem. Full article
(This article belongs to the Section Sustainable Transportation)
Show Figures

Figure 1

Back to TopTop