Designing Neural Dynamics: From Digital Twin Modeling to Regeneration
Abstract
1. Introduction—From Static Descriptions to Dynamic Control of Brain States
2. The Brain as a Dynamical Landscape—Attractors, Criticality, and Molecular Underpinnings
2.1. State-Space Architecture, Attractors, and Critical Transitions
2.2. Multiscale Molecular and Cellular Shaping of the Landscape
2.3. Pathological Deformation and a Dynamical Basis for Intervention
| Mechanistic Layer | Core Components and Processes | Contribution to Attractor Dynamics | Distortion in Disease | Therapeutic Opportunities and Emerging Interventions | References |
|---|---|---|---|---|---|
| Ion channel ensembles | Voltage-gated Na+, K+, Ca2+ channels; HCN; KCNQ2/3 | Set intrinsic excitability and bifurcation points; tune basin curvature, resonance, and spike timing | Channelopathies reduce transition barriers and stabilize pathological basins (esp. epilepsy); altered subthreshold conductances impair critical dynamics | Channel-selective modulators to rebalance excitability; closed-loop stimulation timed to bifurcation geometry/eigenmodes | [47,86,87] |
| Synaptic plasticity and scaling | AMPA/NMDA trafficking; TNF-α pathways; presynaptic Ca2+ kinetics | Reposition and deepen/flatten basins via LTP/LTD; maintain stability through homeostatic scaling; shape local eigenmodes | Failed scaling flattens landscape and raises noise susceptibility; biased LTP/LTD shifts trajectories toward maladaptive attractors | TNF-α modulators; BDNF–TrkB agonists; metaplasticity-guided stimulation/rehab to reset transition rules | [88] |
| Excitation–inhibition (E/I) balance | GABA interneurons; PV circuits; KCC2/NKCC1 transporters | Determines attractor count and barrier height; stabilizes phase hierarchies and oscillatory regimes | E/I drift produces hypersynchrony or fragmentation, shrinking accessible state repertoire | KCC2 enhancement/NKCC1 tuning; interneuron grafting; gamma entrainment for targeted inhibitory control | [50,89] |
| Astrocytic control | AQP4; Kir4.1; EAAT1/2; connexin-43; astrocytic Ca2+ waves | Buffers ions and water, sets excitability thresholds; limits glutamate spillover; couples metabolism to activity | AQP4 depolarization, weak K+ buffering, and glutamate spillover deepen pathological basins and destabilize normal attractors | AQP4 repolarization; Kir4.1 upregulation; lactate-shuttle support to restore ionic/metabolic stability | [19,90] |
| Microglial–immune feedback | TREM2; APOE; complement C1q/C3; cytokines | Reshapes topology through pruning and inflammatory gain control; alters basin boundaries | Chronic inflammation stiffens boundaries and amplifies noise; over-pruning reduces controllability | TREM2 agonism; complement dampening; cytokine-targeted anti-inflammatory therapy | [91,92] |
| Oligodendrocytes and myelin plasticity | Myelin thickness; internode length; activity-dependent myelination | Adjusts conduction delays and synchrony, stabilizing recurrent loops and large-scale attractors | Demyelination disrupts timing, collapses coordination, narrows the dynamical repertoire | Remyelination/OPC-activation strategies; experience-driven myelin training | [93,94] |
| Neuromodulatory systems | Dopamine (D1/D2), acetylcholine, norepinephrine, serotonin | Provide slow global bias fields; regulate exploration vs. exploitation and state switching | Blunted modulation traps circuits in low-energy attractors (e.g., depression); unstable tone destabilizes transitions | Targeted neuromodulators (L-DOPA, nicotinic agonists, SSRIs); phase-specific stimulation of modulatory nuclei | [95] |
| Epigenetic and epitranscriptomic programs | Histone acetylation/methylation; enhancer looping; m6A RNA methylation | Control slow variables: stabilize new regimes, reopen/close plasticity routes, encode long-term state history | Disordered chromatin regulation limits attractor diversity and locks maladaptive states | HDAC inhibitors; m6A pathway modulators; CRISPR epigenome editing | [96,97] |
| Metabolic and mitochondrial dynamics | PGC-1α; SIRT3; mitophagy; lactate shuttle | Set energetic ceilings for high-amplitude states and recovery speed after perturbation | Energy failure deepens pathological basins, prolongs recovery, and drives instability | NAD+ boosters; mitophagy enhancers; metabolic-coupling interventions | [98,99] |
| Vascular and glymphatic support | Neurovascular coupling; pericytes; arterial pulsatility; AQP4 | Sustain supply–demand matching and clearance, preserving adaptive basin geometry | Hypoperfusion/clearance failure compresses state space and increases instability | Focused ultrasound; NO-signaling support; sleep-linked clearance modulation | [100,101] |
