Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (290)

Search Parameters:
Keywords = multi-module neural network system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 11232 KB  
Article
Aerokinesis: An IoT-Based Vision-Driven Gesture Control System for Quadcopter Navigation Using Deep Learning and ROS2
by Sergei Kondratev, Yulia Dyrchenkova, Georgiy Nikitin, Leonid Voskov, Vladimir Pikalov and Victor Meshcheryakov
Technologies 2026, 14(1), 69; https://doi.org/10.3390/technologies14010069 - 16 Jan 2026
Viewed by 27
Abstract
This paper presents Aerokinesis, an IoT-based software–hardware system for intuitive gesture-driven control of quadcopter unmanned aerial vehicles (UAVs), developed within the Robot Operating System 2 (ROS2) framework. The proposed system addresses the challenge of providing an accessible human–drone interaction interface for operators in [...] Read more.
This paper presents Aerokinesis, an IoT-based software–hardware system for intuitive gesture-driven control of quadcopter unmanned aerial vehicles (UAVs), developed within the Robot Operating System 2 (ROS2) framework. The proposed system addresses the challenge of providing an accessible human–drone interaction interface for operators in scenarios where traditional remote controllers are impractical or unavailable. The architecture comprises two hierarchical control levels: (1) high-level discrete command control utilizing a fully connected neural network classifier for static gesture recognition, and (2) low-level continuous flight control based on three-dimensional hand keypoint analysis from a depth camera. The gesture classification module achieves an accuracy exceeding 99% using a multi-layer perceptron trained on MediaPipe-extracted hand landmarks. For continuous control, we propose a novel approach that computes Euler angles (roll, pitch, yaw) and throttle from 3D hand pose estimation, enabling intuitive four-degree-of-freedom quadcopter manipulation. A hybrid signal filtering pipeline ensures robust control signal generation while maintaining real-time responsiveness. Comparative user studies demonstrate that gesture-based control reduces task completion time by 52.6% for beginners compared to conventional remote controllers. The results confirm the viability of vision-based gesture interfaces for IoT-enabled UAV applications. Full article
(This article belongs to the Section Information and Communication Technologies)
Show Figures

Figure 1

31 pages, 3343 KB  
Article
GridFM: A Physics-Informed Foundation Model for Multi-Task Energy Forecasting Using Real-Time NYISO Data
by Ali Sayghe, Mohammed Ahmed Mousa, Salem Batiyah, Abdulrahman Husawi and Mansour Almuwallad
Energies 2026, 19(2), 357; https://doi.org/10.3390/en19020357 - 11 Jan 2026
Viewed by 150
Abstract
The rapid integration of renewable energy sources and increasing complexity of modern power grids demand advanced forecasting tools capable of simultaneously predicting multiple interconnected variables. While time series foundation models (TSFMs) have demonstrated remarkable zero-shot forecasting capabilities across diverse domains, their application in [...] Read more.
The rapid integration of renewable energy sources and increasing complexity of modern power grids demand advanced forecasting tools capable of simultaneously predicting multiple interconnected variables. While time series foundation models (TSFMs) have demonstrated remarkable zero-shot forecasting capabilities across diverse domains, their application in power grid operations remains limited due to complex coupling relationships between load, price, emissions, and renewable generation. This paper proposes GridFM, a novel physics-informed foundation model specifically designed for multi-task energy forecasting in power systems. GridFM introduces four key innovations: (1) a FreqMixer adaptation layer that transforms pre-trained foundation model representations to power-grid-specific patterns through frequency domain mixing without modifying base weights; (2) a physics-informed constraint module embedding power balance equations and zonal grid topology using graph neural networks; (3) a multi-task learning framework enabling joint forecasting of load demand, locational-based marginal prices (LBMP), carbon emissions, and renewable generation with uncertainty-weighted loss functions; and (4) an explainability module utilizing SHAP values and attention visualization for interpretable predictions. We validate GridFM using over 10 years of real-time data from the New York Independent System Operator (NYISO) at 5 min resolution, comprising more than 10 million data points across 11 load zones. Comprehensive experiments demonstrate that GridFM achieves state-of-the-art performance with an 18.5% improvement in load forecasting MAPE (achieving 2.14%), a 23.2% improvement in price forecasting (achieving 7.8% MAPE), and a 21.7% improvement in emission prediction compared to existing TSFMs including Chronos, TimesFM, and Moirai-MoE. Ablation studies confirm the contribution of each proposed component. The physics-informed constraints reduce physically inconsistent predictions by 67%, while the multi-task framework improves individual task performance by exploiting inter-variable correlations. The proposed model provides interpretable predictions supporting the Climate Leadership and Community Protection Act (CLCPA) 2030/2040 compliance objectives, enabling grid operators to make informed decisions for sustainable energy transition and carbon reduction strategies. Full article
Show Figures

