Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (527)

Search Parameters:
Keywords = multi-objective routing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 519 KB  
Article
An Efficient and Automated Smart Healthcare System Using Genetic Algorithm and Two-Level Filtering Scheme
by Geetanjali Rathee, Hemraj Saini, Chaker Abdelaziz Kerrache, Ramzi Djemai and Mohamed Chahine Ghanem
Digital 2026, 6(1), 10; https://doi.org/10.3390/digital6010010 - 28 Jan 2026
Viewed by 31
Abstract
This paper proposes an efficient and automated smart healthcare communication framework that integrates a two-level filtering scheme with a multi-objective Genetic Algorithm (GA) to enhance the reliability, timeliness, and energy efficiency of Internet of Medical Things (IoMT) systems. In the first stage, physiological [...] Read more.
This paper proposes an efficient and automated smart healthcare communication framework that integrates a two-level filtering scheme with a multi-objective Genetic Algorithm (GA) to enhance the reliability, timeliness, and energy efficiency of Internet of Medical Things (IoMT) systems. In the first stage, physiological signals collected from heterogeneous sensors (e.g., blood pressure, glucose level, ECG, patient movement, and ambient temperature) were pre-processed using an adaptive least-mean-square (LMS) filter to suppress noise and motion artifacts, thereby improving signal quality prior to analysis. In the second stage, a GA-based optimization engine selects optimal routing paths and transmission parameters by jointly considering end-to-end delay, Signal-to-Noise Ratio (SNR), energy consumption, and packet loss ratio (PLR). The two-level filtering strategy, i.e., LMS, ensures that only denoised and high-priority records are forwarded for more processing, enabling timely delivery for supporting the downstream clinical network by optimizing the communication. The proposed mechanism is evaluated via extensive simulations involving 30–100 devices and multiple generations and is benchmarked against two existing smart healthcare schemes. The results demonstrate that the integrated GA and filtering approach significantly reduces end-to-end delay by 10%, as well as communication latency and energy consumption, while improving the packet delivery ratio by approximately 15%, as well as throughput, SNR, and overall Quality of Service (QoS) by up to 98%. These findings indicate that the proposed framework provides a scalable and intelligent communication backbone for early disease detection, continuous monitoring, and timely intervention in smart healthcare environments. Full article
Show Figures

Figure 1

24 pages, 1526 KB  
Article
EQARO-ECS: Efficient Quantum ARO-Based Edge Computing and SDN Routing Protocol for IoT Communication to Avoid Desertification
by Thair A. Al-Janabi, Hamed S. Al-Raweshidy and Muthana Zouri
Sensors 2026, 26(3), 824; https://doi.org/10.3390/s26030824 - 26 Jan 2026
Viewed by 153
Abstract
Desertification is the impoverishment of fertile land, caused by various factors and environmental effects, such as temperature and humidity. An appropriate Internet of Things (IoT) architecture, routing algorithms based on artificial intelligence (AI), and emerging technologies are essential to monitor and avoid desertification. [...] Read more.
Desertification is the impoverishment of fertile land, caused by various factors and environmental effects, such as temperature and humidity. An appropriate Internet of Things (IoT) architecture, routing algorithms based on artificial intelligence (AI), and emerging technologies are essential to monitor and avoid desertification. However, the classical AI algorithms usually suffer from falling into local optimum issues and consuming more energy. This research proposed an improved multi-objective routing protocol, namely, the efficient quantum (EQ) artificial rabbit optimisation (ARO) based on edge computing (EC) and a software-defined network (SDN) concept (EQARO-ECS), which provides the best cluster table for the IoT network to avoid desertification. The methodology of the proposed EQARO-ECS protocol reduces energy consumption and improves data analysis speed by deploying new technologies, such as the Cloud, SDN, EC, and quantum technique-based ARO. This protocol increases the data analysis speed because of the suggested iterated quantum gates with the ARO, which can rapidly penetrate from the local to the global optimum. The protocol avoids desertification because of a new effective objective function that considers energy consumption, communication cost, and desertification parameters. The simulation results established that the suggested EQARO-ECS procedure increases accuracy and improves network lifetime by reducing energy depletion compared to other algorithms. Full article
Show Figures