| Global dynamical signatures | Criticality; bifurcations; stochastic resonance; noise | Enable high sensitivity, flexibility, and low-energy transitions | Loss of criticality reduces computational range; noise becomes destabilizing | Early-warning monitoring (critical slowing, variance, autocorrelation); resonance/phase-locked stimulation | [102] |
3. Digital Twins: Building Multi-Scale Computational Mirrors of the Brain
3.1. From Static Descriptions to Adaptive Dynamical Mirrors
3.2. Multiscale Integration and Personalization: Twins That Co-Evolve with the Brain
3.3. Predictions, Simulations, and Grounded Translational Roles
3.4. Outlook and Future Directions
4. Adaptive Control Systems: Steering Brain Dynamics in Real Time
4.1. Neural-Dynamic Control Primitives: Controllability, Observability, and State-Aware Feedback
4.2. Architectures and Timing of Adaptive Control: MPC, Adaptive Control, Reinforcement Learning, and Energy-Efficient Steering
4.3. Closed-Loop Translation and Forward Limits: Clinical Applications, Multimodal Actuation, and Ethical Constraints
4.4. Perspectives and Future Directions
5. Molecular and Genetic Levers for Landscape Reconfiguration
5.1. Genome, Transcription, and Epigenetic Engineering: Changing the Rules of Plasticity and Excitability
5.2. Glial–Immune and Metabolic–Vascular Control: Controlling Homeostatic Constraints and Basin Stability
5.3. Combining Molecular Levers with Digital Twins and Adaptive Control: Toward Programmable Neurotherapeutics
5.4. Future Perspectives and Directions
6. Network Plasticity and Attractor Engineering
6.1. Synaptic and Metaplastic Mechanisms: The Deepening, Widening, and Shifting of Basins and Transition Rules
6.2. Balance Between Excitatory and Inhibitory Neural Populations as a Stabilizer of Landscape Geometry and Transition Probability
6.3. Oscillatory and Structural Plasticity: Temporal Scaffolding, Topology Change, and the Construction of New Attractors
6.4. Concluding Perspectives and Future Directions
7. Translational Horizons: Empirically Grounded Pathways for State-Space Neurotherapeutics
7.1. Epilepsy: Predictive Biomarkers of Bifurcations and Prevention of Transition into Ictal Attractors
7.2. Parkinson’s Disease: Adaptive Deep Brain Stimulation as Steerable Control of Trajectories in Cortico-Basal Ganglia Attractors
8. Conclusions: Toward Programmable Neurodynamics
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mateos-Aparicio, P.; Rodríguez-Moreno, A. The Impact of Studying Brain Plasticity. Front. Cell. Neurosci. 2019, 13, 66. [Google Scholar] [CrossRef] [PubMed]
- Mavroudis, I.; Franekova, K.; Petridis, F.; Ciobica, A.; Dăscălescu, G.; Anton, C.R.; Ilea, C.; Papagiannopoulos, S.; Kazis, D.; Anton, E. Post-Traumatic Epilepsy After Mild and Moderate Traumatic Brain Injury: A Narrative Review and Development of a Clinical Decision Tool. Reports 2025, 8, 193. [Google Scholar] [CrossRef] [PubMed]
- Beer, C.; Barak, O. Revealing and Reshaping Attractor Dynamics in Large Networks of Cortical Neurons. PLoS Comput. Biol. 2024, 20, e1011784. [Google Scholar] [CrossRef] [PubMed]
- Brennan, C.; Proekt, A. Attractor Dynamics with Activity-Dependent Plasticity Capture Human Working Memory across Time Scales. Commun. Psychol. 2023, 1, 28. [Google Scholar] [CrossRef]
- Recanatesi, S.; Obilinovic, U.P.; Murakami, M.; Mainen, Z.; Mazzucato, L. Metastable Attractors Explain the Variable Timing of Stable Behavioral Action Sequences. Neuron 2022, 110, 139–153.e9. [Google Scholar] [CrossRef]
- Zhao, Y.; Grayden, D.B.; Boley, M.; Liu, Y.; Karoly, P.J.; Cook, M.J.; Kuhlmann, L. Cortical Stability and Chaos during Focal Seizures: Insights from Inference-Based Modeling. J. Neural Eng. 2025, 22, 036021. [Google Scholar] [CrossRef]
- Kim, J.; Kim, T.-E.; Lee, S.-H.; Koo, J.W. The Role of Glutamate Underlying Treatment-Resistant Depression. Clin. Psychopharmacol. Neurosci. 2023, 21, 429–446. [Google Scholar] [CrossRef]
- Mofakham, S.; Liu, Y.; Hensley, A.; Saadon, J.R.; Gammel, T.; Cosgrove, M.E.; Adachi, J.; Mohammad, S.; Huang, C.; Djurić, P.M.; et al. Injury to Thalamocortical Projections Following Traumatic Brain Injury Results in Attractor Dynamics for Cortical Networks. Prog. Neurobiol. 2022, 210, 102215. [Google Scholar] [CrossRef]
- Voicu, V.; Toader, C.; Șerban, M.; Covache-Busuioc, R.-A.; Ciurea, A.V. Systemic Neurodegeneration and Brain Aging: Multi-Omics Disintegration, Proteostatic Collapse, and Network Failure Across the CNS. Biomedicines 2025, 13, 2025. [Google Scholar] [CrossRef]
- Pensotti, A.; Bertolaso, M.; Bizzarri, M. Is Cancer Reversible? Rethinking Carcinogenesis Models—A New Epistemological Tool. Biomolecules 2023, 13, 733. [Google Scholar] [CrossRef]
- Fekonja, L.S.; Schenk, R.; Schröder, E.; Tomasello, R.; Tomšič, S.; Picht, T. The Digital Twin in Neuroscience: From Theory to Tailored Therapy. Front. Neurosci. 2024, 18, 1454856. [Google Scholar] [CrossRef]