Figure 1

27 pages, 4932 KB  
Article
Automated Facial Pain Assessment Using Dual-Attention CNN with Clinically Calibrated High-Reliability and Reproducibility Framework
by Albert Psatrick Sankoh, Ali Raza, Khadija Parwez, Wesam Shishah, Ayman Alharbi, Mubeen Javed and Muhammad Bilal
Biomimetics 2026, 11(1), 51; https://doi.org/10.3390/biomimetics11010051 - 8 Jan 2026
Viewed by 262
Abstract
Accurate and quantitative pain assessment remains a major challenge in clinical medicine, especially for patients unable to verbalize discomfort. Conventional methods based on self-reports or clinician observation are subjective and inconsistent. This study introduces a novel automated facial pain assessment framework built on [...] Read more.
Accurate and quantitative pain assessment remains a major challenge in clinical medicine, especially for patients unable to verbalize discomfort. Conventional methods based on self-reports or clinician observation are subjective and inconsistent. This study introduces a novel automated facial pain assessment framework built on a dual-attention convolutional neural network (CNN) that achieves clinically calibrated, high-reliability performance and interpretability. The architecture combines multi-head spatial attention to localize pain-relevant facial regions with an enhanced channel attention block employing triple-pooling (average, max, and standard deviation) to capture discriminative intensity features. Regularization through label smoothing (α = 0.1) and AdamW optimization ensures calibrated, stable convergence. Evaluated on a clinically annotated dataset using subject-wise stratified sampling, the proposed model achieved a test accuracy of 90.19% ± 0.94%, with an average 5-fold cross-validation accuracy of 83.60% ± 1.55%. The model further attained an F1-score of 0.90 and Cohen’s κ = 0.876, with macro- and micro-AUCs of 0.991 and 0.992, respectively. The evaluation covers five pain classes (No Pain, Mid Pain, Moderate Pain, Severe Pain, and Very Pain) using subject-wise splits comprising 5840 total images and 1160 test samples. Comparative benchmarking and ablation experiments confirm each module’s contribution, while Grad-CAM visualizations highlight physiologically relevant facial regions. The results demonstrate a robust, explainable, and reproducible framework suitable for integration into real-world automated pain-monitoring systems. Inspired by biological pain perception mechanisms and human facial muscle responses, the proposed framework aligns with biomimetic sensing principles by emulating how localized facial cues contribute to pain interpretation. Full article
(This article belongs to the Special Issue Artificial Intelligence (AI) in Biomedical Engineering: 2nd Edition)
Show Figures

