Six-Year Environmental Surface Hygiene Monitoring in Hungarian School Kitchens (2019–2024): Hotspots, Seasonality, and One Health Implications
Abstract
1. Introduction
1.1. Surface Hygiene and AMR—International Experiences
1.2. Biocides, Surfaces, and Resistance
1.3. Institutional Catering in Hungary and Rationale for the Study
1.4. Objectives
1.5. Hypotheses
2. Results
2.1. General Prevalence of Non-Compliant Surfaces
2.2. Differences Between Surface Categories
2.3. Seasonal Variation in Hygienic Performance
2.4. Year-to-Year Variations
2.5. Summary of Main Findings
3. Discussion
3.1. Surface Microbial Load—Comparison with Other Studies
3.2. Relationship Between Surface Microbiota and AMR
3.3. Risk-Based Environmental Monitoring and Advanced Detection
3.4. Protection of Children and Reduction in Antibiotic Use
3.5. Limitations and Future Research
4. Materials and Methods
4.1. Study Design and Sampling
4.2. Microbiological Analysis
4.3. Data Analysis
4.4. Data Availability
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AMR | Antimicrobial Resistance |
| CFU | Colony Form Unit |
| NFCS | Non-Food Contact Surface |
| FCS | Food Contact Surface |
| HACCP | Hazard Analysis and Critical Control Points |
| GHP | Good Hygienic Practices |
| EM | Environmental Monitoring |
References
- Despotovic, M.; de Nies, L.; Busi, S.B.; Wilmes, P. One Health. Curr. Opin. Microbiol. 2023, 73, 102291. [Google Scholar] [CrossRef]
- Musicha, P.; Morse, T.; Cocker, D.; Mugisha, L.; Jewell, C.P.; Feasey, N.A. Time to de Fi Ne One Health Approaches to Tackling Antimicrobial Resistance. Nat. Commun. 2024, 15, 4–6. [Google Scholar] [CrossRef]
- Elbehiry, A.; Marzouk, E.; Abalkhail, A.; Edrees, H.M.; Ellethy, A.T.; Almuzaini, A.M.; Ibrahem, M.; Almujaidel, A.; Alzaben, F.; Alqrni, A.; et al. Microbial Food Safety and Antimicrobial Resistance in Foods: A Dual Threat to Public Health. Microorganisms 2025, 13, 1592. [Google Scholar] [CrossRef]
- Fernández-Trapote, E.; Oliveira, M.; Cobo-Díaz, J.F.; Alvarez-Ordóñez, A. The Resistome of the Food Chain: A One Health Perspective. Microb. Biotechnol. 2024, 17, e14530. [Google Scholar] [CrossRef]
- Al-Khalaifah, H.; Rahman, M.H.; Al-Surrayai, T.; Al-Dhumair, A.; Al-Hasan, M. A One-Health Perspective of Antimicrobial Resistance (AMR): Human, Animals and Environmental Health. Life 2025, 15, 1598. [Google Scholar] [CrossRef]
- Amaiach, R.; Lairini, S.; Bouslamti, R.; El Ouali Lalami, A. Assessment of the Microbiological Quality of Food Contact Surfaces in Collective Catering in Central Morocco. J. Health Sci. Surveill. Syst. 2025, 13, 242–251. [Google Scholar] [CrossRef]
- Fallahizadeh, S.; Majlesi, M.; Ghalehgolab, M.R.; Sadeghi, M.H.; Zarei, M.R.; Shirazi, A.R.R. Evaluating food Contact Surface and its Influence on Restaurant Health Ratings. Sci. Rep. 2025, 15, 1568. [Google Scholar] [CrossRef]
- Viana, G.G.F.; Mello, A.J.P.; da Apresentação, B.; Gonçalves, D.D.S.; Gerolamo, E.Y.; de Castro, G.M.; da Silva, G.C.; de Castro, G.M.; da Silva Marcelino, I.R.; Busch, K.P.; et al. Microbial Contamination on Kitchen Surfaces in University Student Housing: Insights from Swab Analysis and Behavioral Surveys. J. Food Prot. 2025, 88, 100624. [Google Scholar] [CrossRef]