- Șerban, M.; Toader, C.; Covache-Busuioc, R.-A. CRISPR and Artificial Intelligence in Neuroregeneration: Closed-Loop Strategies for Precision Medicine, Spinal Cord Repair, and Adaptive Neuro-Oncology. Int. J. Mol. Sci. 2025, 26, 9409. [Google Scholar] [CrossRef]
- Shi, W.; Cao, Y.; Chen, F.; Tong, W.; Zhang, L.; Wan, J. Multi-Perspective Characterization of Seizure Prediction Based on Microstate Analysis. Front. Neurosci. 2024, 18, 1474782. [Google Scholar] [CrossRef]
- Wei, B. Adaptive Control Design and Stability Analysis of Robotic Manipulators. Actuators 2018, 7, 89. [Google Scholar] [CrossRef]
- Mohammadi, H.; Ozguney, O.C. Modeling and Adaptive Control of Biped Robots. Actuators 2025, 14, 392. [Google Scholar] [CrossRef]
- Lo, M.-C.; Widge, A.S. Closed-Loop Neuromodulation Systems: Next-Generation Treatments for Psychiatric Illness. Int. Rev. Psychiatry 2017, 29, 191–204. [Google Scholar] [CrossRef]
- Coelho-Magalhães, T.; Azevedo Coste, C.; Resende-Martins, H. A Novel Functional Electrical Stimulation-Induced Cycling Controller Using Reinforcement Learning to Optimize Online Muscle Activation Pattern. Sensors 2022, 22, 9126. [Google Scholar] [CrossRef]
- Mushtaq, M.; Ahmad Dar, A.; Skalicky, M.; Tyagi, A.; Bhagat, N.; Basu, U.; Bhat, B.A.; Zaid, A.; Ali, S.; Dar, T.-U.-H.; et al. CRISPR-Based Genome Editing Tools: Insights into Technological Breakthroughs and Future Challenges. Genes 2021, 12, 797. [Google Scholar] [CrossRef]
- Abbasian, V.; Davoudi, S.; Vahabzadeh, A.; Maftoon-Azad, M.J.; Janahmadi, M. Astroglial Kir4.1 and AQP4 Channels: Key Regulators of Potassium Homeostasis and Their Implications in Autism Spectrum Disorders. Cell. Mol. Neurobiol. 2025, 45, 56. [Google Scholar] [CrossRef] [PubMed]
- Zaaimi, B.; Turnbull, M.; Hazra, A.; Wang, Y.; Gandara, C.; McLeod, F.; McDermott, E.E.; Escobedo-Cousin, E.; Idil, A.S.; Bailey, R.G.; et al. Closed-Loop Optogenetic Control of the Dynamics of Neural Activity in Non-Human Primates. Nat. Biomed. Eng. 2023, 7, 559–575. [Google Scholar] [CrossRef] [PubMed]
- Hampel, H.; Gao, P.; Cummings, J.; Toschi, N.; Thompson, P.M.; Hu, Y.; Cho, M.; Vergallo, A. The Foundation and Architecture of Precision Medicine in Neurology and Psychiatry. Trends Neurosci. 2023, 46, 176–198. [Google Scholar] [CrossRef] [PubMed]
- Górriz, J.M.; Álvarez-Illán, I.; Álvarez-Marquina, A.; Arco, J.E.; Atzmueller, M.; Ballarini, F.; Barakova, E.; Bologna, G.; Bonomini, P.; Castellanos-Dominguez, G.; et al. Computational Approaches to Explainable Artificial Intelligence: Advances in Theory, Applications and Trends. Inf. Fusion 2023, 100, 101945. [Google Scholar] [CrossRef]
- Chakraborty, P.; Saha, S.; Deco, G.; Banerjee, A.; Roy, D. Structural-and-Dynamical Similarity Predicts Compensatory Brain Areas Driving the Post-Lesion Functional Recovery Mechanism. Cereb. Cortex Commun. 2023, 4, tgad012. [Google Scholar] [CrossRef] [PubMed]
- Makhalova, J.; Medina Villalon, S.; Wang, H.; Giusiano, B.; Woodman, M.; Bénar, C.; Guye, M.; Jirsa, V.; Bartolomei, F. Virtual Epileptic Patient Brain Modeling: Relationships with Seizure Onset and Surgical Outcome. Epilepsia 2022, 63, 1942–1955. [Google Scholar] [CrossRef] [PubMed]
- Olawade, D.B.; Rashad, I.; Egbon, E.; Teke, J.; Ovsepian, S.V.; Boussios, S. Reversing Epigenetic Dysregulation in Neurodegenerative Diseases: Mechanistic and Therapeutic Considerations. Int. J. Mol. Sci. 2025, 26, 4929. [Google Scholar] [CrossRef]
- Wu, J.; Koelzer, V.H. Towards Generative Digital Twins in Biomedical Research. Comput. Struct. Biotechnol. J. 2024, 23, 3481–3488. [Google Scholar] [CrossRef]
- Pant, I.; Patro, L.; Sedlander, E.; Chandrana, S.; Rimal, R. Monitor to Innovate with Feedback Loops: Process Evaluation Protocol for an Anemia Prevention Intervention. Gates Open Res. 2022, 6, 13. [Google Scholar] [CrossRef]
- Roland, P.E. How Far Neuroscience Is from Understanding Brains. Front. Syst. Neurosci. 2023, 17, 1147896. [Google Scholar] [CrossRef]
- Pourhaghighi, R.; Ash, P.E.A.; Phanse, S.; Goebels, F.; Hu, L.Z.M.; Chen, S.; Zhang, Y.; Wierbowski, S.D.; Boudeau, S.; Moutaoufik, M.T.; et al. BraInMap Elucidates the Macromolecular Connectivity Landscape of Mammalian Brain. Cell Syst. 2020, 10, 333–350.e14. [Google Scholar] [CrossRef]
- Fields, C.; Levin, M. Competency in Navigating Arbitrary Spaces as an Invariant for Analyzing Cognition in Diverse Embodiments. Entropy 2022, 24, 819. [Google Scholar] [CrossRef]
- Ahmadian, Y.; Miller, K.D. What Is the Dynamical Regime of Cerebral Cortex? Neuron 2021, 109, 3373–3391. [Google Scholar] [CrossRef]
- Cotsakis, S. Structural Stability and General Relativity. Universe 2025, 11, 209. [Google Scholar] [CrossRef]
