Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (353)

Search Parameters:
Keywords = multi-stakeholder collaboration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1207 KiB  
Article
Study of Multi-Stakeholder Mechanism in Inter-Provincial River Basin Eco-Compensation: Case of the Inland Rivers of Eastern China
by Zhijie Cao and Xuelong Chen
Sustainability 2025, 17(15), 7057; https://doi.org/10.3390/su17157057 - 4 Aug 2025
Viewed by 37
Abstract
Based on a comprehensive review of the current research status of ecological compensation both domestically and internationally, combined with field survey data, this study delves into the issue of multi-stakeholder participation in the ecological compensation mechanisms of the Xin’an River Basin. This research [...] Read more.
Based on a comprehensive review of the current research status of ecological compensation both domestically and internationally, combined with field survey data, this study delves into the issue of multi-stakeholder participation in the ecological compensation mechanisms of the Xin’an River Basin. This research reveals that the joint participation of multiple stakeholders is crucial to achieving the goals of ecological compensation in river basins. The government plays a significant role in macro-guidance, financial support, policy guarantees, supervision, and management. It promotes the comprehensive implementation of ecological environmental protection by formulating relevant laws and regulations, guiding the public to participate in ecological conservation, and supervising and punishing pollution behaviors. The public, serving as the main force, forms strong awareness and behavioral habits of ecological protection through active participation in environmental protection, monitoring, and feedback. As participants, enterprises contribute to industrial transformation and green development by improving resource utilization efficiency, reducing pollution emissions, promoting green industries, and participating in ecological restoration projects. Scientific research institutions, as technology enablers, have effectively enhanced governance efficiency through technological research and innovation, ecosystem value accounting to provide decision-making support, and public education. Social organizations, as facilitators, have injected vitality and innovation into watershed governance by extensively mobilizing social forces and building multi-party collaboration platforms. Communities, as supporters, have transformed ecological value into economic benefits by developing characteristic industries such as eco-agriculture and eco-tourism. Based on the above findings, further recommendations are proposed to mobilize the enthusiasm of upstream communities and encourage their participation in ecological compensation, promote the market-oriented operation of ecological compensation mechanisms, strengthen cross-regional cooperation to establish joint mechanisms, enhance supervision and evaluation, and establish a sound benefit-sharing mechanism. These recommendations provide theoretical support and practical references for ecological compensation worldwide. Full article
Show Figures

Figure 1

26 pages, 1103 KiB  
Article
How to Compensate Forest Ecosystem Services Through Restorative Justice: An Analysis Based on Typical Cases in China
by Haoran Gao and Tenglong Lin
Forests 2025, 16(8), 1254; https://doi.org/10.3390/f16081254 - 1 Aug 2025
Viewed by 218
Abstract
The ongoing degradation of global forests has severely weakened ecosystem service functions, and traditional judicial remedies have struggled to quantify intangible ecological losses. China has become an important testing ground for restorative justice through the establishment of specialized environmental courts and the practice [...] Read more.
The ongoing degradation of global forests has severely weakened ecosystem service functions, and traditional judicial remedies have struggled to quantify intangible ecological losses. China has become an important testing ground for restorative justice through the establishment of specialized environmental courts and the practice of environmental public interest litigation. Since 2015, China has actively explored and institutionalized the application of the concept of restorative justice in its environmental justice reform. This concept emphasizes compensating environmental damages through actual ecological restoration acts rather than relying solely on financial compensation. This shift reflects a deep understanding of the limitations of traditional environmental justice and an institutional response to China’s ecological civilization construction, providing critical support for forest ecosystem restoration and enabling ecological restoration activities, such as replanting and re-greening, habitat reconstruction, etc., to be enforced through judicial decisions. This study conducts a qualitative analysis of judicial rulings in forest restoration cases to systematically evaluate the effectiveness of restorative justice in compensating for losses in forest ecosystem service functions. The findings reveal the following: (1) restoration measures in judicial practice are disconnected from the types of ecosystem services available; (2) non-market values and long-term cumulative damages are systematically underestimated, with monitoring mechanisms exhibiting fragmented implementation and insufficient effectiveness; (3) management cycles are set in violation of ecological restoration principles, and acceptance standards lack function-oriented indicators; (4) participation of key stakeholders is severely lacking, and local knowledge and professional expertise have not been integrated. In response, this study proposes a restorative judicial framework oriented toward forest ecosystem services, utilizing four mechanisms: independent recognition of legal interests, function-matched restoration, application of scientific assessment tools, and multi-stakeholder collaboration. This framework aims to drive a paradigm shift from formal restoration to substantive functional recovery, providing theoretical support and practical pathways for environmental judicial reform and global forest governance. Full article
(This article belongs to the Section Forest Economics, Policy, and Social Science)
Show Figures