Figure 1

45 pages, 15254 KB  
Article
A Cost–Carbon Synergy Adaptive Genetic Algorithm for Unbalanced Transportation Problem
by Zuocheng Li, Yunya Guo and Rongjuan Luo
Sustainability 2026, 18(3), 1238; https://doi.org/10.3390/su18031238 - 26 Jan 2026
Viewed by 101
Abstract
Traditional vehicle routing problems focus primarily on cost minimization. This paper addresses the unbalanced transportation problem, aiming to minimize both costs and carbon emissions. We propose a Cost–Carbon Emissions Adaptive Genetic Algorithm (CSC-AGA) based on the Cost–Carbon Synergy (CSC) mechanism, which quantifies the [...] Read more.
Traditional vehicle routing problems focus primarily on cost minimization. This paper addresses the unbalanced transportation problem, aiming to minimize both costs and carbon emissions. We propose a Cost–Carbon Emissions Adaptive Genetic Algorithm (CSC-AGA) based on the Cost–Carbon Synergy (CSC) mechanism, which quantifies the marginal cost of carbon emission reduction by comparing intergenerational changes in cost and emissions. This mechanism enables dynamic adjustment of penalty coefficients during the evolutionary process. The algorithm adapts penalty coefficients and search parameters to optimize both objectives within a single framework. Experimental results demonstrate that the proposed algorithm outperforms traditional approaches in both cost control and emission reduction, while also approximating or surpassing the approximate Pareto front of existing multi-objective methods with better computational efficiency. The Generalized Unbalanced Transportation Problem (G-UTP) is an NP-hard optimization problem, inheriting the complexity of classical transportation problems while also balancing economic and environmental objectives. Full article
(This article belongs to the Section Sustainable Transportation)
13 pages, 671 KB  
Article
Six-Year Environmental Surface Hygiene Monitoring in Hungarian School Kitchens (2019–2024): Hotspots, Seasonality, and One Health Implications
by András Bittsánszky, Lili A. Lukács, Márton Battay, Miklós Süth and András J. Tóth
Antibiotics 2026, 15(2), 120; https://doi.org/10.3390/antibiotics15020120 - 26 Jan 2026
Viewed by 96
Abstract
Background/Objectives: Institutional catering serves vulnerable populations, including schoolchildren. Surfaces in food preparation environments are key control points for food safety and reservoirs and transmission routes for antimicrobial-resistant (AMR) bacteria. This study characterized the hygienic status of food-contact surfaces (FCS) and non-food-contact surfaces [...] Read more.
Background/Objectives: Institutional catering serves vulnerable populations, including schoolchildren. Surfaces in food preparation environments are key control points for food safety and reservoirs and transmission routes for antimicrobial-resistant (AMR) bacteria. This study characterized the hygienic status of food-contact surfaces (FCS) and non-food-contact surfaces (NFCS) in Hungarian school kitchens, identified contamination hotspots, and examined how routine monitoring can support AMR prevention. Methods: We retrospectively analyzed routine environmental hygiene monitoring records from 96 school kitchens (2019–2024). In total, 8412 swab samples were collected, 8407 had quantifiable counts, 6233 from FCS (e.g., plates, trays, boards, utensils), and 2174 from NFCS (e.g., sinks, fridges, workers’ hands). Total aerobic mesophilic counts were measured with a redox-potential method and expressed as CFU/100 cm2; 250 CFU/100 cm2 (2.4 log10) was the hygienic threshold. Results: Overall, 12.4% of surfaces exceeded the threshold. Non-food-contact surfaces were more likely to be non-compliant than food-contact surfaces (OR 2.77, 95% CI 2.43–3.17; p < 0.001). Hotspots included transport-container lids (67.2% non-compliant; OR 43.82), sink basins (32.8%; OR 10.46), and cutting boards (21.6%; OR 5.89). Seasonally, non-compliance was highest in summer (16.5%) and lowest in winter (9.0%; p < 0.001). Conclusions: Multi-year monitoring revealed substantial contamination concentrated in a few hotspots that, within a One Health framework—which recognizes the interconnectedness of human, animal, and environmental health—may represent environmental reservoirs and cross-contamination nodes relevant to AMR prevention. Targeted optimization of cleaning and disinfection for these surfaces, combined with trend analysis of indicator data and periodic AMR-focused environmental sampling, could reduce foodborne and AMR-related risks in public catering. Full article
Show Figures

