Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = multi-shelled hollow

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 6740 KB  
Article
High-Entropy Sulfide Nanoarchitectures with Triple-Shelled Hollow Design for Durable Sodium–Ion Batteries
by Mingyang Chen, Yan Liu, Zhenchun Fang, Yinan Wang, Shaonan Gu and Guowei Zhou
Nanomaterials 2025, 15(12), 881; https://doi.org/10.3390/nano15120881 - 7 Jun 2025
Cited by 4 | Viewed by 1299
Abstract
Metal sulfides are promising anode candidates for sodium–ion batteries (SIBs) due to their high theoretical capacities. However, their practical application is limited by significant volume extension and sluggish Na+ diffusion during cycling, which lead to rapid capacity degradation and poor long-term stability. [...] Read more.
Metal sulfides are promising anode candidates for sodium–ion batteries (SIBs) due to their high theoretical capacities. However, their practical application is limited by significant volume extension and sluggish Na+ diffusion during cycling, which lead to rapid capacity degradation and poor long-term stability. In this work, we report the rational design of a hollow triple-shelled high-entropy sulfide (NaFeZnCoNiMn)9S8, synthesized through sequential templating method under hydrothermal conditions. Transmission electron microscopy confirms its well-defined three-shelled architecture. The inter-shell voids effectively buffer Na+ insertion/desertion-induced volume extension, while the tailored high-entropy matrix enhances electronic conductivity and accelerates Na+ transport. This synergistic design yields outstanding performance, including a high initial Coulombic efficiency (ICE) of 94.1% at 0.1 A g−1, low charge-transfer resistance (0.32~2.54 Ω), fast Na+ diffusion efficiency (10−8.5–10−10.5 cm2 s−1), and reversible capacity of 582.6 mAh g−1 after 1600 cycles at 1 A g−1 with 91.2% capacity retention. These results demonstrate the potential of high-entropy, multi-shelled architectures as a robust platform for next-generation durable SIB anodes. Full article
Show Figures

Figure 1

21 pages, 14844 KB  
Article
On the Design of Bionic Hierarchical H-Type Whip Restraints for Nuclear Power Plants
by Zheng He, Yuhang Yang, Libang Hu and Shuitao Gu
Appl. Sci. 2025, 15(10), 5507; https://doi.org/10.3390/app15105507 - 14 May 2025
Viewed by 738
Abstract
Whip restraints based on thin-walled structures are widely used for protection against high-energy pipe breaks in nuclear power plants due to their excellent impact resistance. Recently, biomimetic and hierarchical structures have emerged as focal points in thin-walled structure research, aimed at enhancing energy [...] Read more.
Whip restraints based on thin-walled structures are widely used for protection against high-energy pipe breaks in nuclear power plants due to their excellent impact resistance. Recently, biomimetic and hierarchical structures have emerged as focal points in thin-walled structure research, aimed at enhancing energy absorption capacities. Drawing inspiration from the nautilus shell and Fibonacci spiral, based on the nautilus bionic hierarchical multi-cell (NBHMC) structure, this study introduces a novel Nautilus Bionic Double Hierarchical Multi-Cell (NBDHMC) structure. Finite element analysis was employed to evaluate the energy absorption performance of the structure under axial and oblique loads using four crashworthiness parameters. Crashworthiness studies showed that the NBDHMC exhibits superior crashworthiness compared to the NBHMC and hollow circular tube configurations. Finally, the study investigated the influence of combination modes, hierarchical levels, cross-sectional characteristics, and other parameters on the parameterization of the NBDHMC. The results offer innovative insights for the design of highly efficient energy absorbers. Full article
Show Figures