Figure 1

20 pages, 1175 KiB  
Article
A Study on the Site Selection of Urban Logistics Centers Utilizing Public Infrastructure
by Jiarong Chen, Jungwook Lee and Hyangsook Lee
Sustainability 2025, 17(15), 6846; https://doi.org/10.3390/su17156846 - 28 Jul 2025
Viewed by 268
Abstract
The COVID-19 pandemic has highlighted critical vulnerabilities in urban logistics systems, particularly in last-mile delivery. To enhance logistics resilience and efficiency, the Korean government has initiated an innovative project that repurposes idle spaces in subway vehicle bases within the Seoul Metropolitan Area into [...] Read more.
The COVID-19 pandemic has highlighted critical vulnerabilities in urban logistics systems, particularly in last-mile delivery. To enhance logistics resilience and efficiency, the Korean government has initiated an innovative project that repurposes idle spaces in subway vehicle bases within the Seoul Metropolitan Area into logistics centers. This study proposes a comprehensive multi-criteria evaluation framework combining the Analytic Hierarchy Process (AHP) and the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) to assess the suitability of ten candidate sites. The evaluation criteria span four dimensions, facility, geographical, environmental, and social factors, derived from the literature and expert consultations. AHP results indicate that geographical factors, especially proximity to urban centers and major logistics facilities, hold the highest weight. Based on the integrated analysis using TOPSIS, the most suitable locations identified are Sinnae, Godeok, and Cheonwang. The findings suggest the strategic importance of aligning infrastructure development with spatial accessibility and stakeholder cooperation. Policy implications include the need for targeted investment, public–private collaboration, and sustainable logistics planning. Future research is encouraged to incorporate dynamic data and consider social equity and environmental impact for long-term urban logistics planning. Full article
(This article belongs to the Section Sustainable Transportation)
Show Figures

Figure 1

22 pages, 1921 KiB  
Article
Cooperative Game-Theoretic Scheduling for Low-Carbon Integrated Energy Systems with P2G–CCS Synergy
by Huijia Liu, Sheng Ye, Chengkai Yin, Lei Wang and Can Zhang
Energies 2025, 18(15), 3942; https://doi.org/10.3390/en18153942 - 24 Jul 2025
Viewed by 299
Abstract
In the context of the dual-carbon goals, this study proposes a cooperative game-theoretic optimization strategy to enhance the energy utilization efficiency, operational efficiency, and cost-effectiveness of integrated energy systems (IESs) while simultaneously reducing carbon emissions, improving operational flexibility, and mitigating renewable energy variability. [...] Read more.
In the context of the dual-carbon goals, this study proposes a cooperative game-theoretic optimization strategy to enhance the energy utilization efficiency, operational efficiency, and cost-effectiveness of integrated energy systems (IESs) while simultaneously reducing carbon emissions, improving operational flexibility, and mitigating renewable energy variability. To achieve these goals, an IES framework integrating power-to-gas (P2G) technology and carbon capture and storage (CCS) facilities is established to regulate carbon emissions. The system incorporates P2G conversion units and thermal components—specifically, hydrogen fuel cells, electrolyzers, reactors, and electric boilers—aiming to maximize energy conversion efficiency and asset utilization. A cooperative game-theoretic optimization model is developed to facilitate collaboration among multiple stakeholders within the coalition, which employs the Shapley value method to ensure equitable distribution of the cooperative surplus, thereby maximizing collective benefits. The model is solved using an improved gray wolf optimizer (IGWO). The simulation results demonstrate that the proposed strategy effectively coordinates multi-IES scheduling, significantly reduces carbon emissions, facilitates the efficient allocation of cooperation gains, and maximizes overall system utility. Full article
Show Figures

