Radiation Characterization of Smart Aerogels Based on Hollow VO2 Particles
Abstract
:1. Introduction
2. Results and Discussion
2.1. Validation of the Method
2.2. Radiation Properties of the Hollow VO2 Particles
2.2.1. Effect of Different Layer Thicknesses c on the Particle Absorption Factor for a Particle Size of r2 = 1 μm
2.2.2. Effect of Different Radii on the Absorption Factor of Nucleoshell Particles at VO2 Shell Thickness of 40 nm
2.3. Spectral Emittance of the Hollow VO2 Particles-Based Smart Aerogel
2.4. Total Emittance of the Hollow VO2 Particles-Based Smart Aerogel
3. Conclusions
4. Materials and Methods
4.1. The Models of the Hollow VO2 Particle-Based Smart Aerogel
4.2. Theoretical Calculations for the Smart Aerogels
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lei, Q.; Yu, W.; Xie, G.; Li, Y.; Wu, C.; Jiang, G.; Zhou, Y.; Xie, H. Novel Photothermochromic Smart Window Based on PNIPAm-glass-MXene/PAM with High Shield, Fast Response, and Excellent Stability. Sol. RRL 2023, 7, 2200990. [Google Scholar] [CrossRef]
- Han, X.; Chen, X.; Wang, Q.; Alelyani, S.M.; Qu, J. Investigation of CoSO4-Based Ag Nanofluids as Spectral Beam Splitters for Hybrid PV/T Applications. Sol. Energy 2019, 177, 387–394. [Google Scholar] [CrossRef]
- Bao, Y.; Xie, M.; Guo, R. Research progress of VO2 intelligent thermoregulation coating. Mater. Rep. 2025, 39, 24030036. Available online: http://kns.cnki.net/kcms/detail/50.1078.TB.20240429.1744.008.html (accessed on 4 February 2025). [CrossRef]
- Gu, J.; Wei, H.; Zhao, T.; Ren, F.; Geng, C.; Guan, H.; Liang, S.; Chen, X.; Shi, Y.; Zhao, J.; et al. Unprecedented Spatial Manipulation and Transformation of Dynamic Thermal Radiation Based on Vanadium Dioxide. ACS Appl. Mater. Interfaces 2024, 16, 10352–10360. [Google Scholar] [CrossRef]
- Wang, S.; Liu, M.; Kong, L.; Long, Y.; Jiang, X.; Yu, A. Recent Progress in VO2 Smart Coatings: Strategies to Improve the Thermochromic Properties. Prog. Mater. Sci. 2016, 81, 1–54. [Google Scholar] [CrossRef]
- Chang, T.; Cao, X.; Dedon, L.R.; Long, S.; Huang, A.; Shao, Z.; Li, N.; Luo, H.; Jin, P. Optical Design and Stability Study for Ultrahigh-Performance and Long-Lived Vanadium Dioxide-Based Thermochromic Coatings. Nano Energy 2018, 44, 256–264. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, J.; Dou, S.; Li, Y. Principles and progress of photo-thermal regulation of vanadium dioxide smart windows. J. Opt. 2024, 44, 1925004. [Google Scholar] [CrossRef]
- Chen, Z.; Cao, C.; Chen, S.; Luo, H.; Gao, Y. Crystallised Mesoporous TiO2 (A)–VO2 (M/R) Nanocomposite Films with Self-Cleaning and Excellent Thermochromic Properties. J. Mater. Chem. A 2014, 2, 11874–11884. [Google Scholar] [CrossRef]
- Wan, J.; Ren, Q.; Wu, N.; Gao, Y. Density Functional Theory Study of M-Doped (M = B, C, N, Mg, Al) VO2 Nanoparticles for Thermochromic Energy-Saving Foils. J. Alloys Compd. 2016, 662, 621–627. [Google Scholar] [CrossRef]