Figure 1

28 pages, 2832 KB  
Article
Unsupervised Neural Beamforming for Uplink MU-SIMO in 3GPP-Compliant Wireless Channels
by Cemil Vahapoglu, Timothy J. O’Shea, Wan Liu, Tamoghna Roy and Sennur Ulukus
Sensors 2026, 26(2), 366; https://doi.org/10.3390/s26020366 - 6 Jan 2026
Viewed by 233
Abstract
Beamforming is highly significant for the physical layer of wireless communication systems, for multi-antenna systems such as multiple input multiple output (MIMO) and massive MIMO, since it improves spectral efficiency and reduces interference. Traditional linear beamforming methods such as zero-forcing beamforming (ZFBF) and [...] Read more.
Beamforming is highly significant for the physical layer of wireless communication systems, for multi-antenna systems such as multiple input multiple output (MIMO) and massive MIMO, since it improves spectral efficiency and reduces interference. Traditional linear beamforming methods such as zero-forcing beamforming (ZFBF) and minimum mean square error (MMSE) beamforming provide closed-form solutions. Yet, their performance drops when they face non-ideal conditions such as imperfect channel state information (CSI), dynamic propagation environment, or high-dimensional system configurations, primarily due to static assumptions and computational limitations. These limitations have led to the rise of deep learning-based beamforming, where data-driven models derive beamforming solutions directly from CSI. By leveraging the representational capabilities of cutting-edge deep learning architectures, along with the increasing availability of data and computational resources, deep learning presents an adaptive and potentially scalable alternative to traditional methodologies. In this work, we unify and systematically compare our two unsupervised learning architectures for uplink receive beamforming: a simple neural network beamforming (NNBF) model, composed of convolutional and fully connected layers, and a transformer-based NNBF model that integrates grouped convolutions for feature extraction and transformer blocks to capture long-range channel dependencies. They are evaluated in a common multi-user single input multiple output (MU-SIMO) system model to maximize sum-rate across single-antenna user equipments (UEs) under 3GPP-compliant channel models, namely TDL-A and UMa. Furthermore, we present a FLOPs-based asymptotic computational complexity analysis for the NNBF architectures alongside baseline methods, namely ZFBF and MMSE beamforming, explicitly characterizing inference-time scaling behavior. Experiments for the simple NNBF are performed under simplified assumptions such as stationary UEs and perfect CSI across varying antenna configurations in the TDL-A channel. On the other hand, transformer-based NNBF is evaluated in more realistic conditions, including urban macro environments with imperfect CSI, diverse UE mobilities, coding rates, and modulation schemes. Results show that the transformer-based NNBF achieves superior performance under realistic conditions at the cost of increased computational complexity, while the simple NNBF presents comparable or better performance than baseline methods with significantly lower complexity under simplified assumptions. Full article
(This article belongs to the Special Issue Sensor Networks and Communication with AI)
Show Figures

Figure 1

21 pages, 4559 KB  
Article
Language-Guided Spatio-Temporal Context Learning for Next POI Recommendation
by Chunyang Liu and Chuxiao Fu
ISPRS Int. J. Geo-Inf. 2026, 15(1), 28; https://doi.org/10.3390/ijgi15010028 - 6 Jan 2026
Viewed by 159
Abstract
With the proliferation of mobile internet and location-based services, location-based social networks (LBSNs) have accumulated extensive user check-in data, driving the advancement of next Point-of-Interest (POI) recommendation systems. Although existing approaches can model sequential dependencies and spatio-temporal patterns, they often fail to fully [...] Read more.
With the proliferation of mobile internet and location-based services, location-based social networks (LBSNs) have accumulated extensive user check-in data, driving the advancement of next Point-of-Interest (POI) recommendation systems. Although existing approaches can model sequential dependencies and spatio-temporal patterns, they often fail to fully capture users’ dynamic preferences under varying spatio-temporal contexts and lack effective integration of fine-grained semantic information. To address these limitations, this paper proposes Language-Guided Spatio-Temporal Context Learning for Next POI Recommendation (LSCNP). It employs a pre-trained BERT model to encode multi-dimensional spatio-temporal context—including geographic coordinates, visiting hours, and surrounding POI categories—into structured textual sequences for semantic understanding; constructs dual-graph structures to model spatial constraints and user transition patterns; and introduces a contrastive learning module to align spatio-temporal context with POI features, enhancing the discriminability of representations. A Transformer-based sequential encoder is adopted to capture long-range dependencies, while a neural matrix factorization decoder generates final recommendations. Experiments on three real-world LBSN datasets demonstrate that LSCNP consistently outperforms state-of-the-art baselines. Ablation studies and hyperparameter analyses further validate the contribution of each component to the overall performance. Full article
Show Figures