Figure 1

28 pages, 1064 KiB  
Article
From Skilled Workers to Smart Talent: AI-Driven Workforce Transformation in the Construction Industry
by Xianhang Xu, Mohd Anuar Arshad, Yinglei He, Hong Liu, Qianqian Chen and Jiejing Yang
Buildings 2025, 15(14), 2552; https://doi.org/10.3390/buildings15142552 - 19 Jul 2025
Viewed by 386
Abstract
Workforce transformation is one of the most pressing challenges in the AI-driven construction industry, as traditional skilled labour roles are rapidly evolving into more interdisciplinary, digitally enabled positions. This study aims to investigate how AI is fundamentally reshaping skill requirements within the construction [...] Read more.
Workforce transformation is one of the most pressing challenges in the AI-driven construction industry, as traditional skilled labour roles are rapidly evolving into more interdisciplinary, digitally enabled positions. This study aims to investigate how AI is fundamentally reshaping skill requirements within the construction sector, to analyse stakeholder perceptions and adaptive responses to workforce transformation, and to explore strategies for optimizing construction workforce development to facilitate the critical transition from traditional “skilled workers” to contemporary “smart talent.” It employs phenomenological qualitative research methodology to conduct in-depth interviews with 20 stakeholders in Chongqing, and uses NVivo 14 to conduct thematic analysis of the data. The findings indicate that AI has penetrated all areas of the construction process and is transforming jobs to more likely be digitalized, collaborative, and multi-faceted. However, significant cognitive disparities and varying adaptive capacities among different stakeholder groups have created structural imbalances within the workforce development ecosystem. Based on these key findings, a four-pillar talent development strategy is proposed, encompassing institutional support, educational reform, enterprise engagement, and group development, while stressing the necessity for systemic-orchestrated coordination to reimagine a smart talent ecosystem. This study advances theoretical understanding of digital transformation within construction labour markets, while offering real pathways and institutional contexts for developing regions that desire to pursue workforce transformation and sustainable industrial development in the AI era. Full article
(This article belongs to the Special Issue Risks and Challenges of AI-Driven Construction Industry)
Show Figures

Figure 1

18 pages, 531 KiB  
Article
Advancing Rural Electrification in Ghana: Sustainable Solutions and Emerging Trends in Solar Energy Utilization
by Jones Lewis Arthur, Michael Gameli Dziwornu, Paweł Czapliński, Tomasz Rachwał and Hope Kwame Fiagbor
Energies 2025, 18(14), 3825; https://doi.org/10.3390/en18143825 - 18 Jul 2025
Viewed by 406
Abstract
This study examines the integration and sustainability of solar energy technologies as a tool for rural electrification in Ghana, using the Lofetsume community as a case study. Persistent electricity access deficits in rural areas, coupled with unreliable grid systems and high energy costs, [...] Read more.
This study examines the integration and sustainability of solar energy technologies as a tool for rural electrification in Ghana, using the Lofetsume community as a case study. Persistent electricity access deficits in rural areas, coupled with unreliable grid systems and high energy costs, underscore the need for alternative energy solutions. Through semi-structured interviews and surveys, the study explores community perspectives and expert views on the viability of solar energy in rural Ghana. Findings reveal strong grassroots support for solar energy due to its reliability and environmental benefits, despite barriers such as high upfront installation costs and maintenance challenges. The study recommends multi-stakeholder partnerships, innovative financing models, and capacity-building initiatives to enhance solar energy adoption. By prioritizing solar energy technologies, the government, private sector, and local communities can collaborate to develop sustainable and affordable electrification solutions, ultimately improving living standards in remote areas and contributing to Ghana’s broader energy sustainability goals. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