Figure 1

13 pages, 4502 KB  
Article
Radiation Characterization of Smart Aerogels Based on Hollow VO2 Particles
by Xingcan Li, Shengkai Qin, Bowei Xie, Tianbo Hou, Linkang Wang, Yinmo Xie and Meiran Han
Gels 2025, 11(4), 273; https://doi.org/10.3390/gels11040273 - 5 Apr 2025
Viewed by 939
Abstract
The smart aerogel control technology based on thermochromic materials can dynamically adjust the emittance with temperature changes, which plays a significant role in reducing energy consumption and carbon emissions. This paper presents the design of the smart aerogel based on hollow VO2 [...] Read more.
The smart aerogel control technology based on thermochromic materials can dynamically adjust the emittance with temperature changes, which plays a significant role in reducing energy consumption and carbon emissions. This paper presents the design of the smart aerogel based on hollow VO2 particles with excellent emittance modulation. The radiation characteristics of a single particle were calculated using the multi-sphere superposition T-matrix method, and the radiation characteristics of the aerogel were determined using the Monte Carlo method. The results indicate that when the radius of the hollow VO2 particles is 1 μm and the shell thickness is 40 nm, the hollow particles display excellent thermal regulation. When the thickness of the VO2 particle smart aerogel is 50 μm, with a volume fraction of 2.5%, the emittance of the adaptable aerogel can reach 51.295%, which provides a theoretical foundation for the further advancement of infrared smart aerogels to enhance their energy-saving performance. Full article
(This article belongs to the Special Issue Recent Advances in Aerogels and Aerogel Composites)
Show Figures

Graphical abstract

16 pages, 5036 KB  
Article
Power Production and Degradation of Pesticide Wastewater Through Microbial Fuel Cells with the Modified Activated Carbon Air Cathode by Hollow-Carbon and Carbon-Encapsulated Structures
by Xueli Zhang, Linhui Jia, Yu Liu, Ziqi Wang, Jumiao Qin, Qiuhong Wang, Xiao Zhao, Ming Zhong, Jianfeng Lang, Guangri Xu, Yanbing Wu and Chengxing Cui
Molecules 2024, 29(23), 5675; https://doi.org/10.3390/molecules29235675 - 30 Nov 2024
Cited by 2 | Viewed by 1358
Abstract
Microbial fuel cell (MFC) can degrade pesticide wastewater and recovery energy simultaneously, and the activated carbon (AC) air cathode has great prospects for practical application. However, insufficient active sites and the limitation of multi-step electron transfer for oxygen reduction reaction (ORR) requires that [...] Read more.
Microbial fuel cell (MFC) can degrade pesticide wastewater and recovery energy simultaneously, and the activated carbon (AC) air cathode has great prospects for practical application. However, insufficient active sites and the limitation of multi-step electron transfer for oxygen reduction reaction (ORR) requires that AC should be modified by highly efficient electrocatalysts. Herein, busing the confinement effect of carbon-encapsulated metal and hollow carbon, we designed a unique ORR catalyst of Fe-Fe3O4-NC through utilizing the 2D leaf-like nanoplates of Zn-ZIF-L to load Prussian blue (PB) particles. The volatilization of low-boiled Zn and the catalysis of iron compounds led to the formation of confined walls of hollow carbon shell and carbon-encapsulated Fe/Fe3O4 particles on N-doped carbon substrate. Multivalent iron, a large surface area (368.11 m2·g−1), N doping, a heterojunction interface, and the confinement effect provided all the Fe-Fe3O4-NC-modified AC air cathodes with excellent ORR activity. The optimal samples of AC-Fe-Fe3O4-NC-3 achieved a peak power density of 1213.8 mW·m−2, demonstrating a substantial 82.8% increase over that of the bare AC. Furthermore, its efficiency in glyphosate removal reached 80.1%, surpassing the 23.2% of the bare AC. This study offers new ideas in constructing composite confined structures and the as-designed Fe-Fe3O4-NC is a promising modification candidate for the commercial adoption of AC air cathodes. Full article
Show Figures