Figure 1

29 pages, 5843 KB  
Article
A Multi-Level Hybrid Architecture for Structured Sentiment Analysis
by Altanbek Zulkhazhav, Gulmira Bekmanova, Banu Yergesh, Aizhan Nazyrova, Zhanar Lamasheva and Gaukhar Aimicheva
Electronics 2026, 15(2), 249; https://doi.org/10.3390/electronics15020249 - 6 Jan 2026
Viewed by 241
Abstract
This paper presents a hybrid architecture for automatic sentiment analysis of Kazakh-language political discourse. The Kazakh language is characterized by an agglutinative structure, a complex word-formation system, and the limited availability of digital resources, which significantly complicates the application of standard neural network [...] Read more.
This paper presents a hybrid architecture for automatic sentiment analysis of Kazakh-language political discourse. The Kazakh language is characterized by an agglutinative structure, a complex word-formation system, and the limited availability of digital resources, which significantly complicates the application of standard neural network approaches. To account for these characteristics, a multi-level system was developed that combines morphological and syntactic analysis rules, ontological relationships between political concepts, and multilingual representations of the XLM-R model, used in zero-shot mode. A corpus of 12,000 sentences was annotated for sentiment polarity and used for training and evaluation, while Universal Dependencies annotation was applied for morpho-syntactic analysis. Rule-based components compensate for errors related to affixation variability, modality, and directive constructions. An ontology comprising over 300 domain concepts ensures the correct interpretation of set expressions, terms, and political actors. Experimental results show that the proposed hybrid architecture outperforms both neural network baseline models and purely rule-based solutions, achieving Macro-F1 = 0.81. Ablation revealed that the contribution of modules is unevenly distributed: the ontology provides +0.04 to Macro-F1, the UD syntax +0.08, and the rule-based module +0.11. The developed system forms an interpretable and robust assessment of tonality, emotions, and discursive strategies in political discourse, and also creates a basis for further expansion of the corpus, additional training of models, and the application of hybrid methods to other tasks of analyzing low-resource languages. Full article
Show Figures

Figure 1

25 pages, 4045 KB  
Article
A Hybrid Intrusion Detection Framework for Imbalanced AMI Traffic Using GAN-Based Data Augmentation and Lightweight CNN
by Shunjiang Wang, Yang Shi, Guiping Zhou and Peng Yu
Electronics 2026, 15(1), 235; https://doi.org/10.3390/electronics15010235 - 5 Jan 2026
Viewed by 210
Abstract
With the widespread deployment of the Advanced Metering Infrastructure (AMI) in Power Industrial Control Systems (PICS), a significant and inherent property of network traffic data is its pronounced class imbalance. The continuous emergence of new types of cyberattacks significantly limits the detection accuracy [...] Read more.
With the widespread deployment of the Advanced Metering Infrastructure (AMI) in Power Industrial Control Systems (PICS), a significant and inherent property of network traffic data is its pronounced class imbalance. The continuous emergence of new types of cyberattacks significantly limits the detection accuracy of Intrusion Detection Systems (IDS). To overcome the limitations of traditional methods—particularly their poor adaptability in complex conditions and vulnerability to emerging threats—this paper introduces a novel hybrid intrusion detection framework. This framework synergistically combines data augmentation and a discriminative classification model for improved performance. Within this framework, a Multi-feature Constrained Conditional Generative Adversarial Network (MC-CGAN) is proposed. Its multi-feature constraint module (MC) preserves protocol-related invariant features, while the CGAN is responsible for conditionally generating the remaining continuous features based on class labels. By preserving the core semantic information of samples, this method reduces the risk of generating unrealistic data and decreases computational overhead. Furthermore, we develop ADS-Net, a lightweight Convolutional Neural Network that not only replaces traditional convolutions with depth-wise separable ones for efficiency, but also incorporates an attention mechanism to adaptively weight feature channels, thus improving discriminative focus. Extensive experiments demonstrate that, under conditions of extreme data imbalance, the proposed hybrid framework can generate industrially valid synthetic data while achieving accurate intrusion detection with an accuracy of 98.35%. Full article
(This article belongs to the Section Artificial Intelligence)
Show Figures