16 pages, 654 KiB  
Review
Engaging Broader Stakeholders to Accelerate Group A Streptococcus Vaccine Development
by Dechuan Kong, Hao Pan, Huanyu Wu and Jian Chen
Vaccines 2025, 13(7), 734; https://doi.org/10.3390/vaccines13070734 - 7 Jul 2025
Viewed by 748
Abstract
Group A Streptococcus (GAS) imposes a significant global health burden across all age groups, annually causing over 600 million cases of pharyngitis and more than 18 million severe invasive infections or sequelae. The resurgence of scarlet fever globally and streptococcal toxic shock syndrome [...] Read more.
Group A Streptococcus (GAS) imposes a significant global health burden across all age groups, annually causing over 600 million cases of pharyngitis and more than 18 million severe invasive infections or sequelae. The resurgence of scarlet fever globally and streptococcal toxic shock syndrome (STSS) outbreaks in Japan have brought GAS infections back into the spotlight as a pressing global health concern. Unfortunately, no licensed vaccine against GAS is yet available for clinical use. Our comprehensive review examines the developmental history of GAS vaccines, outlining the research trajectory from early inactivated vaccines to contemporary multivalent, conjugate, multi-antigen, and mRNA-based vaccine platforms. It systematically analyzes clinical trial outcomes of GAS vaccines, highlighting recent advances in both M protein-based and non-M protein vaccine candidates while summarizing promising target antigens. The review concludes with critical strategies to accelerate vaccine commercialization, including enhanced investment in research and development, expanded collaborations, leveraging advanced vaccine technologies, streamlined clinical trials, and strengthened public health advocacy. This review critically evaluates the current evidence and future prospects in GAS vaccine development, emphasizing innovative strategies and engaging broader stakeholders to accelerate GAS vaccine development. Full article
(This article belongs to the Special Issue Development of Vaccines Against Bacterial Infections)
Show Figures

Figure 1

20 pages, 881 KiB  
Article
Aligning Values for Impact: A Value Mapping Tool Applied to Social Innovation for Sustainable Business Modelling
by Carla Vivas, Susana Leal, João A. M. Nascimento, Luís Cláudio Barradas and Sandra Oliveira
Sustainability 2025, 17(13), 6214; https://doi.org/10.3390/su17136214 - 7 Jul 2025
Viewed by 888
Abstract
As sustainability becomes increasingly central to organizational strategy, social economy organizations (SEOs) are rethinking their business models. This study employs stakeholder analysis using the value mapping (VM) tool developed by Short, Rana, Bocken, and Evans for the development of the VOLTO JÁ project. [...] Read more.
As sustainability becomes increasingly central to organizational strategy, social economy organizations (SEOs) are rethinking their business models. This study employs stakeholder analysis using the value mapping (VM) tool developed by Short, Rana, Bocken, and Evans for the development of the VOLTO JÁ project. The objective of the VOLTO JÁ project is to operationalize a senior exchange programme between SEOs. The VM approach extends beyond conventional customer value propositions to prioritize sustainability for all stakeholders and identify key drivers of sustainable business model (SBM) innovation. The multi-stakeholder methodology comprises the following elements: (1) sequential focus groups aimed at enhancing sustainable business thinking; (2) semi-structured interviews; and (3) workshop to facilitate qualitative analysis and co-create the VM. The findings are then categorized into four value dimensions: (1) value captured—improved participant well-being, enhanced reputational capital, mitigation of social asymmetries, and affordable service experiences; (2) value lost—underused community assets; (3) value destroyed—institutional and systemic barriers to innovation; and (4) new value opportunities—knowledge sharing, service diversification, and open innovation to foster collaborative networks. The study demonstrates that the application of VM in SEOs supports SBM development by generating strategic insights, enhancing resource efficiency, and fostering the delivery of socially impactful services. Full article
Show Figures