- Deco, G.; Sanz Perl, Y.; Kringelbach, M.L. Complex Harmonics Reveal Low-Dimensional Manifolds of Critical Brain Dynamics. Phys. Rev. E 2025, 111, 014410. [Google Scholar] [CrossRef]
- Beshkov, K.; Fyhn, M.; Hafting, T.; Einevoll, G.T. Topological Structure of Population Activity in Mouse Visual Cortex Encodes Densely Sampled Stimulus Rotations. iScience 2024, 27, 109370. [Google Scholar] [CrossRef]
- Tsai, C.-J.; Wang, M.-T. Mean Curvature Flows in Manifolds of Special Holonomy. J. Differ. Geom. 2018, 108, 531–569. [Google Scholar] [CrossRef]
- Otter, N.; Porter, M.A.; Tillmann, U.; Grindrod, P.; Harrington, H.A. A Roadmap for the Computation of Persistent Homology. EPJ Data Sci. 2017, 6, 17. [Google Scholar] [CrossRef]
- Srivastava, P.; Nozari, E.; Kim, J.Z.; Ju, H.; Zhou, D.; Becker, C.; Pasqualetti, F.; Pappas, G.J.; Bassett, D.S. Models of Communication and Control for Brain Networks: Distinctions, Convergence, and Future Outlook. Netw. Neurosci. 2020, 4, 1122–1159. [Google Scholar] [CrossRef]
- Zhao, X.; Kestelyn, X.; Cossart, Q.; Colas, F.; Flynn, D. State Residualisation and Kron Reduction for Model Order Reduction of Energy Systems. Appl. Sci. 2023, 13, 6593. [Google Scholar] [CrossRef]
- Ahmad, M.A.; Baryannis, G.; Hill, R. Defining Complex Adaptive Systems: An Algorithmic Approach. Systems 2024, 12, 45. [Google Scholar] [CrossRef]
- Tang, Y.; Zhu, X.; He, C.; Hu, J.; Fan, J. Critical Slowing down Theory Provides Early Warning Signals for Sandstone Failure. Front. Earth Sci. 2022, 10, 934498. [Google Scholar] [CrossRef]
- Chen, H.; Chatelain, F.C.; Lesage, F. Altered and Dynamic Ion Selectivity of K+ Channels in Cell Development and Excitability. Trends Pharmacol. Sci. 2014, 35, 461–469. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.-P.; Robinson, P.A. Critical Dynamics of Hopf Bifurcations in the Corticothalamic System: Transitions from Normal Arousal States to Epileptic Seizures. Phys. Rev. E 2017, 95, 042410. [Google Scholar] [CrossRef] [PubMed]
- Roldán, J.B.; Cantudo, A.; Torres, J.J.; Maldonado, D.; Shen, Y.; Zheng, W.; Yuan, Y.; Lanza, M. Stochastic Resonance in 2D Materials Based Memristors. npj 2D Mater. Appl. 2024, 8, 7. [Google Scholar] [CrossRef]
- Bhar, B.; Khanna, A.; Parihar, A.; Datta, S.; Raychowdhury, A. Stochastic Resonance in Insulator-Metal-Transition Systems. Sci. Rep. 2020, 10, 5549. [Google Scholar] [CrossRef]
- Joseph, A.; Turrigiano, G.G. All for One But Not One for All: Excitatory Synaptic Scaling and Intrinsic Excitability Are Coregulated by CaMKIV, Whereas Inhibitory Synaptic Scaling Is Under Independent Control. J. Neurosci. Off. J. Soc. Neurosci. 2017, 37, 6778–6785. [Google Scholar] [CrossRef]
- Mahapatra, C.; Shanmugam, K.; Rusho, M.A. Computational Modeling of Sodium-Ion-Channel-Based Glucose Sensing Biophysics to Study Cardiac Pacemaker Action Potential. Math. Comput. Appl. 2024, 29, 84. [Google Scholar] [CrossRef]
- Vay, S.U.; Flitsch, L.J.; Rabenstein, M.; Monière, H.; Jakovcevski, I.; Andjus, P.; Bijelic, D.; Blaschke, S.; Walter, H.L.; Fink, G.R.; et al. The Impact of Hyperpolarization-Activated Cyclic Nucleotide-Gated (HCN) and Voltage-Gated Potassium KCNQ/Kv7 Channels on Primary Microglia Function. J. Neuroinflamm. 2020, 17, 100. [Google Scholar] [CrossRef]
- Deperrois, N.; Graupner, M. Short-Term Depression and Long-Term Plasticity Together Tune Sensitive Range of Synaptic Plasticity. PLoS Comput. Biol. 2020, 16, e1008265. [Google Scholar] [CrossRef]
- Toader, C.; Serban, M.; Covache-Busuioc, R.-A.; Radoi, M.P.; Aljboor, G.S.R.; Costin, H.P.; Corlatescu, A.D.; Glavan, L.-A.; Gorgan, R.M. Cerebellar Cavernoma Resection: Case Report with Long-Term Follow-Up. J. Clin. Med. 2024, 13, 7525. [Google Scholar] [CrossRef]
- Zavalin, K.; Hassan, A.; Fu, C.; Delpire, E.; Lagrange, A.H. Loss of KCC2 in GABAergic Neurons Causes Seizures and an Imbalance of Cortical Interneurons. Front. Mol. Neurosci. 2022, 15, 826427. [Google Scholar] [CrossRef]
- Goenaga, J.; Araque, A.; Kofuji, P.; Herrera Moro Chao, D. Calcium Signaling in Astrocytes and Gliotransmitter Release. Front. Synaptic Neurosci. 2023, 15, 1138577. [Google Scholar] [CrossRef] [PubMed]
- Kambe, Y.; Youkai, M.; Hashiguchi, K.; Sameshima, Y.; Takasaki, I.; Miyata, A.; Kurihara, T. Spinal Astrocyte-Neuron Lactate Shuttle Contributes to the Pituitary Adenylate Cyclase-Activating Polypeptide/PAC1 Receptor-Induced Nociceptive Behaviors in Mice. Biomolecules 2022, 12, 1859. [Google Scholar] [CrossRef] [PubMed]
- Bokulic Panichi, L.; Stanca, S.; Dolciotti, C.; Bongioanni, P. The Role of Oligodendrocytes in Neurodegenerative Diseases: Unwrapping the Layers. Int. J. Mol. Sci. 2025, 26, 4623. [Google Scholar] [CrossRef]