Figure 1

28 pages, 8796 KB  
Article
CPU-Only Spatiotemporal Anomaly Detection in Microservice Systems via Dynamic Graph Neural Networks and LSTM
by Jiaqi Zhang and Hao Yang
Symmetry 2026, 18(1), 87; https://doi.org/10.3390/sym18010087 - 3 Jan 2026
Viewed by 214
Abstract
Microservice architecture has become a foundational component of modern distributed systems due to its modularity, scalability, and deployment flexibility. However, the increasing complexity and dynamic nature of service interactions have introduced substantial challenges in accurately detecting runtime anomalies. Existing methods often rely on [...] Read more.
Microservice architecture has become a foundational component of modern distributed systems due to its modularity, scalability, and deployment flexibility. However, the increasing complexity and dynamic nature of service interactions have introduced substantial challenges in accurately detecting runtime anomalies. Existing methods often rely on multiple monitoring metrics, which introduce redundancy and noise while increasing the complexity of data collection and model design. This paper proposes a novel spatiotemporal anomaly detection framework that integrates Dynamic Graph Neural Networks (D-GNN) combined with Long Short-Term Memory (LSTM) networks to model both the structural dependencies and temporal evolution of microservice behaviors. Unlike traditional approaches, our method uses only CPU utilization as the sole monitoring metric, leveraging its high observability and strong correlation with service performance. From a symmetry perspective, normal microservice behaviors exhibit approximately symmetric spatiotemporal patterns: structurally similar services tend to share similar CPU trajectories, and recurring workload cycles induce quasi-periodic temporal symmetries in utilization signals. Runtime anomalies can therefore be interpreted as symmetry-breaking events that create localized structural and temporal asymmetries in the service graph. The proposed framework is explicitly designed to exploit such symmetry properties: the D-GNN component respects permutation symmetry on the microservice graph while embedding the evolving structural context of each service, and the LSTM module captures shift-invariant temporal trends in CPU usage to highlight asymmetric deviations over time. Experiments conducted on real-world microservice datasets demonstrate that the proposed method delivers excellent performance, achieving 98 percent accuracy and 98 percent F1-score. Compared to baseline methods such as DeepTraLog, which achieves 0.93 precision, 0.978 recall, and 0.954 F1-score, our approach performs competitively, achieving 0.980 precision, 0.980 recall, and 0.980 F1-score. Our results indicate that a single-metric, symmetry-aware spatiotemporal modeling approach can achieve competitive performance without the complexity of multi-metric inputs, providing a lightweight and robust solution for real-time anomaly detection in large-scale microservice environments. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

20 pages, 2583 KB  
Article
Research on Intelligent Traffic Signal Control Based on Multi-Agent Deep Reinforcement Learning
by Kerang Cao, Siqi Yang, Cheng Yang, Mingxu Yu, Jietan Geng and Hoekyung Jung
Mathematics 2026, 14(1), 149; https://doi.org/10.3390/math14010149 - 30 Dec 2025
Viewed by 267
Abstract
Although Adaptive Traffic Signal Control (ATSC) can alleviate congestion issues to some extent in traditional signal control systems, it still faces challenges in dealing with complex and dynamic traffic environments, such as difficulties in agent coordination, high computational complexity, and unstable optimization results. [...] Read more.
Although Adaptive Traffic Signal Control (ATSC) can alleviate congestion issues to some extent in traditional signal control systems, it still faces challenges in dealing with complex and dynamic traffic environments, such as difficulties in agent coordination, high computational complexity, and unstable optimization results. To address these challenges, this paper proposes a multi-agent deep reinforcement learning algorithm based on SENet, called SE-A3C. The SE-A3C algorithm enhances the feature extraction capability and adaptability of the neural network by introducing the Squeeze-and-Excitation (SE) module from SENet. This allows the model to focus more precisely on high-information features and capture interdependencies between different channels, thereby improving the model’s discriminative ability and decision-making performance. Additionally, the algorithm incorporates Nash equilibrium concepts to maintain a relative balance among agents during coordinated control, avoiding suboptimal competition between agents and significantly improving system stability and efficiency. Experimental results show that, compared to traditional A3C, DQN, and Ape-X algorithms, the SE-A3C algorithm significantly improves the efficiency of traffic signal control and the overall throughput of traffic flow in complex traffic scenarios. Full article
Show Figures