Figure 1

16 pages, 993 KB  
Article
TSS GAZ PTP: Towards Improving Gumbel AlphaZero with Two-Stage Self-Play for Multi-Constrained Electric Vehicle Routing Problems
by Hui Wang, Xufeng Zhang and Chaoxu Mu
Smart Cities 2026, 9(2), 21; https://doi.org/10.3390/smartcities9020021 - 23 Jan 2026
Viewed by 118
Abstract
Deep reinforcement learning (DRL) with self-play has emerged as a promising paradigm for solving combinatorial optimization (CO) problems. The recently proposed Gumbel AlphaZero Plan-to-Play (GAZ PTP) framework adopts a competitive training setup between a learning agent and an opponent to tackle classical CO [...] Read more.
Deep reinforcement learning (DRL) with self-play has emerged as a promising paradigm for solving combinatorial optimization (CO) problems. The recently proposed Gumbel AlphaZero Plan-to-Play (GAZ PTP) framework adopts a competitive training setup between a learning agent and an opponent to tackle classical CO tasks such as the Traveling Salesman Problem (TSP). However, in complex and multi-constrained environments like the Electric Vehicle Routing Problem (EVRP), standard self-play often suffers from opponent mismatch: when the opponent is either too weak or too strong, the resulting learning signal becomes ineffective. To address this challenge, we introduce Two-Stage Self-Play GAZ PTP (TSS GAZ PTP), a novel DRL method designed to maintain adaptive and effective learning pressure throughout the training process. In the first stage, the learning agent, guided by Gumbel Monte Carlo Tree Search (MCTS), competes against a greedy opponent that follows the best historical policy. As training progresses, the framework transitions to a second stage in which both agents employ Gumbel MCTS, thereby establishing a dynamically balanced competitive environment that encourages continuous strategy refinement. The primary objective of this work is to develop a robust self-play mechanism capable of handling the high-dimensional constraints inherent in real-world routing problems. We first validate our approach on the TSP, a benchmark used in the original GAZ PTP study, and then extend it to the multi-constrained EVRP, which incorporates practical limitations including battery capacity, time windows, vehicle load limits, and charging infrastructure availability. The experimental results show that TSS GAZ PTP consistently outperforms existing DRL methods, with particularly notable improvements on large-scale instances. Full article
Show Figures

Figure 1

20 pages, 49658 KB  
Article
Dead Chicken Identification Method Based on a Spatial-Temporal Graph Convolution Network
by Jikang Yang, Chuang Ma, Haikun Zheng, Zhenlong Wu, Xiaohuan Chao, Cheng Fang and Boyi Xiao
Animals 2026, 16(3), 368; https://doi.org/10.3390/ani16030368 - 23 Jan 2026
Viewed by 132
Abstract
In intensive cage rearing systems, accurate dead hen detection remains difficult due to complex environments, severe occlusion, and the high visual similarity between dead hens and live hens in a prone posture. To address these issues, this study proposes a dead hen identification [...] Read more.
In intensive cage rearing systems, accurate dead hen detection remains difficult due to complex environments, severe occlusion, and the high visual similarity between dead hens and live hens in a prone posture. To address these issues, this study proposes a dead hen identification method based on a Spatial-Temporal Graph Convolutional Network (STGCN). Unlike conventional static image-based approaches, the proposed method introduces temporal information to enable dynamic spatial-temporal modeling of hen health states. First, a multimodal fusion algorithm is applied to visible light and thermal infrared images to strengthen multimodal feature representation. Then, an improved YOLOv7-Pose algorithm is used to extract the skeletal keypoints of individual hens, and the ByteTrack algorithm is employed for multi-object tracking. Based on these results, spatial-temporal graph-structured data of hens are constructed by integrating spatial and temporal dimensions. Finally, a spatial-temporal graph convolution model is used to identify dead hens by learning spatial-temporal dependency features from skeleton sequences. Experimental results show that the improved YOLOv7-Pose model achieves an average precision (AP) of 92.8% in keypoint detection. Based on the constructed spatial-temporal graph data, the dead hen identification model reaches an overall classification accuracy of 99.0%, with an accuracy of 98.9% for the dead hen category. These results demonstrate that the proposed method effectively reduces interference caused by feeder occlusion and ambiguous visual features. By using dynamic spatial-temporal information, the method substantially improves robustness and accuracy of dead hen detection in complex cage rearing environments, providing a new technical route for intelligent monitoring of poultry health status. Full article
(This article belongs to the Special Issue Welfare and Behavior of Laying Hens)
Show Figures