- De Risi, M.; Cavezza, D.; Torromino, G.; Capalbo, A.; Cundin, X.B.; Di Martino, R.; Alvino, F.G.; Iemolo, A.; Speranza, L.; Perrone-Capano, C.; et al. Cortico-Striatal Circuit Mechanisms Drive the Effects of D1 Dopamine Agonists on Memory Capacity in Mice through cAMP/PKA Signalling. Nat. Commun. 2025, 16, 2615. [Google Scholar] [CrossRef]
- Zhang, X.; Tsuboi, D.; Funahashi, Y.; Yamahashi, Y.; Kaibuchi, K.; Nagai, T. Phosphorylation Signals Downstream of Dopamine Receptors in Emotional Behaviors: Association with Preference and Avoidance. Int. J. Mol. Sci. 2022, 23, 11643. [Google Scholar] [CrossRef] [PubMed]
- Kan, R.L.; Chen, J.; Sallam, T. Crosstalk between Epitranscriptomic and Epigenetic Mechanisms in Gene Regulation. Trends Genet. TIG 2022, 38, 182–193. [Google Scholar] [CrossRef]
- Simenas, M.; Gagor, A.; Banys, J.; Maczka, M. Phase Transitions and Dynamics in Mixed Three- and Low-Dimensional Lead Halide Perovskites. Chem. Rev. 2024, 124, 2281–2326. [Google Scholar] [CrossRef]
- Taylor, N.L.; Whyte, C.J.; Munn, B.R.; Chang, C.; Lizier, J.T.; Leopold, D.A.; Turchi, J.N.; Zaborszky, L.; Műller, E.J.; Shine, J.M. Causal Evidence for Cholinergic Stabilization of Attractor Landscape Dynamics. Cell Rep. 2024, 43, 114359. [Google Scholar] [CrossRef]
- Bellot-Saez, A.; Stevenson, R.; Kékesi, O.; Samokhina, E.; Ben-Abu, Y.; Morley, J.W.; Buskila, Y. Neuromodulation of Astrocytic K+ Clearance. Int. J. Mol. Sci. 2021, 22, 2520. [Google Scholar] [CrossRef]
- Otsu, Y.; Couchman, K.; Lyons, D.G.; Collot, M.; Agarwal, A.; Mallet, J.-M.; Pfrieger, F.W.; Bergles, D.E.; Charpak, S. Calcium Dynamics in Astrocyte Processes during Neurovascular Coupling. Nat. Neurosci. 2015, 18, 210–218. [Google Scholar] [CrossRef]
- Șerban, M.; Toader, C.; Covache-Busuioc, R.-A. The Redox Revolution in Brain Medicine: Targeting Oxidative Stress with AI, Multi-Omics and Mitochondrial Therapies for the Precision Eradication of Neurodegeneration. Int. J. Mol. Sci. 2025, 26, 7498. [Google Scholar] [CrossRef]
- Yang, S.M.; Michel, K.; Jokhi, V.; Nedivi, E.; Arlotta, P. Neuron Class-Specific Responses Govern Adaptive Myelin Remodeling in the Neocortex. Science 2020, 370, eabd2109. [Google Scholar] [CrossRef]
- Toader, C.; Serban, M.; Eva, L.; Costea, D.; Covache-Busuioc, R.-A.; Radoi, M.P.; Ciurea, A.V.; Dumitru, A.V. Large Pontine Cavernoma with Hemorrhage: Case Report on Surgical Approach and Recovery. J. Clin. Med. 2025, 14, 2358. [Google Scholar] [CrossRef]
- Costa, F.P.; Wiedenmann, B.; Schöll, E.; Tuszynski, J. Emerging Cancer Therapies: Targeting Physiological Networks and Cellular Bioelectrical Differences with Non-Thermal Systemic Electromagnetic Fields in the Human Body—A Comprehensive Review. Front. Netw. Physiol. 2024, 4, 1483401. [Google Scholar] [CrossRef]
- Toader, C.; Tataru, C.P.; Munteanu, O.; Covache-Busuioc, R.-A.; Serban, M.; Ciurea, A.V.; Enyedi, M. Revolutionizing Neuroimmunology: Unraveling Immune Dynamics and Therapeutic Innovations in CNS Disorders. Int. J. Mol. Sci. 2024, 25, 13614. [Google Scholar] [CrossRef] [PubMed]
- Toader, C.; Brehar, F.-M.; Radoi, M.P.; Serban, M.; Covache-Busuioc, R.-A.; Glavan, L.-A.; Ciurea, A.V.; Dobrin, N. The Microsurgical Resection of an Arteriovenous Malformation in a Patient with Thrombophilia: A Case Report and Literature Review. Diagnostics 2024, 14, 2613. [Google Scholar] [CrossRef] [PubMed]
- Sumadewi, K.T.; Harkitasari, S.; Tjandra, D.C. Biomolecular Mechanisms of Epileptic Seizures and Epilepsy: A Review. Acta Epileptol. 2023, 5, 28. [Google Scholar] [CrossRef] [PubMed]
- Quevedo, K.; Ng, R.; Scott, H.; Kodavaganti, S.; Smyda, G.; Diwadkar, V.; Phillips, M. Ventral Striatum Functional Connectivity during Rewards and Losses and Symptomatology in Depressed Patients. Biol. Psychol. 2017, 123, 62–73. [Google Scholar] [CrossRef]
- Westbrook, A.; Frank, M.J.; Cools, R. A Mosaic of Cost-Benefit Control over Cortico-Striatal Circuitry. Trends Cogn. Sci. 2021, 25, 710–721. [Google Scholar] [CrossRef]
- Șerban, M.; Toader, C.; Covache-Busuioc, R.-A. Anatomy-Guided Microsurgical Resection of a Dominant Frontal Lobe Tumor Without Intraoperative Adjuncts: A Case Report from a Resource-Limited Context. Diagnostics 2025, 15, 2393. [Google Scholar] [CrossRef]
- Bernabéu-Sanz, Á.; Morales, S.; Naranjo, V.; Sempere, Á.P. Contribution of Gray Matter Atrophy and White Matter Damage to Cognitive Impairment in Mildly Disabled Relapsing-Remitting Multiple Sclerosis Patients. Diagnostics 2021, 11, 578. [Google Scholar] [CrossRef]
- Șerban, M.; Toader, C.; Covache-Busuioc, R.-A. Blueprint of Collapse: Precision Biomarkers, Molecular Cascades, and the Engineered Decline of Fast-Progressing ALS. Int. J. Mol. Sci. 2025, 26, 8072. [Google Scholar] [CrossRef] [PubMed]