Graphical abstract

22 pages, 10842 KB  
Article
A Compressive Load Bearing Analysis of 3D-Printed Circular Elements
by Ilerioluwa Giwa, Ali Kazemian, Vijaya Gopu and Tyson Rupnow
Buildings 2024, 14(7), 2170; https://doi.org/10.3390/buildings14072170 - 15 Jul 2024
Cited by 4 | Viewed by 3704
Abstract
Large-scale construction 3D printing is a promising platform technology that can be leveraged to fabricate structural elements such as columns, piers, pipes, and culverts. In this study, the axial compression and split tensile performance of 3D-printed steel-fiber-reinforced circular elements fabricated with different configurations [...] Read more.
Large-scale construction 3D printing is a promising platform technology that can be leveraged to fabricate structural elements such as columns, piers, pipes, and culverts. In this study, the axial compression and split tensile performance of 3D-printed steel-fiber-reinforced circular elements fabricated with different configurations (hollow, hybrid, mold-cast, and fully 3D-printed) is evaluated. This study further investigates the performance of multi-material circular hybrid elements (3D-printed shells with different backfilled core materials) in an attempt to assess their suitability as a new construction paradigm. The experimental results revealed that the fully 3D-printed steel-fiber-reinforced circular elements exhibited a higher load capacity (up to 36%) and a distinct crack pattern compared to the other configurations. The void ratio of circular elements has varying effects on its axial load capacity depending on the printing material and significantly influences its splitting tensile load capacity. Furthermore, the compatibility between the 3D-printed shell and the cast-in-place core is identified as an influential factor in the structural performance of the hybrid elements. The results suggest a promising construction approach where low-cement material can be utilized as infill material for a cost-effective 3D-printed permanent formwork, offering a viable solution for specific infrastructure development applications. Full article
(This article belongs to the Special Issue 3D Printing and Low-Carbon Technologies in Cementitious Composites)
Show Figures

Figure 1

16 pages, 8598 KB  
Article
Preparation of Hollow Silica Nanoparticles with Polyacrylic Acid and Their Moisture Sorption Properties
by Quanyue Wen, Kento Ishii and Masayoshi Fuji
Coatings 2024, 14(7), 829; https://doi.org/10.3390/coatings14070829 - 3 Jul 2024
Cited by 2 | Viewed by 2762
Abstract
Hollow silica nanoparticles (HSNPs) have hygroscopic properties because of their high specific surface area and surface hydroxyl groups. However, compared with other hygroscopic materials, their hygroscopic properties are relatively weak, which limits the further application of HSNPs. One feasible method to enhance their [...] Read more.
Hollow silica nanoparticles (HSNPs) have hygroscopic properties because of their high specific surface area and surface hydroxyl groups. However, compared with other hygroscopic materials, their hygroscopic properties are relatively weak, which limits the further application of HSNPs. One feasible method to enhance their hygroscopic properties is by combining highly hygroscopic materials with hollow silica nanoparticles. To take advantage of the high hygroscopicity of polyacrylic acid (PAA) when combined with the high specific surface area of the hollow particles, PAA was coated on the inner and outer surfaces of the silica shell of the nanoparticles in this study to prepare hollow nanoparticles with a PAA/silica/PAA multilayer structure. The size of the PAA/silica/PAA multi-layer nanoparticles is about 85 nm, and the shell thickness is 25 nm. The specific surface area of the multi-layer nanoparticles is 58 m2/g. The water vapor adsorption capacity of multi-layer structure hollow nanoparticles was increased by 160% compared with the HSNPs (increased from 45.9 cm3/m2 to 109.1 cm3/m2). Meanwhile, at the same content of PAA, the PAA/silica/PAA-structured particles will adsorb 9% more water vapor than the PAA/silica-structured particles. This indicates that the high specific surface area structure of the hollow particles will enhance the adsorption ability of PAA toward water vapor. This novel structure of PAA-HSNPs is expected to be used as a humidity-regulating material for filler in environmental and architectural applications. Full article
Show Figures

Figure 1

20 pages, 4462 KB  
Review
Synthesis of Mesoporous Silica Using the Sol–Gel Approach: Adjusting Architecture and Composition for Novel Applications
by Yandong Han, Lin Zhang and Wensheng Yang
Nanomaterials 2024, 14(11), 903; https://doi.org/10.3390/nano14110903 - 21 May 2024
Cited by 27 | Viewed by 13756
Abstract
The sol–gel chemistry of silica has long been used for manipulating the size, shape, and microstructure of mesoporous silica particles. This manipulation is performed in mild conditions through controlling the hydrolysis and condensation of silicon alkoxide. Compared to amorphous silica particles, the preparation [...] Read more.
The sol–gel chemistry of silica has long been used for manipulating the size, shape, and microstructure of mesoporous silica particles. This manipulation is performed in mild conditions through controlling the hydrolysis and condensation of silicon alkoxide. Compared to amorphous silica particles, the preparation of mesoporous silica, such as MCM-41, using the sol–gel approach offers several unique advantages in the fields of catalysis, medicament, and environment, due to its ordered mesoporous structure, high specific surface area, large pore volume, and easily functionalized surface. In this review, our primary focus is on the latest research related to the manipulation of mesoporous silica architectures using the sol–gel approach. We summarize various structures, including hollow, yolk-shell, multi-shelled hollow, Janus, nanotubular, and 2D membrane structures. Additionally, we survey sol–gel strategies involving the introduction of various functional elements onto the surface of mesoporous silica to enhance its performance. Furthermore, we outline the prospects and challenges associated with mesoporous silica featuring different structures and functions in promising applications, such as high-performance catalysis, biomedicine, wastewater treatment, and CO2 capture. Full article
Show Figures