Figure 1

21 pages, 846 KB  
Systematic Review
Operational AI for Multimodal Urban Transport: A Systematic Literature Review and Deployment Framework for Multi-Objective Control and Electrification
by Alexandros Deligiannis and Michael Madas
Logistics 2026, 10(2), 29; https://doi.org/10.3390/logistics10020029 - 23 Jan 2026
Viewed by 259
Abstract
Background: Artificial intelligence (AI) in urban and multimodal transport has demonstrated strong potential; however, real-world deployment remains constrained by limited governance-ready design, fragmented data ecosystems, and single-objective optimization practices. The resulting problem is that agencies lack a reproducible, deployment-ready architecture that links [...] Read more.
Background: Artificial intelligence (AI) in urban and multimodal transport has demonstrated strong potential; however, real-world deployment remains constrained by limited governance-ready design, fragmented data ecosystems, and single-objective optimization practices. The resulting problem is that agencies lack a reproducible, deployment-ready architecture that links data fusion, multi-objective optimization, and electrification constraints into daily multimodal operational decision making. Methods: This study presents a systematic review and synthesis of 145 peer-reviewed studies on network control, green routing, digital twins, and electric-bus scheduling, conducted in accordance with PRISMA 2020 using predefined inclusion and exclusion criteria. Based on these findings, a deployment-oriented operational AI framework is developed. Results: The proposed architecture comprises five interoperable layers—data ingestion, streaming analytics, optimization services, decision evaluation, and governance monitoring—supporting scalability, reproducibility, and transparency. Rather than producing a single optimal solution, the framework provides decision-ready trade-offs across service quality, cost efficiency, and sustainability while accounting for uncertainty, reliability, and electrification constraints. The approach is solver-agnostic, supporting evolutionary and learning-based techniques. Conclusions: A Thessaloniki-based multimodal case study demonstrates how reproducible AI workflows can connect real-time data streams, optimization, and institutional decision making for continuous multimodal transport management under operational constraints. Full article
Show Figures

Graphical abstract

25 pages, 1249 KB  
Article
An Adaptive Fuzzy Multi-Objective Digital Twin Framework for Multi-Depot Cold-Chain Vehicle Routing in Agri-Biotech Supply Networks
by Hamed Nozari and Zornitsa Yordanova
Logistics 2026, 10(2), 27; https://doi.org/10.3390/logistics10020027 - 23 Jan 2026
Viewed by 233
Abstract
Background: Cold chain distribution in Agri-Biotech supply chains faces serious challenges due to strict time windows, high temperature sensitivity, and conflict between different operational objectives, and conventional static approaches are unable to address these complexities. Methods: In this study, an integrated [...] Read more.
Background: Cold chain distribution in Agri-Biotech supply chains faces serious challenges due to strict time windows, high temperature sensitivity, and conflict between different operational objectives, and conventional static approaches are unable to address these complexities. Methods: In this study, an integrated decision support framework is presented that combines multi-objective fuzzy modeling and an adaptive digital twin to simultaneously manage logistics costs, product quality degradation, and service time compliance under operational uncertainty. Key uncertain parameters are modeled using triangular fuzzy numbers, and the digital twin dynamically updates the decision parameters based on operational information. The proposed framework is evaluated using real industrial data and comprehensive computational experiments. Results: The results show that the proposed approach is able to produce stable and balanced solutions, provides near-optimal performance in benchmark cases, and is highly robust to demand fluctuations and temperature deviations. Digital twin activation significantly improves the convergence behavior and stability of the solutions. Conclusions: The proposed framework provides a reliable and practical tool for adaptive planning of cold chain distribution in Agri-Biotech industries and effectively reduces the gap between advanced optimization models and real-world operational requirements. Full article
Show Figures