- Illés, C.B.; Tóth, A.J.; Dunay, A.; Lehota, J.; Bittsánszky, A. Evaluation of Food Safety Knowledge and Microbial Status of Food Contact Surfaces in Schools. J. Food Saf. 2018, 38, e12480. [Google Scholar] [CrossRef]
- Dokuta, S.; Yadoung, S.; Hongjaisee, S.; Khamnoi, P.; Manochomphu, S.; Chuttong, B.; Hongsibsong, S. Seasonal Determination of Antibiotic-Resistant Microorganisms and Ciprofloxacin Residues in Pork and Chicken Meats Collected from Fresh Markets in Chiang Mai, Northern Thailand. Foods 2025, 14, 174. [Google Scholar] [CrossRef]
- Lee, A.W.; Ng, I.C.; Wong, E.Y.; Wong, I.T.; Sze, R.P.; Chan, K.Y.; So, T.Y.; Zhang, Z.; Fung, S.K.; Wong, S.C.; et al. Comprehensive Identification of Pathogenic Microbes and Antimicrobial Resistance Genes in Food Products Using Nanopore Sequencing-Based Metagenomics. Food Microbiol. 2024, 121, 104493. [Google Scholar] [CrossRef]
- Sousa, M.; Machado, I.; Simões, L.C.; Simões, M. Biocides as Drivers of Antibiotic Resistance: A Critical Review of Environmental Implications and Public Health Risks. Environ. Sci. Ecotechnol. 2025, 25, 100557. [Google Scholar] [CrossRef]
- Ntshonga, P.; Gobe, I.; Koto, G.; Strysko, J.; Paganotti, G.M. Biocide Resistance in Klebsiella Pneumoniae: A Narrative Review. Infect. Prev. Pract. 2024, 6, 100360. [Google Scholar] [CrossRef]
- O’Reilly, P.; Loiselle, G.; Darragh, R.; Slipski, C.; Bay, D.C. Reviewing the Complexities of Bacterial Biocide Susceptibility and in vitro Biocide Adaptation Methodologies. NPJ Antimicrob. Resist. 2025, 3, 39. [Google Scholar] [CrossRef]
- The European Parliament; The Council Of the European Union. Regulation (EC) No 852/2004 of the European Parliament and of the Council of 29 April 2004 on the hygiene of foodstuffs. Off. J. Eur. Union 2004, 47, 1–54. [Google Scholar]
- European Commission. Regulation (EC) No 178/2002 of the European Parliament and of the Council of 28 January 2002 Laying Down the General Principles and Requirements of Food Law, Establishing the European Food Safety Authority and Laying Down Procedures in Matters of Food Saf. Off. J. Eur. Union 2002, 31, 1–24. [Google Scholar]
- European Commission. Commission Regulation (EC) No 2073/2005 of 15 November 2005 on Microbiological Criteria for Foodstuffs. Off. J. Eur. Union 2005, 48, 1–26. [Google Scholar]
- (EÜM), H.M. of H. 4/1998; Hungary. 1998. Available online: https://ghsindex.org/wp-content/uploads/2021/12/Hungary.pdf (accessed on 6 December 2025).
- EMMI No. 37/2014; EMMI Decree on Nutrition Requirements for Public Catering (EMMI Rendelet a Közétkeztetésre Vonatkozó Táplálkozás-Egészségügyi Előírásokról). (IV. 30). Hungarian Ministry of Human Capabilities: Budapest, Hungary, 2014. (In Hungarian)
- Bánáti, D.; Lakner, Z. Managerial Attitudes, Acceptance and Efficiency of HACCP Systems in Hungarian Catering. Food Control 2012, 25, 484–492. [Google Scholar] [CrossRef]
- Tóth, A.J.; Kajtor, M.; Illés, C.B.; Dunay, A.; Vinogradov, S.; Battay, M.; Süth, M.; Bittsánszky, A. The Effectiveness of Food Safety Self-Checking Systems in Institutional Catering. Appl. Food Res. 2024, 4, 100488. [Google Scholar] [CrossRef]