Figure 1

24 pages, 7261 KB  
Article
IFIANet: Frequency Attention Network for Time–Frequency in sEMG-Based Motion Intent Recognition
by Gang Zheng, Jiankai Lin, Jiawei Zhang, Heming Jia, Jiayang Tang and Longtao Shi
Sensors 2026, 26(1), 169; https://doi.org/10.3390/s26010169 - 26 Dec 2025
Viewed by 349
Abstract
Lower limb exoskeleton systems require accurate recognition of the wearer’s movement intentions prior to action execution in order to achieve natural and smooth human–machine interaction. Surface electromyography (sEMG) signals can reflect neural activation of muscles before movement onset, making them a key physiological [...] Read more.
Lower limb exoskeleton systems require accurate recognition of the wearer’s movement intentions prior to action execution in order to achieve natural and smooth human–machine interaction. Surface electromyography (sEMG) signals can reflect neural activation of muscles before movement onset, making them a key physiological source for movement intention recognition. To improve sEMG-based recognition performance, this study proposes an innovative deep learning framework, IFIANet. First, a CNN–TCN-based spatiotemporal feature learning network is constructed, which efficiently models and represents multi-scale temporal–frequency features while effectively reducing model parameter complexity. Second, an IFIA (Frequency-Informed Integration Attention) module is designed to incorporate global frequency information, compensating for frequency components potentially lost during time–frequency transformations, thereby enhancing the discriminability and robustness of temporal–frequency features. Extensive ablation and comparative experiments on the publicly available MyPredict1 dataset demonstrate that the proposed framework maintains stable performance across different prediction times and achieves over 82% average recognition accuracy in within-experiments involving nine participants. The results indicate that IFIANet effectively fuses local temporal–frequency features with global frequency priors, providing an efficient and reliable approach for sEMG-based movement intention recognition and intelligent control of exoskeleton systems. Full article
(This article belongs to the Special Issue Advanced Sensors for Human Health Management)
Show Figures

Figure 1

37 pages, 1515 KB  
Review
Designing Neural Dynamics: From Digital Twin Modeling to Regeneration
by Calin Petru Tataru, Adrian Vasile Dumitru, Nicolaie Dobrin, Mugurel Petrinel Rădoi, Alexandru Vlad Ciurea, Octavian Munteanu and Luciana Valentina Munteanu
Int. J. Mol. Sci. 2026, 27(1), 122; https://doi.org/10.3390/ijms27010122 - 22 Dec 2025
Viewed by 752
Abstract
Cognitive deterioration and the transition to neurodegenerative disease does not develop through simple, linear regression; it develops as rapid and global transitions from one state to another within the neural network. Developing understanding and control over these events is among the largest tasks [...] Read more.
Cognitive deterioration and the transition to neurodegenerative disease does not develop through simple, linear regression; it develops as rapid and global transitions from one state to another within the neural network. Developing understanding and control over these events is among the largest tasks facing contemporary neuroscience. This paper will discuss a conceptual reframing of cognitive decline as a transitional phase of the functional state of complex neural networks resulting from the intertwining of molecular degradation, vascular dysfunction and systemic disarray. The paper will integrate the latest findings that have demonstrated how the disruptive changes in glymphatic clearance mechanisms, aquaporin-4 polarity, venous output, and neuroimmune signaling increasingly correlate with the neurophysiologic homeostasis landscape, ultimately leading to the destabilization of the network attraction sites of memory, consciousness, and cognitive resilience. Furthermore, the destabilizing processes are exacerbated by epigenetic silencing; neurovascular decoupling; remodeling of the extracellular matrix; and metabolic collapse that result in accelerating the trajectory of neural circuits towards the pathological tipping point of various neurodegenerative diseases including Alzheimer’s disease; Parkinson’s disease; traumatic brain injury; and intracranial hypertension. New paradigms in systems neuroscience (connectomics; network neuroscience; and critical transition theory) provide an intellectual toolkit to describe and predict these state changes at the systems level. With artificial intelligence and machine learning combined with single cell multi-omics; radiogenomic profiling; and digital twin modeling, the predictive biomarkers and early warnings of impending collapse of the system are beginning to emerge. In terms of therapeutic intervention, the possibility of reprogramming the circuitry of the brain into stable attractor states using precision neurointervention (CRISPR-based neural circuit reprogramming; RNA guided modulation of transcription; lineage switching of glia to neurons; and adaptive neuromodulation) represents an opportunity to prevent further progression of neurodegenerative disease. The paper will address the ethical and regulatory implications of this revolutionary technology, e.g., algorithmic transparency; genomic and other structural safety; and equity of access to advanced neurointervention. We do not intend to present a list of the many vertices through which the mechanisms listed above instigate, exacerbate, or maintain the neurodegenerative disease state. Instead, we aim to present a unified model where the phenomena of molecular pathology; circuit behavior; and computational intelligence converge in describing cognitive decline as a translatable change of state, rather than an irreversible succumbing to degeneration. Thus, we provide a framework for precision neurointervention, regenerative brain medicine, and adaptive intervention, to modulate the trajectory of neurodegeneration. Full article
(This article belongs to the Special Issue From Molecular Insights to Novel Therapies: Neurological Diseases)
Show Figures