- Toader, C.; Brehar, F.M.; Radoi, M.P.; Serban, M.; Covache-Busuioc, R.-A.; Aljboor, G.S.; Gorgan, R.M. The Management of a Giant Convexity en Plaque Anaplastic Meningioma with Gerstmann Syndrome: A Case Report of Surgical Outcomes in a 76-Year-Old Male. Diagnostics 2024, 14, 2566. [Google Scholar] [CrossRef] [PubMed]
- Tesco, G.; Lomoio, S. Pathophysiology of Neurodegenerative Diseases: An Interplay among Axonal Transport Failure, Oxidative Stress, and Inflammation? Semin. Immunol. 2022, 59, 101628. [Google Scholar] [CrossRef]
- Müller, P.M.; Miron, G.; Holtkamp, M.; Meisel, C. Critical Dynamics Predicts Cognitive Performance and Provides a Common Framework for Heterogeneous Mechanisms Impacting Cognition. Proc. Natl. Acad. Sci. USA 2025, 122, e2417117122. [Google Scholar] [CrossRef]
- Manolopoulos, A.; Yao, P.J.; Kapogiannis, D. Extracellular Vesicles: Translational Research and Applications in Neurology. Nat. Rev. Neurol. 2025, 21, 265–282. [Google Scholar] [CrossRef]
- Seira Curto, J.; Dominguez Martinez, A.; Perez Collell, G.; Barniol Simon, E.; Romero Ruiz, M.; Franco Bordés, B.; Sotillo Sotillo, P.; Villegas Hernandez, S.; Fernandez, M.R.; Sanchez de Groot, N. Exogenous Prion-like Proteins and Their Potential to Trigger Cognitive Dysfunction. Mol. Syst. Biol. 2025, 21, 1004–1029. [Google Scholar] [CrossRef]
- Kylkilahti, T.M.; Berends, E.; Ramos, M.; Shanbhag, N.C.; Töger, J.; Markenroth Bloch, K.; Lundgaard, I. Achieving Brain Clearance and Preventing Neurodegenerative Diseases—A Glymphatic Perspective. J. Cereb. Blood Flow Metab. 2021, 41, 2137–2149. [Google Scholar] [CrossRef]
- Hosham, H.A.; Aljohani, M.A.; Abou Elela, E.D.; Almuallem, N.A.; Alharthi, T.N. Hidden-like Attractors in a Class of Discontinuous Dynamical Systems. Mathematics 2024, 12, 3784. [Google Scholar] [CrossRef]
- Quan, L.; Uyeda, A.; Muramatsu, R. Central Nervous System Regeneration: The Roles of Glial Cells in the Potential Molecular Mechanism Underlying Remyelination. Inflamm. Regen. 2022, 42, 7. [Google Scholar] [CrossRef] [PubMed]
- Composto, J.W.; Weber, E.U. Effectiveness of Behavioural Interventions to Reduce Household Energy Demand: A Scoping Review. Environ. Res. Lett. 2022, 17, 063005. [Google Scholar] [CrossRef]
- Mazzetto, S. A Review of Urban Digital Twins Integration, Challenges, and Future Directions in Smart City Development. Sustainability 2024, 16, 8337. [Google Scholar] [CrossRef]
- Toader, C.; Brehar, F.M.; Radoi, M.P.; Covache-Busuioc, R.A.; Serban, M.; Ciurea, A.V.; Dobrin, N. Challenging Management of a Rare Complex Cerebral Arteriovenous Malformation in the Corpus Callosum and Post-Central Gyrus: A Case Study of a 41-Year-Old Female. J. Clin. Med. 2024, 13, 7494. [Google Scholar] [CrossRef]
- Yoon, J.H.; Lee, D.; Lee, C.; Cho, E.; Lee, S.; Cazenave-Gassiot, A.; Kim, K.; Chae, S.; Dennis, E.A.; Suh, P.-G. Paradigm Shift Required for Translational Research on the Brain. Exp. Mol. Med. 2024, 56, 1043–1054. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Singh, M.; Braver, T.S.; Ching, S. Dynamical Models Reveal Anatomically Reliable Attractor Landscapes Embedded in Resting-State Brain Networks. Imaging Neurosci. 2025, 3, imag_a_00442. [Google Scholar] [CrossRef]
- Abbott, G.W. KCNQs: Ligand- and Voltage-Gated Potassium Channels. Front. Physiol. 2020, 11, 583. [Google Scholar] [CrossRef]
- Brennan, G.P.; Baram, T.Z.; Poolos, N.P. Hyperpolarization-Activated Cyclic Nucleotide-Gated (HCN) Channels in Epilepsy. Cold Spring Harb. Perspect. Med. 2016, 6, a022384. [Google Scholar] [CrossRef]
- Purkey, A.M.; Dell’Acqua, M.L. Phosphorylation-Dependent Regulation of Ca2+-Permeable AMPA Receptors During Hippocampal Synaptic Plasticity. Front. Synaptic Neurosci. 2020, 12, 8. [Google Scholar] [CrossRef]
- Herrmann, T.; Gerth, M.; Dittmann, R.; Pensold, D.; Ungelenk, M.; Liebmann, L.; Hübner, C.A. Disruption of KCC2 in Parvalbumin-Positive Interneurons Is Associated with a Decreased Seizure Threshold and a Progressive Loss of Parvalbumin-Positive Interneurons. Front. Mol. Neurosci. 2021, 14, 807090. [Google Scholar] [CrossRef]
- Mishchenko, T.A.; Yarkov, R.S.; Saviuk, M.O.; Krivonosov, M.I.; Perenkov, A.D.; Gudkov, S.V.; Vedunova, M.V. Unravelling Contributions of Astrocytic Connexin 43 to the Functional Activity of Brain Neuron–Glial Networks under Hypoxic State In Vitro. Membranes 2022, 12, 948. [Google Scholar] [CrossRef]
- Zhang, L.; Cheng, P.; Chu, Y.; Zhou, Z.; Hua, R.; Zhang, Y. The Microglial Innate Immune Receptor TREM2 Participates in Fear Memory Formation through Excessive Prelimbic Cortical Synaptic Pruning. Front. Immunol. 2024, 15, 1412699. [Google Scholar] [CrossRef] [PubMed]
- Qin, Q.; Wang, M.; Yin, Y.; Tang, Y. The Specific Mechanism of TREM2 Regulation of Synaptic Clearance in Alzheimer’s Disease. Front. Immunol. 2022, 13, 845897. [Google Scholar] [CrossRef] [PubMed]