Figure 1

13 pages, 5654 KB  
Article
Study on the Mechanical Properties of 3D-Printed Sand Mold Specimens with Complex Hollow Structures
by Jingying Xu, Jinwu Kang, Yongkang Hu, Houfa Shen and Weimin Mao
Materials 2024, 17(5), 996; https://doi.org/10.3390/ma17050996 - 21 Feb 2024
Cited by 6 | Viewed by 2385
Abstract
Casting, as a fundamental process in metal forming, finds widespread applications in the manufacturing industry. The advent of 3D printing hollow sand mold technology presents a novel method for casting technology to revolutionize traditional dense sand molds, offering increased flexibility in achieving quality [...] Read more.
Casting, as a fundamental process in metal forming, finds widespread applications in the manufacturing industry. The advent of 3D printing hollow sand mold technology presents a novel method for casting technology to revolutionize traditional dense sand molds, offering increased flexibility in achieving quality control and improvement in casting processes. Consequently, this study delves into an examination of the mechanical strengths of 3D-printed sand molds with complex hollow structures and further investigates the influence of hollow sand mold concession on castings. The results indicate that compressive and high-temperature residual tensile and bending strengths vary in hollow structures. Multi-layer shells have greater high-temperature residual tensile, compressive, and bending strengths than truss hollow sand molds with roughly the same hollow volume fraction. Compared to dense sand molds, hollow sand molds, which have a lower mechanical strength, have better retractability, which helps reduce the residual stress and crack tendency of castings. The breaking of hollow structures is limited to local areas, unlike the penetrative cracking of dense sand molds. The I-beam-shaped casting test results indicate that a hollow structure is beneficial for the preservation of the integrity of a sand mold during the casting process. Compared to dense and truss hollow molds, a multi-layer shell hollow sand structure has the comprehensive advantages that it improves retractability while maintaining strength relatively well, reduces the residual stress, and avoids cracks in castings and itself. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

19 pages, 8668 KB  
Article
Flexible Piezoresistive Polystyrene Composite Sensors Filled with Hollow 3D Graphitic Shells
by Nataliia Guzenko, Marcin Godzierz, Klaudia Kurtyka, Anna Hercog, Klaudia Nocoń-Szmajda, Anna Gawron, Urszula Szeluga, Barbara Trzebicka, Ruizhi Yang and Mark H. Rümmeli
Polymers 2023, 15(24), 4674; https://doi.org/10.3390/polym15244674 - 11 Dec 2023
Cited by 3 | Viewed by 2493
Abstract
The objective of this research was to develop highly effective conductive polymer composite (CPC) materials for flexible piezoresistive sensors, utilizing hollow three-dimensional graphitic shells as a highly conductive particulate component. Polystyrene (PS), a cost-effective and robust polymer widely used in various applications such [...] Read more.
The objective of this research was to develop highly effective conductive polymer composite (CPC) materials for flexible piezoresistive sensors, utilizing hollow three-dimensional graphitic shells as a highly conductive particulate component. Polystyrene (PS), a cost-effective and robust polymer widely used in various applications such as household appliances, electronics, automotive parts, packaging, and thermal insulation materials, was chosen as the polymer matrix. The hollow spherical three-dimensional graphitic shells (GS) were synthesized through chemical vapor deposition (CVD) with magnesium oxide (MgO) nanoparticles serving as a support, which was removed post-synthesis and employed as the conductive filler. Commercial multi-walled carbon nanotubes (CNTs) were used as a reference one-dimensional graphene material. The main focus of this study was to investigate the impact of the GS on the piezoresistive response of carbon/polymer composite thin films. The distribution and arrangement of GS and CNTs in the polymer matrix were analyzed using techniques such as X-ray diffraction and scanning electron microscopy, while the electrical, thermal, and mechanical properties of the composites were also evaluated. The results revealed that the PS composite films filled with GS exhibited a more pronounced piezoresistive response as compared to the CNT-based composites, despite their lower mechanical and thermal performance. Full article
Show Figures