Figure 1

30 pages, 5640 KB  
Article
Data-Driven Distributionally Robust Collaborative Optimization Operation Strategy for Multi-Integrated Energy Systems Considers Energy Trading
by Wenyuan Sun, Nan Jiang, Tianqi Wang, Shuailing Ma, Yingai Jin and Firoz Alam
Sustainability 2025, 17(24), 11377; https://doi.org/10.3390/su172411377 - 18 Dec 2025
Viewed by 313
Abstract
The strong uncertainty of renewable energy poses significant reliability and safety challenges for the coordinated operation of multi-integrated energy systems (MIES). To address this, a data-driven two-stage distributed robust collaborative optimization scheduling model for MIES is proposed, based on a spatiotemporal fusion conditional [...] Read more.
The strong uncertainty of renewable energy poses significant reliability and safety challenges for the coordinated operation of multi-integrated energy systems (MIES). To address this, a data-driven two-stage distributed robust collaborative optimization scheduling model for MIES is proposed, based on a spatiotemporal fusion conditional diffusion model (STF-CDM). First, to more accurately capture the uncertainty in renewable energy output, the model utilizes a scenario set generated by the STF-CDM model and reduced via the K-means clustering algorithm as the initial renewable energy scenarios for the distributed robust optimization set. The STF-CDM model employs a Temporal module component (TMC) unit composed of Transformer time-series modules and a Spatial module component (SMC) unit composed of CNN neural networks for feature extraction and fusion of time-series and spatial-series data. Second, a benefit allocation method based on multi-energy trading contribution rates is proposed to achieve equitable distribution of cooperative gains. Finally, to protect participant privacy and enhance computational efficiency, an alternating direction multiplier method (ADMM) coupled with parallelizable column and constraint generation (C&CG) is employed to solve the energy trading problem. The case analysis results demonstrate that the STF-CDM model proposed in this study exhibits superior performance in addressing the uncertainty of renewable energy output. Concurrently, the asymmetric Nash game mechanism and the ADMM-C&CG solution algorithm proposed in this study achieve a fair and reasonable distribution of benefits among all participants when handling energy transactions and cooperative gains. This is accomplished while ensuring system robustness, economic efficiency, and privacy. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

18 pages, 2067 KB  
Article
Dual-Branch Network for Video Anomaly Detection Based on Feature Fusion
by Minggao Huang, Jing Li, Zhanming Sun and Jianwen Hu
Mathematics 2025, 13(24), 4022; https://doi.org/10.3390/math13244022 - 18 Dec 2025
Viewed by 353
Abstract
Anomaly detection is a critical task in video surveillance, with significant applications in the management and prevention of criminal activities. Traditional convolutional neural networks often struggle with motion modeling and multi-scale feature fusion due to their localized field of view. To address these [...] Read more.
Anomaly detection is a critical task in video surveillance, with significant applications in the management and prevention of criminal activities. Traditional convolutional neural networks often struggle with motion modeling and multi-scale feature fusion due to their localized field of view. To address these limitations, this work proposes a Dual-Branch Interactive Feature Fusion Network (DBIFF-Net). DBIFF-Net integrates a CNN branch and a swin transformer branch to extract multi-scale features. To optimize these features for efficient fusion, an interactive fusion module is introduced to efficiently fuse these multi-scale features through skip connections. Then, the temporal shift module is employed to exploit dependencies between video frames, thereby improving the identification of anomalous events. Finally, the channel attention is utilized for decoder to better assist in restoring complex object features in the video. System performance is evaluated on three standard benchmark datasets. DBIFF-Net achieves the area under the receiver operating characteristic (AUC) of 97.7%, 84.5%, and 73.8% on the UCSD ped2, CUHK Avenue, and ShanghaiTech Campus dataset, respectively. Extensive experiments demonstrate that DBIFF-Net outperforms most state-of-the-art methods, validating the effectiveness of our method. Full article
Show Figures