Figure 1

29 pages, 1959 KiB  
Review
Systematic Review of Service Quality Models in Construction
by Rongxu Liu, Voicu Ion Sucala, Martino Luis and Lama Soliman Khaled
Buildings 2025, 15(13), 2331; https://doi.org/10.3390/buildings15132331 - 3 Jul 2025
Cited by 1 | Viewed by 587
Abstract
The construction industry is undergoing a significant transformation due to the increasing influence of digital technology, sustainability requirements, and diverse stakeholder expectations, which highlights the need to update the existing service quality models accordingly. However, the traditional service quality models often fail to [...] Read more.
The construction industry is undergoing a significant transformation due to the increasing influence of digital technology, sustainability requirements, and diverse stakeholder expectations, which highlights the need to update the existing service quality models accordingly. However, the traditional service quality models often fail to address these evolving demands comprehensively. This study systematically reviews 44 peer-reviewed articles to identify the key service quality dimensions and offer clear guidance for future research that can address the complexities of modern construction. The findings reveal that reliability, tangibles, and communication remain the most emphasized dimensions across the reviewed literature, whereas critical areas, such as digital integration, sustainability indicators, and service recovery, are significantly underexplored. This contrast explicitly links the limitations of the classic frameworks to these emerging demands, highlighting their difficulty in accommodating the industry’s growing reliance on real-time data, an environmentally friendly performance, and multi-stakeholder collaboration. Because the construction industry typically contributes 6–10 per cent of the national GDP and underpins wider economic development, inadequate service quality models can propagate cost overruns, productivity losses, and reputational damage across the economy; conversely, improved models enhance project efficiency, and thus support sustained economic growth. This review is limited by its reliance on the Scopus and Web of Science databases, which may exclude relevant regional or non-English studies. Furthermore, many reviewed articles are context-specific, potentially reducing the generalizability of the findings. Despite these limitations, this review offers an evidence-based framework that integrates advanced digital tools, sustainability measures, and diverse stakeholder perspectives. Future studies should demonstrate this framework’s efficacy and applicability in different circumstances. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

25 pages, 4901 KiB  
Article
Evolutionary Patterns and Mechanism Optimization of Public Participation in Community Regeneration Planning: A Case Study of Guangzhou
by Danhong Fu, Tingting Chen and Wei Lang
Land 2025, 14(7), 1394; https://doi.org/10.3390/land14071394 - 2 Jul 2025
Cited by 1 | Viewed by 485
Abstract
Against the backdrop of China’s urban transformation from incremental expansion to stock regeneration, community regeneration has emerged as a critical mechanism for enhancing urban governance efficacy. As fundamental units of urban systems, the regeneration of communities requires comprehensive approaches to address complex socio-spatial [...] Read more.
Against the backdrop of China’s urban transformation from incremental expansion to stock regeneration, community regeneration has emerged as a critical mechanism for enhancing urban governance efficacy. As fundamental units of urban systems, the regeneration of communities requires comprehensive approaches to address complex socio-spatial challenges, with public participation serving as the core driver for achieving sustainable renewal goals. However, significant regional disparities persist in the effectiveness of public participation across China, necessitating the systematic institutionalization of participatory practices. Guangzhou, as a pioneering city in institutional innovation and the practical exploration of urban regeneration, provides a representative case for examining the evolutionary trajectory of participatory planning. This research employs Arnstein’s Ladder of Participation theory, utilizing literature analysis and comparative case studies to investigate the evolution of participatory mechanisms in Guangzhou’s community regeneration over four decades. The study systematically examined the transformation of public engagement models across multiple dimensions, including organizational frameworks of participation, participatory effectiveness, diversified financing models, and the innovation of policy instruments. Three paradigm shifts were identified: the (1) transition of participants from “passive responders” to “active constructors”, (2) advancement of engagement phases from “fragmented intervention” to “whole-cycle empowerment”, and (3) evolution of participation methods from “unidirectional communication” to “collaborative co-governance”. It identifies four drivers of participatory effectiveness: policy frameworks, financing mechanisms, mediator cultivation, and engagement platforms. To enhance public engagement efficacy, the research proposes the following: (1) a resilient policy adaptation mechanism enabling dynamic responses to multi-stakeholder demands, (2) a diversified financing framework establishing a “government guidance + market operation + resident contribution” cost-sharing model, (3) a professional support system integrating “localization + specialization” capacities, and (4) enhanced digital empowerment and institutional innovation in participatory platform development. These mechanisms collectively form an evolutionary pathway from “symbolic participation” to “substantive co-creation” in urban regeneration governance. Full article
Show Figures