- Noori, R.; Park, D.; Griffiths, J.D.; Bells, S.; Frankland, P.W.; Mabbott, D.; Lefebvre, J. Activity-Dependent Myelination: A Glial Mechanism of Oscillatory Self-Organization in Large-Scale Brain Networks. Proc. Natl. Acad. Sci. USA 2020, 117, 13227–13237. [Google Scholar] [CrossRef] [PubMed]
- Toth, E.; Rassul, S.M.; Berry, M.; Fulton, D. A Morphological Analysis of Activity-Dependent Myelination and Myelin Injury in Transitional Oligodendrocytes. Sci. Rep. 2021, 11, 9588. [Google Scholar] [CrossRef]
- Slater, C.; Liu, Y.; Weiss, E.; Yu, K.; Wang, Q. The Neuromodulatory Role of the Noradrenergic and Cholinergic Systems and Their Interplay in Cognitive Functions: A Focused Review. Brain Sci. 2022, 12, 890. [Google Scholar] [CrossRef]
- Dai, C.; Qianjiang, H.; Fu, R.; Yang, H.; Shi, A.; Luo, H. Epigenetic and Epitranscriptomic Role of lncRNA in Carcinogenesis (Review). Int. J. Oncol. 2025, 66, 29. [Google Scholar] [CrossRef]
- Cheng, Y.; Song, H.; Ming, G.; Weng, Y.-L. Epigenetic and Epitranscriptomic Regulation of Axon Regeneration. Mol. Psychiatry 2023, 28, 1440–1450. [Google Scholar] [CrossRef]
- Di Lorenzo, R.; Picca, A.; Chimienti, G.; Leeuwenburgh, C.; Pesce, V.; Lezza, A.M.S. Recovery of SIRT3-SOD2 Axis and Mitophagy by Short-Term Calorie Restriction in Old Rat Soleus Skeletal Muscle. Antioxidants 2025, 14, 1125. [Google Scholar] [CrossRef]
- Bugga, P.; Alam, M.J.; Kumar, R.; Pal, S.; Chattopadyay, N.; Banerjee, S.K. Sirt3 Ameliorates Mitochondrial Dysfunction and Oxidative Stress through Regulating Mitochondrial Biogenesis and Dynamics in Cardiomyoblast. Cell. Signal. 2022, 94, 110309. [Google Scholar] [CrossRef]
- Urbach, H.; Duman Kavus, I.E.; Zander, C.; Becker, L.; Kellner, E.; Reisert, M.; El Rahal, A.; Volz, F.; Wolf, K.; Beck, J.; et al. Different Glymphatic Kinetics in Spontaneous Intracranial Hypotension. AJNR Am. J. Neuroradiol. 2024, 45, 1605–1612. [Google Scholar] [CrossRef]
- Șerban, M.; Toader, C.; Covache-Busuioc, R.-A. The Collapse of Brain Clearance: Glymphatic-Venous Failure, Aquaporin-4 Breakdown, and AI-Empowered Precision Neurotherapeutics in Intracranial Hypertension. Int. J. Mol. Sci. 2025, 26, 7223. [Google Scholar] [CrossRef] [PubMed]
- Garain, K.; Sarathi Mandal, P. Stochastic Sensitivity Analysis and Early Warning Signals of Critical Transitions in a Tri-Stable Prey-Predator System with Noise. Chaos 2022, 32, 033115. [Google Scholar] [CrossRef] [PubMed]
- Lorenzi, R.M.; Palesi, F.; Casellato, C.; Gandini Wheeler-Kingshott, C.A.M.; D’Angelo, E. Region-Specific Mean Field Models Enhance Simulations of Local and Global Brain Dynamics. npj Syst. Biol. Appl. 2025, 11, 66. [Google Scholar] [CrossRef] [PubMed]
- McDougal, R.A.; Bulanova, A.S.; Lytton, W.W. Reproducibility in Computational Neuroscience Models and Simulations. IEEE Trans. Biomed. Eng. 2016, 63, 2021–2035. [Google Scholar] [CrossRef]
- Onciul, R.; Tataru, C.-I.; Dumitru, A.V.; Crivoi, C.; Serban, M.; Covache-Busuioc, R.-A.; Radoi, M.P.; Toader, C. Artificial Intelligence and Neuroscience: Transformative Synergies in Brain Research and Clinical Applications. J. Clin. Med. 2025, 14, 550. [Google Scholar] [CrossRef]
- Li, X.; Loscalzo, J.; Mahmud, A.K.M.F.; Aly, D.M.; Rzhetsky, A.; Zitnik, M.; Benson, M. Digital Twins as Global Learning Health and Disease Models for Preventive and Personalized Medicine. Genome Med. 2025, 17, 11. [Google Scholar] [CrossRef]
- Chen, X.; Li, Y. An Overview of Differentiable Particle Filters for Data-Adaptive Sequential Bayesian Inference. Found. Data Sci. 2025, 7, 915–943. [Google Scholar] [CrossRef]
- Ruffini, G.; Castaldo, F.; Vohryzek, J. Structured Dynamics in the Algorithmic Agent. Entropy 2025, 27, 90. [Google Scholar] [CrossRef]
- Barimah, A.K.; Onu, O.P.; Niculita, O.; Cowell, A.; McGlinchey, D. Scalable Data Transformation Models for Physics-Informed Neural Networks (PINNs) in Digital Twin-Enabled Prognostics and Health Management (PHM) Applications. Computers 2025, 14, 121. [Google Scholar] [CrossRef]
- Yang, Q.; Zhang, J.; Zhang, J.; Sun, C.; Xie, S.; Liu, S.; Ji, Y. Graph Transformer Network Incorporating Sparse Representation for Multivariate Time Series Anomaly Detection. Electronics 2024, 13, 2032. [Google Scholar] [CrossRef]
- Wu, J.; Asamoah, B.; Kong, Z.; Ditterich, J. Exploring the Suitability of Piecewise-Linear Dynamical System Models for Cognitive Neural Dynamics. Front. Neurosci. 2025, 19, 1582080. [Google Scholar] [CrossRef] [PubMed]
- Kochunas, B.; Huan, X. Digital Twin Concepts with Uncertainty for Nuclear Power Applications. Energies 2021, 14, 4235. [Google Scholar] [CrossRef]
- Micheli, P.; Ribeiro, R.; Giorgetti, A. A Mechanistic Model of NMDA and AMPA Receptor-Mediated Synaptic Transmission in Individual Hippocampal CA3-CA1 Synapses: A Computational Multiscale Approach. Int. J. Mol. Sci. 2021, 22, 1536. [Google Scholar] [CrossRef] [PubMed]