Figure 1

12 pages, 2520 KB  
Article
Three-Dimensional Printing Multi-Drug Delivery Core/Shell Fiber Systems with Designed Release Capability
by Hao Wei, Yongxiang Luo, Ruisen Ma and Yuxiao Li
Pharmaceutics 2023, 15(9), 2336; https://doi.org/10.3390/pharmaceutics15092336 - 18 Sep 2023
Cited by 12 | Viewed by 2822
Abstract
A hydrogel system with the ability to control the delivery of multiple drugs has gained increasing interest for localized disease treatment and tissue engineering applications. In this study, a triple-drug-loaded model based on a core/shell fiber system (CFS) was fabricated through the co-axial [...] Read more.
A hydrogel system with the ability to control the delivery of multiple drugs has gained increasing interest for localized disease treatment and tissue engineering applications. In this study, a triple-drug-loaded model based on a core/shell fiber system (CFS) was fabricated through the co-axial 3D printing of hydrogel inks. A CFS with drug 1 loaded in the core, drug 2 in the shell part, and drug 3 in the hollow channel of the CFS was printed on a rotating collector using a co-axial nozzle. Doxorubicin (DOX), as the model drug, was selected to load in the core, with the shell and channel part of the CFS represented as drugs 1, 2, and 3, respectively. Drug 2 achieved the fastest release, while drug 3 showed the slowest release, which indicated that the three types of drugs printed on the CFS spatially can achieve sequential triple-drug release. Moreover, the release rate and sustained duration of each drug could be controlled by the unique core/shell helical structure, the concentration of alginate gels, the cross-linking density, the size and number of the open orifices in the fibers, and the CFS. Additionally, a near-infrared (NIR) laser or pH-responsive drug release could also be realized by introducing photo-thermal materials or a pH-sensitive polymer into this system. Finally, the drug-loaded system showed effective localized cancer therapy in vitro and in vivo. Therefore, this prepared CFS showed the potential application for disease treatment and tissue engineering by sequential- or stimulus-responsively releasing multi-drugs. Full article
Show Figures

Figure 1

17 pages, 2901 KB  
Article
Enabling Clonal Analyses of Yeast in Outer Space by Encapsulation and Desiccation in Hollow Microparticles
by Simon Ng, Cayden Williamson, Mark van Zee, Dino Di Carlo and Sergio R. Santa Maria
Life 2022, 12(8), 1168; https://doi.org/10.3390/life12081168 - 31 Jul 2022
Cited by 5 | Viewed by 4299
Abstract
Studying microbes at the single-cell level in space can accelerate human space exploration both via the development of novel biotechnologies and via the understanding of cellular responses to space stressors and countermeasures. High-throughput technologies for screening natural and engineered cell populations can reveal [...] Read more.
Studying microbes at the single-cell level in space can accelerate human space exploration both via the development of novel biotechnologies and via the understanding of cellular responses to space stressors and countermeasures. High-throughput technologies for screening natural and engineered cell populations can reveal cellular heterogeneity and identify high-performance cells. Here, we present a method to desiccate and preserve microbes in nanoliter-scale compartments, termed PicoShells, which are microparticles with a hollow inner cavity. In PicoShells, single cells are confined in an inner aqueous core by a porous hydrogel shell, allowing the diffusion of nutrients, wastes, and assay reagents for uninhibited cell growth and flexible assay protocols. Desiccated PicoShells offer analysis capabilities for single-cell derived colonies with a simple, low resource workflow, requiring only the addition of water to rehydrate hundreds of thousands of PicoShells and the single microbes encapsulated inside. Our desiccation method results in the recovery of desiccated microparticle morphology and porosity after a multi-week storage period and rehydration, with particle diameter and porosity metrics changing by less than 18% and 7%, respectively, compared to fresh microparticles. We also recorded the high viability of Saccharomyces cerevisiae yeast desiccated and rehydrated inside PicoShells, with only a 14% decrease in viability compared to non-desiccated yeast over 8.5 weeks, although we observed an 85% decrease in initial growth potential over the same duration. We show a proof-of-concept for a growth rate-based analysis of single-cell derived colonies in rehydrated PicoShells, where we identified 11% of the population that grows at an accelerated rate. Desiccated PicoShells thus provide a robust method for cell preservation before and during launch, promising a simple single-cell analysis method for studying heterogeneity in microbial populations in space. Full article
(This article belongs to the Special Issue Gravitational Microbiology Research and Applications)
Show Figures