- Tóth, A.J.; Koller, Z.; Illés, B.C.; Bittsánszky, A. Development of Conscious Food Handling in Hungarian School Cafeterias. Food Control 2017, 73, 644–649. [Google Scholar] [CrossRef]
- Crandall, P.G.; O’Bryan, C.A.; Wang, D.; Gibson, K.E.; Obe, T. Environmental Monitoring in Food Manufacturing: Current Perspectives and Emerging Frontiers. Food Control 2024, 159, 110269. [Google Scholar] [CrossRef]
- Hayward, C.; Ross, K.E.; Brown, M.H.; Atif, M.; Hinds, J.; Jamieson, T.; Leterme, S.C.; Whiley, H. Science of the Total Environment Handwashing Basins and Healthcare Associated Infections: Bacterial Diversity in Biofilms on Faucets and Drains. Sci. Total Environ. 2024, 949, 175194. [Google Scholar] [CrossRef]
- Artasensi, A.; Mazzotta, S.; Fumagalli, L. Back to Basics: Choosing the Appropriate Surface Disinfectant. Antibiotics 2021, 10, 613. [Google Scholar] [CrossRef]
- Young, I.; Desta, B.N.; Sekercioglu, F. Impact of the COVID-19 Pandemic on Food Safety Inspection Outcomes in Toronto, Canada: A Bayesian Interrupted Time Series Analysis. J. Food Prot. 2023, 86, 100138. [Google Scholar] [CrossRef]
- Beltrán de Heredia, I.; Alkorta, I.; Garbisu, C.; Ruiz-Romera, E. A Practical Framework for Environmental Antibiotic Resistance Monitoring in Freshwater Ecosystems. Antibiotics 2025, 14, 840. [Google Scholar] [CrossRef]
- Dawan, J.; Zhang, S.; Ahn, J. Recent Advances in Biofilm Control Technologies for the Food Industry. Antibiotics 2025, 14, 254. [Google Scholar] [CrossRef]
- Bencardino, D.; Amagliani, G.; Brandi, G. Carriage of Staphylococcus Aureus Among Food Handlers: An Ongoing Challenge in Public Health. Food Control 2021, 130, 108362. [Google Scholar] [CrossRef]
- Tan, S.L.; Bakar, F.A.; Abdul Karim, M.S.; Lee, H.Y.; Mahyudin, N.A. Hand Hygiene Knowledge, Attitudes and Practices Among Food Handlers at Primary Schools in Hulu Langat District, Selangor (Malaysia). Food Control 2013, 34, 428–435. [Google Scholar] [CrossRef]
- Osimani, A.; Aquilanti, L.; Tavoletti, S.; Clementi, F. Evaluation of the HACCP System in a University Canteen: Microbiological Monitoring and Internal Auditing as Verification Tools. Int. J. Environ. Res. Public Health 2013, 10, 1572–1585. [Google Scholar] [CrossRef]
- Cohen Hakmon, M.; Buhnik-Rosenblau, K.; Hanani, H.; Korach-Rechtman, H.; Mor, D.; Etkin, E.; Kashi, Y. Early Detection of Food Safety and Spoilage Incidents Based on Live Microbiome Profiling and PMA-qPCR Monitoring of Indicators. Foods 2024, 13, 2459. [Google Scholar] [CrossRef]
- Xiao, L.; Li, Z.; Dou, X.; Long, Y.; Li, Z.; Liu, Y.; Dong, Q. Advancing Microbial Risk Assessment: Perspectives from the Evolution of Detection Technologies. npj Sci. Food 2025, 9, 157. [Google Scholar] [CrossRef] [PubMed]
- Lewnard, J.A.; McQuade, E.T.R.; Platts-Mills, J.A.; Kotloff, K.L.; Laxminarayan, R. Incidence and etiology of clinically-attended, antibiotic-treated diarrhea among children under five years of age in low- and middle-income countries: Evidence from the Global Enteric Multicenter Study. PLoS Neglected Trop. Dis. 2020, 6, 12–23. [Google Scholar] [CrossRef] [PubMed]
- European Commission. A Farm to Fork Strategy for a Fair, Healthy and Environmentally-Friendly Food System; European Commission: Brussels, Belgium, 2020.