Figure 1

36 pages, 13674 KB  
Article
A Reference-Point Guided Multi-Objective Crested Porcupine Optimizer for Global Optimization and UAV Path Planning
by Zelei Shi and Chengpeng Li
Mathematics 2026, 14(2), 380; https://doi.org/10.3390/math14020380 - 22 Jan 2026
Viewed by 46
Abstract
Balancing convergence accuracy and population diversity remains a fundamental challenge in multi-objective optimization, particularly for complex and constrained engineering problems. To address this issue, this paper proposes a novel Multi-Objective Crested Porcupine Optimizer (MOCPO), inspired by the hierarchical defensive behaviors of crested porcupines. [...] Read more.
Balancing convergence accuracy and population diversity remains a fundamental challenge in multi-objective optimization, particularly for complex and constrained engineering problems. To address this issue, this paper proposes a novel Multi-Objective Crested Porcupine Optimizer (MOCPO), inspired by the hierarchical defensive behaviors of crested porcupines. The proposed algorithm integrates four biologically motivated defense strategies—vision, hearing, scent diffusion, and physical attack—into a unified optimization framework, where global exploration and local exploitation are dynamically coordinated. To effectively extend the original optimizer to multi-objective scenarios, MOCPO incorporates a reference-point guided external archiving mechanism to preserve a well-distributed set of non-dominated solutions, along with an environmental selection strategy that adaptively partitions the objective space and enhances solution quality. Furthermore, a multi-level leadership mechanism based on Euclidean distance is introduced to provide region-specific guidance, enabling precise and uniform coverage of the Pareto front. The performance of MOCPO is comprehensively evaluated on 18 benchmark problems from the WFG and CF test suites. Experimental results demonstrate that MOCPO consistently outperforms several state-of-the-art multi-objective algorithms, including MOPSO and NSGA-III, in terms of IGD, GD, HV, and Spread metrics, achieving the best overall ranking in Friedman statistical tests. Notably, the proposed algorithm exhibits strong robustness on discontinuous, multimodal, and constrained Pareto fronts. In addition, MOCPO is applied to UAV path planning in four complex terrain scenarios constructed from real digital elevation data. The results show that MOCPO generates shorter, smoother, and more stable flight paths while effectively balancing route length, threat avoidance, flight altitude, and trajectory smoothness. These findings confirm the effectiveness, robustness, and practical applicability of MOCPO for solving complex real-world multi-objective optimization problems. Full article
(This article belongs to the Special Issue Advances in Metaheuristic Optimization Algorithms)
Show Figures