Graphical abstract

16 pages, 28595 KB  
Article
PdAgPt Corner-Satellite Nanocrystals in Well-Controlled Morphologies and the Structure-Related Electrocatalytic Properties
by Hehe Qian, Jianzhou Wu, Yongsheng Guo and Wenjun Fang
Nanomaterials 2021, 11(2), 340; https://doi.org/10.3390/nano11020340 - 29 Jan 2021
Cited by 4 | Viewed by 3048
Abstract
The functions of heterogeneous metallic nanocrystals (HMNCs) can be undoubtedly tuned by controlling their morphologies and compositions. As a less-studied kind of HMNCs, corner-satellite multi-metallic nanocrystals (CSMNCs) have great research value in structure-related electrocatalytic performance. In this work, PdAgPt corner-satellite nanocrystals with well-controlled [...] Read more.
The functions of heterogeneous metallic nanocrystals (HMNCs) can be undoubtedly tuned by controlling their morphologies and compositions. As a less-studied kind of HMNCs, corner-satellite multi-metallic nanocrystals (CSMNCs) have great research value in structure-related electrocatalytic performance. In this work, PdAgPt corner-satellite nanocrystals with well-controlled morphologies and compositions have been developed by temperature regulation of a seed-mediated growth process. Through the seed-mediated growth, the morphology of PdAgPt products evolves from Pd@Ag cubes to PdAgPt corner-satellite cubes, and eventually to truncated hollow octahedra, as a result of the expansion of {111} facets in AgPt satellites. The growth of AgPt satellites exclusively on the corners of central cubes is realized with the joint help of Ag shell and moderate bromide, and hollow structures form only at higher reaction temperatures on account of galvanic displacement promoted by the Pd core. In view of the different performances of Pd and Pt toward formic acid oxidation (FAO), this structure-sensitive reaction is chosen to measure electrocatalytic properties of PdAgPt HMNCs. It is proven that PdAgPt CSMNCs display greatly improved activity toward FAO in direct oxidation pathway. In addition, with the help of AgPt heterogeneous shells, all PdAgPt HMNCs exhibit better durability than Pd cubes and commercial Pt. Full article
(This article belongs to the Special Issue Advanced Noble Metal Nanoparticles)
Show Figures

Graphical abstract

14 pages, 5280 KB  
Article
Development of Magnetic Multi-Shelled Hollow Catalyst for Biodiesel Production
by Liang Zhou, Jingang Yao, Zhaoxia Ren, Zhenqiang Yu and Hongzhen Cai
Energies 2020, 13(11), 2754; https://doi.org/10.3390/en13112754 - 1 Jun 2020
Cited by 9 | Viewed by 2903
Abstract
The magnetic CaO-based catalyst has endorsed great enhancements in biodiesel synthesis. In the present work, novel multi-shelled hollow γ-Fe2O3 stabilized CaO microspheres were synthesized using a facile one-step hydrothermal method. The strategy revealed that the well-defined multi-shelled hollow structures were [...] Read more.
The magnetic CaO-based catalyst has endorsed great enhancements in biodiesel synthesis. In the present work, novel multi-shelled hollow γ-Fe2O3 stabilized CaO microspheres were synthesized using a facile one-step hydrothermal method. The strategy revealed that the well-defined multi-shelled hollow structures were formed with magnetism; the presence of γ-Fe2O3 was the key for the effective structural stabilization, and the multi-shelled hollow structures provided the sites for the active material. The synthesized catalyst was employed for the preparation of biodiesel by transesterification of palm oil and methanol. A four factors response surface methodology was adopted for optimizing the reaction conditions. Ca80Fe20 with a yield of 96.12% performed the highest catalytic activity under reaction conditions of 2 h, a methanol to oil ratio of 12:1, 65 °C and 11 wt. % of catalyst dosage. The catalyst under the optimum transesterification conditions also performed a better recyclability (>85%). In addition, the response surface methodology (RSM) based on the Box–Behnken design was used to optimize the four reaction parameters. Full article
(This article belongs to the Section A4: Bio-Energy)
Show Figures