- Reichart, O.; Szakmár, K.; Jozwiak, A.; Felföldi, J.; Baranyai, L. Redox Potential Measurement as a Rapid Method for Microbiological Testing and its Validation for Coliform Determination. Int. J. Food Microbiol. 2007, 114, 143–148. [Google Scholar] [CrossRef] [PubMed]


| No. | Surface Category | Total (N) | Non-Compliant (n) | Non-Compliant (%) | OR | 95% CI | p-Value |
|---|---|---|---|---|---|---|---|
| 1 | Transport container lids | 67 | 45 | 67.2 | 43.82 | 24.96–76.92 | <0.001 |
| 2 | Sink basins | 878 | 288 | 32.8 | 10.46 | 7.93–13.79 | <0.001 |
| 3 | Cutting boards | 102 | 22 | 21.6 | 5.89 | 3.90–7.82 | <0.001 |
| 4 | Food waste containers | 366 | 75 | 20.5 | 5.52 | 3.47–9.99 | <0.001 |
| 5 | Food handlers’ hands | 607 | 93 | 15.3 | 3.88 | 2.80–5.36 | <0.001 |
| 6 | Trays | 708 | 97 | 13.7 | 3.40 | 2.47–4.68 | <0.001 |
| 7 | Refrigerators | 883 | 100 | 11.3 | 2.74 | 1.99–3.75 | <0.001 |
| 8 | Work surfaces | 937 | 97 | 10.4 | 2.47 | 1.80–3.40 | <0.001 |
| 9 | Eating utensils | 858 | 72 | 8.4 | 1.96 | 1.40–2.75 | <0.001 |
| 10 | Jugs | 31 | 2 | 6.5 | 1.48 | 0.35–6.31 | 0.598 |
| 11 | Drinking cups/glasses | 936 | 52 | 5.6 | 1.26 | 0.87–1.82 | 0.217 |
| 12 | Kitchen equipment | 365 | 17 | 4.7 | 1.05 | 0.61–1.80 | 0.869 |
| 13 | Plates (reference) | 1592 | 71 | 4.5 | 1.00 | reference | — |
| No. | Season | Total (N) | Non-Compliant (n) | Non-Compliant (%) | OR (vs. Summer) | 95% CI | p-Value |
|---|---|---|---|---|---|---|---|
| 1 | Summer | 1179 | 194 | 16.5 | reference | - | - |
| 2 | Autumn | 2693 | 375 | 13.9 | 0.82 | 0.68–0.99 | 0.041 |
| 3 | Spring | 2888 | 329 | 11.4 | 0.65 | 0.54–0.79 | <0.001 |
| 4 | Winter | 1647 | 148 | 9.0 | 0.5 | 0.40–0.63 | <0.001 |
| Season | Mean Daily Non-Compliance (% ± SD) | ANOVA/Post Hoc Results |
|---|---|---|
| Spring | 11.5 ± 13.5 | Lower than summer (p = 0.008) |
| Summer | 16.4 ± 17.4 | Higher than spring (p = 0.008); Higher than winter (p < 0.001) |
| Autumn | 14.0 ± 14.6 | Higher than winter (p = 0.002) |
| Winter | 9.1 ± 12.4 | Lower than summer (p < 0.001); Lower than autumn (p = 0.002) |
| Year | Total (N) | Non-Compliant (n) | Non-Compliant (%) | OR (vs. 2019) | 95% CI | p-Value |
|---|---|---|---|---|---|---|
| 2019 | 1378 | 184 | 13.4 | 1.00 | reference | - |
| 2020 | 841 | 106 | 12.6 | 0.94 | 0.72–1.21 | 0.61 |
| 2021 | 1976 | 152 | 7.7 | 0.54 | 0.43–0.68 | <0.001 |
| 2022 | 1840 | 187 | 10.2 | 0.73 | 0.59–0.91 | 0.005 |
| 2023 | 1646 | 318 | 19.3 | 1.55 | 1.28–1.89 | <0.001 |
| 2024 | 726 | 99 | 13.6 | 1.03 | 0.79–1.33 | 0.86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Bittsánszky, A.; Lukács, L.A.; Battay, M.; Süth, M.; Tóth, A.J. Six-Year Environmental Surface Hygiene Monitoring in Hungarian School Kitchens (2019–2024): Hotspots, Seasonality, and One Health Implications. Antibiotics 2026, 15, 120. https://doi.org/10.3390/antibiotics15020120
Bittsánszky A, Lukács LA, Battay M, Süth M, Tóth AJ. Six-Year Environmental Surface Hygiene Monitoring in Hungarian School Kitchens (2019–2024): Hotspots, Seasonality, and One Health Implications. Antibiotics. 2026; 15(2):120. https://doi.org/10.3390/antibiotics15020120
Chicago/Turabian StyleBittsánszky, András, Lili A. Lukács, Márton Battay, Miklós Süth, and András J. Tóth. 2026. "Six-Year Environmental Surface Hygiene Monitoring in Hungarian School Kitchens (2019–2024): Hotspots, Seasonality, and One Health Implications" Antibiotics 15, no. 2: 120. https://doi.org/10.3390/antibiotics15020120
APA StyleBittsánszky, A., Lukács, L. A., Battay, M., Süth, M., & Tóth, A. J. (2026). Six-Year Environmental Surface Hygiene Monitoring in Hungarian School Kitchens (2019–2024): Hotspots, Seasonality, and One Health Implications. Antibiotics, 15(2), 120. https://doi.org/10.3390/antibiotics15020120