Figure 1

27 pages, 3582 KB  
Article
Multi-Objective Joint Optimization for Microservice Deployment and Request Routing
by Zhengying Cai, Fang Yu, Wenjuan Li, Junyu Liu and Mingyue Zhang
Symmetry 2026, 18(1), 195; https://doi.org/10.3390/sym18010195 - 20 Jan 2026
Viewed by 84
Abstract
Microservice deployment and request routing can help improve server efficiency and the performance of large-scale mobile edge computing (MEC). However, the joint optimization of microservice deployment and request routing is extremely challenging, as dynamic request routing easily results in asymmetric network structures and [...] Read more.
Microservice deployment and request routing can help improve server efficiency and the performance of large-scale mobile edge computing (MEC). However, the joint optimization of microservice deployment and request routing is extremely challenging, as dynamic request routing easily results in asymmetric network structures and imbalanced microservice workloads. This article proposes multi-objective joint optimization for microservice deployment and request routing based on structural symmetry. Firstly, the structural symmetry of microservice deployment and request routing is defined, including spatial symmetry and temporal symmetry. A constrained nonlinear multi-objective optimization model was constructed to jointly optimize microservice deployment and request routing, where the structural symmetric metrics take into account the flow-aware routing distance, workload balancing, and request response delay. Secondly, an improved artificial plant community algorithm is designed to search for the optimal route to achieve structural symmetry, including the environment preparation and dependency installation, service packaging and image orchestration, arrangement configuration and dependency management, deployment execution and status monitoring. Thirdly, a benchmark experiment is designed to compare with baseline algorithms. Experimental results show that the proposed algorithm can effectively optimize structural symmetry and reduce the flow-aware routing distance, workload imbalance, and request response delay, while the computational overhead is small enough to be easily deployed on resource-constrained edge computing devices. Full article
Show Figures

Figure 1

27 pages, 1367 KB  
Article
EMO-PEGASIS: A Dual-Phase Machine Learning Protocol for Energy Delay Optimisation in WSNs
by Abdulla Juwaied
Sensors 2026, 26(2), 611; https://doi.org/10.3390/s26020611 - 16 Jan 2026
Viewed by 160
Abstract
Wireless sensor networks (WSNs) contend with the critical challenge of balancing energy conservation against data transmission delay, a trade-off that protocols such as PEGASIS—while being strong in energy efficiency—fail to manage optimally due to resulting high latency, unbalanced load distribution, and suboptimal cluster [...] Read more.
Wireless sensor networks (WSNs) contend with the critical challenge of balancing energy conservation against data transmission delay, a trade-off that protocols such as PEGASIS—while being strong in energy efficiency—fail to manage optimally due to resulting high latency, unbalanced load distribution, and suboptimal cluster formation. To address these limitations, this paper introduces the Enhanced Multi-Objective PEGASIS (EMO-PEGASIS) protocol, which is designed and implemented using a dual-phase machine learning strategy. This multi-objective approach works in two stages. First, it utilises K-means clustering to achieve robust spatial partitioning of the network. Second, it employs K-Nearest Neighbours (K-NN) classification to enable adaptive and intelligent routing. The simulation was performed using MATLAB R2025a, and the results show that EMO-PEGASIS addresses this multi-objective optimisation problem. The proposed EMO-PEGASIS protocol achieves a 45% reduction in average energy consumption, a 38% decrease in end-to-end delay, and a 67% increase in network lifetime compared to the original PEGASIS protocol. Additionally, EMO-PEGASIS demonstrates enhanced stability and effective load balancing under heterogeneous network configurations, while maintaining an excellent packet delivery ratio of 96.8%. These findings underscore the effectiveness of integrating machine learning techniques, which ultimately yield enhanced performance and enable reliable multi-objective optimisation within energy- and delay-constrained WSN environments. Full article
Show Figures