Figure 1

13 pages, 3910 KB  
Article
Fabrication of Hollow and Porous Tin-Doped Indium Oxide Nanofibers and Microtubes via a Gas Jet Fiber Spinning Process
by Monoj Ghosh and Sadhan C. Jana
Materials 2020, 13(7), 1539; https://doi.org/10.3390/ma13071539 - 27 Mar 2020
Cited by 5 | Viewed by 3915
Abstract
We report the morphologies of tin-doped indium oxide (ITO) hollow microtubes and porous nanofibers produced from precursor solutions of polyvinylpyrrolidone (PVP), indium chloride (InCl3), and stannic chloride (SnCl4). The polymer precursor fibers are produced via a facile gas jet [...] Read more.
We report the morphologies of tin-doped indium oxide (ITO) hollow microtubes and porous nanofibers produced from precursor solutions of polyvinylpyrrolidone (PVP), indium chloride (InCl3), and stannic chloride (SnCl4). The polymer precursor fibers are produced via a facile gas jet fiber (GJF) spinning process and subsequently calcined to produce ITO materials. The morphology shows strong dependence on heating rate in calcination step. Solid porous ITO nanofibers result from slow heating rates while hollow tubular ITO microfibers with porous shells are produced at high heating rates when calcined at a peak temperature of 700 °C. The mechanisms of formation of different morphological forms are proposed. The ITO fibers are characterized using several microscopy tools and thermogravimetric analysis. The concentration of inorganic salts in precursor solution is identified as a key factor in determining the porosity of the shell in hollow fibers. The data presented in this paper show that GJF method may be suitable for fabrication of hollow and multi-tubular metal oxide nanofibers from other inorganic precursor materials. Full article
(This article belongs to the Section Advanced Nanomaterials and Nanotechnology)
Show Figures

Graphical abstract

38 pages, 9323 KB  
Review
Synthesis and Electrochemical Energy Storage Applications of Micro/Nanostructured Spherical Materials
by Qinghua Gong, Tingting Gao, Tingting Hu and Guowei Zhou
Nanomaterials 2019, 9(9), 1207; https://doi.org/10.3390/nano9091207 - 27 Aug 2019
Cited by 20 | Viewed by 5893
Abstract
Micro/nanostructured spherical materials have been widely explored for electrochemical energy storage due to their exceptional properties, which have also been summarized based on electrode type and material composition. The increased complexity of spherical structures has increased the feasibility of modulating their properties, thereby [...] Read more.
Micro/nanostructured spherical materials have been widely explored for electrochemical energy storage due to their exceptional properties, which have also been summarized based on electrode type and material composition. The increased complexity of spherical structures has increased the feasibility of modulating their properties, thereby improving their performance compared with simple spherical structures. This paper comprehensively reviews the synthesis and electrochemical energy storage applications of micro/nanostructured spherical materials. After a brief classification, the concepts and syntheses of micro/nanostructured spherical materials are described in detail, which include hollow, core-shelled, yolk-shelled, double-shelled, and multi-shelled spheres. We then introduce strategies classified into hard-, soft-, and self-templating methods for synthesis of these spherical structures, and also include the concepts of synthetic methodologies. Thereafter, we discuss their applications as electrode materials for lithium-ion batteries and supercapacitors, and sulfur hosts for lithium–sulfur batteries. The superiority of multi-shelled hollow micro/nanospheres for electrochemical energy storage applications is particularly summarized. Subsequently, we conclude this review by presenting the challenges, development, highlights, and future directions of the micro/nanostructured spherical materials for electrochemical energy storage. Full article
(This article belongs to the Special Issue Novel Nanomaterials for Applications in Energy and Catalysis)
Show Figures

Graphical abstract

Back to TopTop