- Zhou, X.; Ping, Y.; Gao, J.; Gu, D.; Zhou, H.; Yang, M.; Jiang, Y. Facile Fabrication of HfO2/Nanocomposite Vanadium Oxide Bilayer Film with Enhanced Thermochromic Properties and Excellent Durability. Appl. Surf. Sci. 2022, 597, 153729. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, X.; Yu, X.; Tang, G.H.; Wang, X.; Du, M. Scalable Self-Adaptive Radiative Cooling Film through VO2-Based Switchable Core–Shell Particles. Renew. Energy 2024, 224, 120208. [Google Scholar] [CrossRef]
- Li, Y.; Ji, S.; Gao, Y.; Luo, H.; Jin, P. Modification of Mott Phase Transition Characteristics in VO2 @TiO2 Core/Shell Nanostructures by Misfit-Strained Heteroepitaxy. ACS Appl. Mater. Interfaces 2013, 5, 6603–6614. [Google Scholar] [CrossRef] [PubMed]
- Li, S.-Y.; Niklasson, G.A.; Granqvist, C.G. Nanothermochromics: Calculations for VO2 Nanoparticles in Dielectric Hosts Show Much Improved Luminous Transmittance and Solar Energy Transmittance Modulation. J. Appl. Phys. 2010, 108, 063525. [Google Scholar] [CrossRef]
- Cao, C.; Gao, Y.; Luo, H. Pure Single-Crystal Rutile Vanadium Dioxide Powders: Synthesis, Mechanism and Phase-Transformation Property. J. Phys. Chem. C 2008, 112, 18810–18814. [Google Scholar] [CrossRef]
- Xu, F.; Cao, X.; Shao, Z.; Sun, G.; Long, S.; Luo, H.; Jin, P. Highly Enhanced Thermochromic Performance of VO2 Film Using “Movable” Antireflective Coatings. ACS Appl. Mater. Interfaces 2019, 11, 4712–4718. [Google Scholar] [CrossRef] [PubMed]
- Xie, B.; Song, Y.; Chen, S.; Liu, L. Wavelength-Selective Emitter Compatible with Multiband Stealth and Dual-Band Heat Dissipation. Appl. Therm. Eng. 2025, 267, 125805. [Google Scholar] [CrossRef]
- Zheng, J.; Bao, S.; Jin, P. TiO2(R)/VO2(M)/TiO2(A) Multilayer Film as Smart Window: Combination of Energy-Saving, Antifogging and Self-Cleaning Functions. Nano Energy 2015, 11, 136–145. [Google Scholar] [CrossRef]
- Xie, B.; Yang, Z.; Liu, L. All-Season Smart Film with Multimode Modulation of Solar-Thermal Radiation Based on Phase Change Materials VO2/IST. Appl. Therm. Eng. 2025, 266, 125690. [Google Scholar] [CrossRef]
- Liu, C.; Cao, X.; Kamyshny, A.; Law, J.Y.; Magdassi, S.; Long, Y. VO2/Si–Al Gel Nanocomposite Thermochromic Smart Foils: Largely Enhanced Luminous Transmittance and Solar Modulation. J. Colloid Interface Sci. 2014, 427, 49–53. [Google Scholar] [CrossRef]
- Xie, B.; Zhang, W.; Zhao, J.; Zheng, C.; Liu, L. Design of VO2-Based Spacecraft Smart Radiator with Low Solar Absorptance. Appl. Therm. Eng. 2024, 236, 121751. [Google Scholar] [CrossRef]
- Zhao, X.; Mofid, S.A.; Jelle, B.P.; Tan, G.; Yin, X.; Yang, R. Optically-Switchable Thermally-Insulating VO2-Aerogel Hybrid Film for Window Retrofits. Appl. Energy 2020, 278, 115663. [Google Scholar] [CrossRef]
- Chen, X.; Guo, S.; Tan, S.; Ma, J.; Xu, T. An environmentally friendly chitosan-derived VO2/carbon aerogel for radar infrared compatible stealth. Carbon 2023, 213, 118313. [Google Scholar] [CrossRef]