Figure 1

26 pages, 5676 KiB  
Article
GIS-Based Evaluation of Mining-Induced Water-Related Hazards in Pakistan and Integrated Risk Mitigation Strategies
by Jiang Li, Zhuoying Tan, Aboubakar Siddique, Hilal Ahmad, Wajid Rashid, Jianshu Liu and Yinglin Yang
Water 2025, 17(13), 1914; https://doi.org/10.3390/w17131914 - 27 Jun 2025
Viewed by 609
Abstract
Mining activities in Pakistan’s mineral-rich provinces threaten freshwater security through groundwater depletion, contamination, and flood-induced pollution. This study develops an Inclusive Disaster Risk Reduction (IDRR) framework integrating governance, social, environmental, and technical (GSET) dimensions to holistically assess mining-induced water hazards across Balochistan, Khyber [...] Read more.
Mining activities in Pakistan’s mineral-rich provinces threaten freshwater security through groundwater depletion, contamination, and flood-induced pollution. This study develops an Inclusive Disaster Risk Reduction (IDRR) framework integrating governance, social, environmental, and technical (GSET) dimensions to holistically assess mining-induced water hazards across Balochistan, Khyber Pakhtunkhwa, and Punjab. Using GIS-based spatial risk mapping with multi-layer hydrological modeling, we combine computational analysis and participatory validation to identify vulnerability hotspots and prioritize high-risk mines. Community workshops involving women water collectors, indigenous leaders, and local experts enhanced map accuracy by translating indigenous knowledge into spatially referenced mitigation plans and integrating gender-sensitive metrics to address gendered water access disparities. Key findings reveal severe groundwater depletion, acid mine drainage, and gendered burdens near Saindak and Cherat mines. Multi-sectoral engagements secured corporate commitments for water stewardship and policy advances in inclusive governance. The framework employs four priority-ranked risk categories (Governance-Economic 15%, Social-Community 30%, Environmental 40%, Technical-Geological 15%) derived via local stakeholder collaboration, enabling context-specific interventions. Despite data limitations, the GIS-driven methodology provides a scalable model for regions facing socio-environmental vulnerabilities. The results demonstrate how community participation directly shaped village-level water management alongside GSET analysis to craft equitable risk reduction strategies. Spatially explicit risk maps guided infrastructure upgrades and zoning regulations, advancing SDG 6 and 13 progress in Pakistan. This work underscores the value of inclusive, weighted frameworks for sustainable mining–water nexus management in Pakistan and analogous contexts. Full article
Show Figures