Figure 1

17 pages, 2225 KB  
Article
A Knowledge-Guide Data-Driven Model with Selective Wavelet Kernel Fusion Neural Network for Gearbox Intelligent Fault Diagnosis
by Nan Zhuang, Zhaogang Ren, Dongyao Yang, Xu Tian and Yingwu Wang
Sensors 2025, 25(24), 7656; https://doi.org/10.3390/s25247656 - 17 Dec 2025
Viewed by 367
Abstract
The gearbox is a critical component in modern industrial systems, directly determining the operational reliability of machinery. Therefore, effective fault diagnosis is essential to ensure its proper functioning. Modern diagnostic approaches often employ accelerometers to monitor vibration signals and apply data-driven techniques for [...] Read more.
The gearbox is a critical component in modern industrial systems, directly determining the operational reliability of machinery. Therefore, effective fault diagnosis is essential to ensure its proper functioning. Modern diagnostic approaches often employ accelerometers to monitor vibration signals and apply data-driven techniques for fault identification, achieving considerable success. However, deep learning-based methods still face limitations due to their “black-box” nature and lack of interpretability. To address these issues, this paper proposes a knowledge-guided selective wavelet kernel fusion neural network. By integrating diagnostic domain knowledge into data-driven modeling, the proposed method enhances both the interpretability and diagnostic performance of intelligent fault diagnosis systems. First, a multi-kernel convolutional module is designed based on domain knowledge and embedded into a Modern Temporal Convolutional Network. Then, an attention-based selective wavelet kernel fusion strategy is introduced to adaptively fuse kernels according to the distribution of different datasets. Finally, the effectiveness of the proposed method is validated on two public datasets. Experimental results demonstrate that the approach not only provides prior interpretability, which overcoming the black-box limitation of deep learning, but also further improves diagnostic accuracy. Full article
(This article belongs to the Special Issue Deep Learning Based Intelligent Fault Diagnosis)
Show Figures

Figure 1

23 pages, 2909 KB  
Article
A Symmetry-Aware Hierarchical Graph-Mamba Network for Spatio-Temporal Road Damage Detection
by Zichun Tian, Xiaokang Shao, Yuqi Bai, Qianyun Zhang, Zhuxuanzi Wang and Yingrui Ji
Symmetry 2025, 17(12), 2173; https://doi.org/10.3390/sym17122173 - 17 Dec 2025
Viewed by 404
Abstract
The prompt and precise detection of road damage is vital for effective infrastructure management, forming the foundation for intelligent transportation systems and cost-effective pavement maintenance. While current convolutional neural network (CNN)-based methodologies have made progress, they are fundamentally limited by treating damages as [...] Read more.
The prompt and precise detection of road damage is vital for effective infrastructure management, forming the foundation for intelligent transportation systems and cost-effective pavement maintenance. While current convolutional neural network (CNN)-based methodologies have made progress, they are fundamentally limited by treating damages as independent, isolated entities, thereby ignoring the intrinsic spatial symmetry and topological organization inherent in complex damage patterns like alligator cracking. This conceptual asymmetry in modeling leads to two major deficiencies: “context blindness,” which overlooks essential structural interrelations, and “temporal inconsistency” in video analysis, resulting in unstable, flickering predictions. To address this, we propose a Spatio-Temporal Graph Mamba You-Only-Look-Once (STG-Mamba-YOLO) network, a novel architecture that introduces a symmetry-informed, hierarchical reasoning process. Our approach explicitly models and integrates contextual dependencies across three levels to restore a holistic and consistent structural representation. First, at the pixel level, a Mamba state-space model within the YOLO backbone enhances the modeling of long-range spatial dependencies, capturing the elongated symmetry of linear cracks. Second, at the object level, an intra-frame damage Graph Network enables explicit reasoning over the topological symmetry among damage candidates, effectively reducing false positives by leveraging their relational structure. Third, at the sequence level, a Temporal Graph Mamba module tracks the evolution of this damage graph, enforcing temporal symmetry across frames to ensure stable, non-flickering results in video streams. Comprehensive evaluations on multiple public benchmarks demonstrate that our method outperforms existing state-of-the-art approaches. STG-Mamba-YOLO shows significant advantages in identifying intricate damage topologies while ensuring robust temporal stability, thereby validating the effectiveness of our symmetry-guided, multi-level contextual fusion paradigm for structural health monitoring. Full article
Show Figures

Figure 1

Back to TopTop