- Klemmed, B.; Besteiro, L.V.; Benad, A.; Georgi, M.; Wang, Z.; Govorov, A. Hybrid Plasmonic–Aerogel Materials as Optical Superheaters with Engineered Resonances. Angew. Chem. 2020, 132, 1713–1719. [Google Scholar] [CrossRef]
- Berquist, Z.J.; Turaczy, K.K.; Lenert, A. Plasmon-enhanced greenhouse selectivity for high-temperature solar thermal energy conversion. ACS Nano 2020, 14, 12605–12613. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Li, Z.; Pang, H.Q.; Pan, N. Design and optimization of core/shell structures as highly efficient opacifiers for silica aerogels as high-temperature thermal insulation. Int. J. Therm. Sci. 2018, 133, 206–215. [Google Scholar] [CrossRef]
- Li, M.; Cheng, Y.; Fang, C.; Zhang, X.; Han, H. W/Al Co-doping VO2 nanoparticles for high performance passive infrared stealth films with enhanced durability. Ceram. Int. 2024, 50, 1443–1451. [Google Scholar] [CrossRef]
- Wu, X.; Yuan, L.; Weng, X.; Qi, L.; Wei, B. Passive smart thermal control coatings incorporating CaF2/VO2 core–shell microsphere structures. Nano Lett. 2021, 21, 3908–3914. [Google Scholar] [CrossRef] [PubMed]
- Ono, M.; Chen, K.; Li, W.; Fan, S. Self-adaptive radiative cooling based on phase change materials. Opt. Express 2018, 26, A777–A787. [Google Scholar] [CrossRef]
- Zhu, H.; Li, Q.; Zheng, C.; Hong, Y.; Xu, Z.; Wang, H. High-temperature infrared camouflage with efficient thermal management. Light Sci. Appl. 2020, 9, 60. [Google Scholar] [CrossRef]
- Yu, Q. Principle of Radiant Heat Transfer; Harbin Institute of Technology Publishing: Harbin, China, 2000; pp. 10–15. [Google Scholar]
Reference | Model | Emissivity Adjustment Rate ∆ε | Wavelength Range |
---|---|---|---|
Our work | Hollow particle | 51.295% | 0.3–30 μm |
[26] | W/Al Co-doping VO2 nanoparticles | 48% | 8–14 μm |
[27] | CaF2/VO2 | 36% | 4–12.5 μm |
[28] | (Filter)/VO2/MgF2/W | 58.2% | 8–13 μm |
[29] | (Sapphire)/VO2/PMMA/Au | 60% | 8–14 μm |
[11] | VO2/CaF2; VO2/ZnS | 52.6%; 53.7% | 0.3–20 μm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Qin, S.; Xie, B.; Hou, T.; Wang, L.; Xie, Y.; Han, M. Radiation Characterization of Smart Aerogels Based on Hollow VO2 Particles. Gels 2025, 11, 273. https://doi.org/10.3390/gels11040273
Li X, Qin S, Xie B, Hou T, Wang L, Xie Y, Han M. Radiation Characterization of Smart Aerogels Based on Hollow VO2 Particles. Gels. 2025; 11(4):273. https://doi.org/10.3390/gels11040273
Chicago/Turabian StyleLi, Xingcan, Shengkai Qin, Bowei Xie, Tianbo Hou, Linkang Wang, Yinmo Xie, and Meiran Han. 2025. "Radiation Characterization of Smart Aerogels Based on Hollow VO2 Particles" Gels 11, no. 4: 273. https://doi.org/10.3390/gels11040273
APA StyleLi, X., Qin, S., Xie, B., Hou, T., Wang, L., Xie, Y., & Han, M. (2025). Radiation Characterization of Smart Aerogels Based on Hollow VO2 Particles. Gels, 11(4), 273. https://doi.org/10.3390/gels11040273