Figure 1

20 pages, 1092 KiB  
Article
Optimal Energy Management and Trading Strategy for Multi-Distribution Networks with Shared Energy Storage Based on Nash Bargaining Game
by Yuan Hu, Zhijun Wu, Yudi Ding, Kai Yuan, Feng Zhao and Tiancheng Shi
Processes 2025, 13(7), 2022; https://doi.org/10.3390/pr13072022 - 26 Jun 2025
Viewed by 355
Abstract
In distribution networks, energy storage serves as a crucial means to mitigate power fluctuations from renewable energy sources. However, due to its high cost, energy storage remains a resource whose large-scale adoption in power systems faces significant challenges. In recent years, the emergence [...] Read more.
In distribution networks, energy storage serves as a crucial means to mitigate power fluctuations from renewable energy sources. However, due to its high cost, energy storage remains a resource whose large-scale adoption in power systems faces significant challenges. In recent years, the emergence of shared energy storage business models has provided new opportunities for the efficient operation of multi-distribution networks. Nevertheless, distribution network operators and shared energy storage operators belong to different stakeholders, and traditional centralized scheduling strategies suffer from issues such as privacy leakage and overly conservative decision-making. To address these challenges, this paper proposes a Nash bargaining game-based optimal energy management and trading strategy for multi-distribution networks with shared energy storage. First, we establish optimal scheduling models for active distribution networks (ADNs) and shared energy storage operators, respectively, and then develop a cooperative scheduling model aimed at maximizing collaborative benefits. The interactive variables—power exchange and electricity prices between distribution networks and shared energy storage operators—are iteratively solved using the Alternating Direction Method of Multipliers (ADMM). Finally, case studies based on modified IEEE-33 test systems validate the effectiveness and feasibility of the proposed method. The results demonstrate that the presented approach significantly outperforms conventional centralized optimization and distributed robust techniques, achieving a maximum improvement of 3.6% in renewable energy utilization efficiency and an 11.2% reduction in operational expenses. While maintaining computational performance on par with centralized methods, it effectively addresses data privacy concerns. Furthermore, the proposed strategy enables a substantial decrease in load curtailment, with reductions reaching as high as 63.7%. Full article
(This article belongs to the Special Issue Applications of Smart Microgrids in Renewable Energy Development)
Show Figures

Figure 1

34 pages, 2827 KiB  
Review
Big Data-Driven Implementation in International Construction Supply Chain Management: Framework Development, Future Directions, and Barriers
by Ali Elkliny, Amin Mahmoudi and Xiaopeng Deng
Buildings 2025, 15(13), 2167; https://doi.org/10.3390/buildings15132167 - 21 Jun 2025
Viewed by 420
Abstract
Background: In any country, supply chain management is crucial to the economy. Big data-driven (BDD) implementation can be used in different disciplines, especially in construction supply chain management (CSCM). While BDD has a lot of opportunities for optimizing workflows, reducing costs, and improving [...] Read more.
Background: In any country, supply chain management is crucial to the economy. Big data-driven (BDD) implementation can be used in different disciplines, especially in construction supply chain management (CSCM). While BDD has a lot of opportunities for optimizing workflows, reducing costs, and improving collaboration among stakeholders to enhance efficiency and decision-making, its adoption is fraught with significant barriers. Thus, identifying these challenges is an important research concern. Methods: This study adopts a systematic review methodology aligned with PRISMA guidelines, combining bibliometric and thematic analyses to explore the integration of BDD approaches in CSCM. A comprehensive search of the Scopus database was conducted, focusing on articles published between 2014 and 2024 with a multi-phase screening process until 62 relevant studies were adopted. Results: This study summarizes the challenges associated with integrating BDD into CSCM and presents solutions to solve them and a framework for implementing BDD in CSCM. Moreover, providing future directions that require further consideration and research. Conclusions: By overcoming these barriers, the construction supply chain will be able to adopt big data for improving efficiency and reshaping CSCM. This study provides a clear view of how CSCM scholars and practitioners should develop along with promising research on BDD. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