Figure 1

67 pages, 4924 KB  
Review
Current Trends and Innovations in CO2 Hydrogenation Processes
by Egydio Terziotti Neto, Lucas Alves da Silva, Heloisa Ruschel Bortolini, Rita Maria Brito Alves and Reinaldo Giudici
Processes 2026, 14(2), 293; https://doi.org/10.3390/pr14020293 - 14 Jan 2026
Viewed by 381
Abstract
In recent years, interest in carbon dioxide (CO2) hydrogenation technologies has intensified. Driven by the continuous rise in greenhouse gas emissions and the unprecedented negative impacts of global warming, these technologies offer a viable pathway toward sustainability and support the development [...] Read more.
In recent years, interest in carbon dioxide (CO2) hydrogenation technologies has intensified. Driven by the continuous rise in greenhouse gas emissions and the unprecedented negative impacts of global warming, these technologies offer a viable pathway toward sustainability and support the development of low-carbon industrial processes. In addition to methanol and methane, other possible hydrogenation products (i.e., hydrocarbons, formic acid, acetic acid, dimethyl ether, and dimethyl carbonate) are of industrial relevance due to their wide range of applications. Therefore, this review aims to provide a comprehensive overview of the various aspects associated with thermocatalytic CO2 hydrogenation processes, from thermodynamic and kinetic studies to upscaled reactor modeling and process synthesis and optimization. The review proceeds to examine different integration strategies and optimization approaches for multi-product systems, with the objective of evaluating how distinct technologies may be combined in an integrated flowsheet. It then concludes by outlining future research opportunities in this field, particularly those related to developing comprehensive kinetic rate expressions and reactor modeling studies for routes with low technology readiness levels, the exploration of prospective reaction pathways, strategies to mitigate the dependence on green hydrogen (which, today, exhibits high costs), and the consideration of market price or product demand fluctuations in optimization studies. Overall, this review provides a solid base to support other decarbonization studies focused on hydrogenation technologies. Full article
(This article belongs to the Special Issue Feature Review Papers in Section "Chemical Processes and Systems")
Show Figures

Figure 1

29 pages, 2810 KB  
Article
PAIR: A Hybrid A* with PPO Path Planner for Multi-UAV Navigation in 2-D Dynamic Urban MEC Environments
by Bahaa Hussein Taher, Juan Luo, Ying Qiao and Hussein Ridha Sayegh
Drones 2026, 10(1), 58; https://doi.org/10.3390/drones10010058 - 13 Jan 2026
Viewed by 218
Abstract
Emerging multi-unmanned aerial vehicle (multi-UAV) applications in smart cities must navigate cluttered airspace while meeting tight mobile edge computing (MEC) deadlines. Classical grid planners, including A-star (A*), D-star Lite (D* Lite), and conflict-based search with D-star Lite (CBS-D*) and metaheuristics such asparticle swarm [...] Read more.
Emerging multi-unmanned aerial vehicle (multi-UAV) applications in smart cities must navigate cluttered airspace while meeting tight mobile edge computing (MEC) deadlines. Classical grid planners, including A-star (A*), D-star Lite (D* Lite), and conflict-based search with D-star Lite (CBS-D*) and metaheuristics such asparticle swarm optimization (PSO), either replan too slowly in dynamic scenes or waste energy on long detours. This paper presents PPO-adjusted incremental refinement (PAIR), a decentralized hybrid planner that couples an A* global backbone with a continuous PPO refinement module for multi-UAV navigation on two-dimensional (2-D) urban grids. A* produces feasible waypoint routes, while a shared risk-aware PPO policy applies local offsets from a compact state encoding. MEC tasks are allocated by a separate heterogeneous scheduler; PPO optimizes geometric objectives (path length, risk, and a normalized propulsion-energy surrogate). Across nine benchmark scenarios with static and Markovian dynamic obstacles, PAIR achieves 100% mission success (matching the strongest baselines) while delivering the best energy surrogate (104.9 normalized units) and shortest mean travel time (207.8 s) on a reproducible 100×100 grid at fixed UAV speed. Relative to the strongest non-learning baseline (PSO), PAIR reduces energy by about 4% and travel time by about 3%, and yields roughly 10–20% gains over the remaining planners. An obstacle-density sweep with 5–30 moving obstacles further shows that PAIR maintains shorter paths and the lowest cumulative replanning time, supporting real-time multi-UAV navigation in dynamic urban MEC environments. Full article
(This article belongs to the Special Issue Path Planning, Trajectory Tracking and Guidance for UAVs: 3rd Edition)
Show Figures

Figure 1

18 pages, 15384 KB  
Article
Electric Vehicle Route Optimization: An End-to-End Learning Approach with Multi-Objective Planning
by Rodrigo Gutiérrez-Moreno, Ángel Llamazares, Pedro Revenga, Manuel Ocaña and Miguel Antunes-García
World Electr. Veh. J. 2026, 17(1), 41; https://doi.org/10.3390/wevj17010041 - 13 Jan 2026
Viewed by 172
Abstract
Traditional routing algorithms optimizing for distance or travel time are inadequate for electric vehicles (EVs), which require energy-aware planning considering battery constraints and charging infrastructure. This work presents an energy-optimal routing system for EVs that integrates personalized consumption modeling with real-time environmental data. [...] Read more.
Traditional routing algorithms optimizing for distance or travel time are inadequate for electric vehicles (EVs), which require energy-aware planning considering battery constraints and charging infrastructure. This work presents an energy-optimal routing system for EVs that integrates personalized consumption modeling with real-time environmental data. The system employs a Long Short-Term Memory (LSTM) neural network to predict State-of-Charge (SoC) consumption from real-world driving data, learning directly from spatiotemporal features including velocity, temperature, road inclination, and traveled distance. Unlike physics-based models requiring difficult-to-obtain parameters, this approach captures nonlinear dependencies and temporal patterns in energy consumption. The routing framework integrates static map data, dynamic traffic conditions, weather information, and charging station locations into a weighted graph representation. Edge costs reflect predicted SoC drops, while node penalties account for traffic congestion and charging opportunities. An enhanced A* algorithm finds optimal routes minimizing energy consumption. Experimental validation on a Nissan Leaf shows that the proposed end-to-end SoC estimator significantly outperforms traditional approaches. The model achieves an RMSE of 36.83 and an R2 of 0.9374, corresponding to a 59.91% reduction in error compared to physics-based formulas. Real-world testing on various routes further confirms its accuracy, with a Mean Absolute Error in the total route SoC estimation of 2%, improving upon the 3.5% observed for commercial solutions. Full article
(This article belongs to the Section Propulsion Systems and Components)
Show Figures

Figure 1

25 pages, 1757 KB  
Article
Sustainable Capacity Allocation and Iterative Equilibrium Dynamics in the Beijing–Tianjin Multi-Airport System Under Dual-Carbon Constraints
by Yafei Li and Yuhan Wang
Sustainability 2026, 18(2), 798; https://doi.org/10.3390/su18020798 - 13 Jan 2026
Viewed by 200
Abstract
Despite growing research on sustainable aviation, multi-airport systems, and environmentally constrained capacity allocation, critical gaps persist. Existing studies often treat passenger choice, airline competition, and airport regulation in isolation, or evaluate environmental policies such as carbon taxation only as macro-level constraints. Consequently, the [...] Read more.
Despite growing research on sustainable aviation, multi-airport systems, and environmentally constrained capacity allocation, critical gaps persist. Existing studies often treat passenger choice, airline competition, and airport regulation in isolation, or evaluate environmental policies such as carbon taxation only as macro-level constraints. Consequently, the endogenous feedback among pricing, capacity reallocation, and regulatory intervention in shaping equilibrium outcomes within multi-airport systems remains underexplored, particularly within a unified dynamic framework that links low-carbon policies to operational decision-making. This study develops such a dynamic framework to support the sustainable transition of carbon-constrained multi-airport regions. Focusing on the Beijing–Tianjin multi-airport system and China’s “Dual Carbon” goals, we construct a three-layer iterative equilibrium game integrating passenger airport choice (modeled using a multinomial logit specification), airline capacity reallocation (formulated as an evolutionary game internalizing carbon taxes), and airport slot regulation (implemented through a multi-objective mechanism balancing economic revenue, hub connectivity, and environmental performance). An agent-based simulation of the Beijing/Tianjin–Nanchang route demonstrates robust convergence to a stable systemic equilibrium. Intensified competition reduces fares and improves accessibility, while capacity shifts from higher-cost Beijing airports to Tianjin Binhai Airport, whose market share rises from 10.6% to 34.0%. Airport utilization becomes more balanced, total airline profits increase slightly, and both total and per-passenger CO2 emissions decline, indicating improved carbon efficiency despite demand growth. The results further identify a range of carbon-tax levels that jointly promote emission reduction and traffic rebalancing with limited profit loss. Full article
(This article belongs to the Special Issue Sustainable Air Transport Management and Sustainable Mobility)
Show Figures

Figure 1

Back to TopTop