20 pages, 2726 KiB  
Article
A Social–Technical–Ecological Systems Analysis of Sustainable Development Paths for Marine Ranching in Guangdong Province, China
by Xiang Liu, Renke He, Tie Ji, Binbin Shao and Han Meng
Water 2025, 17(13), 1838; https://doi.org/10.3390/w17131838 - 20 Jun 2025
Viewed by 503
Abstract
Marine ranching, an emerging paradigm in sustainable fisheries, integrates technological, social, and ecological dimensions through a social–technical–ecological systems (STESs) framework to enhance ecosystem resilience and resource governance. This study proposes a comprehensive STESs-based framework and applies it to 15 demonstration sites in Guangdong [...] Read more.
Marine ranching, an emerging paradigm in sustainable fisheries, integrates technological, social, and ecological dimensions through a social–technical–ecological systems (STESs) framework to enhance ecosystem resilience and resource governance. This study proposes a comprehensive STESs-based framework and applies it to 15 demonstration sites in Guangdong Province, China, to explore the dynamic interplay among technological innovation, stakeholder engagement, fisheries governance, ecosystem health, biodiversity, and community participation. Through regression analyses and descriptive statistics, we quantified these multi-layered interactions. The study’s findings reveal significant correlations that underscore the importance of integrated approaches to marine ranching sustainability. Notably, stakeholder engagement is strongly linked to technological adoption (r = 0.58), suggesting that inclusive decision-making processes can drive the uptake of innovative, sustainable technologies. Furthermore, technological adoption is positively correlated with ecosystem health (r = 0.62), highlighting the potential for sustainable technologies to enhance marine ecosystem well-being. Community participation emerges as a critical factor in biodiversity conservation (r = 0.71), emphasizing the value of collaborative conservation efforts. Additionally, the strong predictive relationship between marine biodiversity and water quality (β = 0.85, p = 0.001) underscores the importance of preserving biodiversity for maintaining good water quality, which is fundamental to the health and sustainability of marine ranching systems. These insights collectively support the development of holistic management strategies that integrate social, technological, and ecological dimensions to promote the resilience and sustainability of marine ranching. These results underscore the crucial roles of participatory governance, sustainable fishery practices, and biodiversity protection in strengthening the ecological resilience of marine ranching systems. Full article
(This article belongs to the Section Oceans and Coastal Zones)
Show Figures

Figure 1

32 pages, 5959 KiB  
Article
Identification and Redevelopment of Inefficient Industrial Land in Resource-Exhausted Cities: A Case Study of Hegang, China
by Yanping Qi, Yinghui Zhao, Jingpeng Guo and Yuwei Wang
Land 2025, 14(6), 1292; https://doi.org/10.3390/land14061292 - 17 Jun 2025
Viewed by 825
Abstract
Resource-exhausted cities face dual crises of economic stagnation and ecological degradation, which is primarily attributable to the inefficient use of industrial land. The redevelopment of industrial land has emerged as a crucial solution to the “resource depletion-urban decline” dilemma. The issue of inefficient [...] Read more.
Resource-exhausted cities face dual crises of economic stagnation and ecological degradation, which is primarily attributable to the inefficient use of industrial land. The redevelopment of industrial land has emerged as a crucial solution to the “resource depletion-urban decline” dilemma. The issue of inefficient industrial land use in resource-exhausted cities is of great significance as it directly impacts both economic development and ecological protection. Therefore, finding effective ways to redevelop this land is essential for the sustainable development of these cities. This research takes Hegang, a representative resource-exhausted city in China, as a case study. A multi-dimensional evaluation framework and an adaptive redevelopment strategy system are constructed in this research. By integrating data related to land use status, land use efficiency, policy constraints, and development potential, a parcel-scale assessment model is established. This model consists of 4 primary indicators and 13 secondary indicators. Through this model, 11.01 km2 of inefficient industrial land in the main urban area of Hegang is identified. Standard deviation ellipse and kernel density analysis are employed to reveal the spatial pattern of inefficient land. The results show that the inefficient industrial land in Hegang exhibits a pattern of “overall dispersion with localized agglomeration”. It is found that idle and abandoned land are the dominant types of inefficient industrial land in Hegang’s main urban area, accounting for 69.7% of the total. This finding provides a clear understanding of the nature of the inefficient land use problem in resource-exhausted cities. A strategic framework is proposed, which incorporates classified governance, dynamic restoration, and multi-stakeholder collaboration. This framework offers a governance toolkit with both theoretical depth and practical value for resource-exhausted cities. Breaking the locked relationship between industrial land and resource dependence promotes the deep integration of spatial restructuring and sustainable transformation. The findings of this research provide significant scientific insights for similar cities worldwide to address the challenges they face and achieve harmony between human activities and land use. Future research could focus on further refining the evaluation framework and redevelopment strategies based on different regional characteristics and resource endowments. Full article
Show Figures

Figure 1

Back to TopTop