- Brunner, A.-D.; Thielert, M.; Vasilopoulou, C.; Ammar, C.; Coscia, F.; Mund, A.; Hoerning, O.B.; Bache, N.; Apalategui, A.; Lubeck, M.; et al. Ultra-High Sensitivity Mass Spectrometry Quantifies Single-Cell Proteome Changes upon Perturbation. Mol. Syst. Biol. 2022, 18, e10798. [Google Scholar] [CrossRef]
- Kantaros, A.; Ganetsos, T.; Pallis, E.; Papoutsidakis, M. From Mathematical Modeling and Simulation to Digital Twins: Bridging Theory and Digital Realities in Industry and Emerging Technologies. Appl. Sci. 2025, 15, 9213. [Google Scholar] [CrossRef]
- Yeh, C.-H.; Jones, D.K.; Liang, X.; Descoteaux, M.; Connelly, A. Mapping Structural Connectivity Using Diffusion MRI: Challenges and Opportunities. J. Magn. Reson. Imaging JMRI 2021, 53, 1666–1682. [Google Scholar] [CrossRef]
- Filipoiu, F.-M.; Ion, R.-T.; Filipoiu, Z.-F.; Tulin, A.-D.; Enciu, O.; Enyedi, M. Septum of the Penis—Dissection, Anatomical Description and Functional Relevance. Basic Clin. Androl. 2024, 34, 19. [Google Scholar] [CrossRef]
- Ji-An, L.; Benna, M.K.; Mattar, M.G. Discovering Cognitive Strategies with Tiny Recurrent Neural Networks. Nature 2025, 644, 993–1001. [Google Scholar] [CrossRef]
- Hilal, M.L.; Rosina, E.; Pedini, G.; Restivo, L.; Bagni, C. Dysregulation of the mTOR-FMRP Pathway and Synaptic Plasticity in an Environmental Model of ASD. Mol. Psychiatry 2025, 30, 1937–1951. [Google Scholar] [CrossRef]
- Li, M.-L.; Tang, H.; Shao, Y.; Wang, M.-S.; Xu, H.-B.; Wang, S.; Irwin, D.M.; Adeola, A.C.; Zeng, T.; Chen, L.; et al. Evolution and Transition of Expression Trajectory during Human Brain Development. BMC Evol. Biol. 2020, 20, 72. [Google Scholar] [CrossRef]
- Iliuţă, M.-E.; Moisescu, M.-A.; Pop, E.; Ionita, A.-D.; Caramihai, S.-I.; Mitulescu, T.-C. Digital Twin—A Review of the Evolution from Concept to Technology and Its Analytical Perspectives on Applications in Various Fields. Appl. Sci. 2024, 14, 5454. [Google Scholar] [CrossRef]
- Toader, C.; Munteanu, O.; Radoi, M.P.; Crivoi, C.; Covache-Busuioc, R.-A.; Serban, M.; Ciurea, A.V.; Dobrin, N. AI-Driven Prediction of Glasgow Coma Scale Outcomes in Anterior Communicating Artery Aneurysms. J. Clin. Med. 2025, 14, 2672. [Google Scholar] [CrossRef]
- Onciul, R.; Brehar, F.-M.; Dumitru, A.V.; Crivoi, C.; Covache-Busuioc, R.-A.; Serban, M.; Radoi, P.M.; Toader, C. Predicting Overall Survival in Glioblastoma Patients Using Machine Learning: An Analysis of Treatment Efficacy and Patient Prognosis. Front. Oncol. 2025, 15, 1539845. [Google Scholar] [CrossRef]
- Mienye, I.D.; Swart, T.G. A Comprehensive Review of Deep Learning: Architectures, Recent Advances, and Applications. Information 2024, 15, 755. [Google Scholar] [CrossRef]
- Saratkar, S.Y.; Langote, M.; Kumar, P.; Gote, P.; Weerarathna, I.N.; Mishra, G.V. Digital Twin for Personalized Medicine Development. Front. Digit. Health 2025, 7, 1583466. [Google Scholar] [CrossRef]
- de Manzano, Ö.; Ullén, F. Genetic and Environmental Influences on the Phenotypic Associations between Intelligence, Personality, and Creative Achievement in the Arts and Sciences. Intelligence 2018, 69, 123–133. [Google Scholar] [CrossRef]
- Sandri, E.; Broccolo, A.; Piredda, M. Socio-Demographic, Nutritional, and Lifestyle Factors Influencing Perceived Sleep Quality in Spain, with a Particular Focus on Women and Young People. Nutrients 2025, 17, 1065. [Google Scholar] [CrossRef]
- Pelosi, D.; Cacciagrano, D.; Piangerelli, M. Explainability and Interpretability in Concept and Data Drift: A Systematic Literature Review. Algorithms 2025, 18, 443. [Google Scholar] [CrossRef]
- Sun, L.; Shan, W.; Yang, H.; Liu, R.; Wu, J.; Wang, Q. The Role of Neuroinflammation in Post-Traumatic Epilepsy. Front. Neurol. 2021, 12, 646152. [Google Scholar] [CrossRef]
- Tortora, M.; Pacchiano, F.; Ferraciolli, S.F.; Criscuolo, S.; Gagliardo, C.; Jaber, K.; Angelicchio, M.; Briganti, F.; Caranci, F.; Tortora, F.; et al. Medical Digital Twin: A Review on Technical Principles and Clinical Applications. J. Clin. Med. 2025, 14, 324. [Google Scholar] [CrossRef]
- Pammi, M.; Shah, P.S.; Yang, L.K.; Hagan, J.; Aghaeepour, N.; Neu, J. Digital Twins, Synthetic Patient Data, and In-Silico Trials: Can They Empower Paediatric Clinical Trials? Lancet Digit. Health 2025, 7, 100851. [Google Scholar] [CrossRef] [PubMed]
- Nasim, R.; Nawaz, S.; Nasim, M.T. The Effects of Antipsychotic Drugs and Non-Pharmacological Therapies on Schizophrenia. Targets 2025, 3, 10. [Google Scholar] [CrossRef]
- Șerban, M.; Toader, C.; Covache-Busuioc, R.-A. Ruptured Posterior Inferior Cerebellar Artery Aneurysms: Integrating Microsurgical Expertise, Endovascular Challenges, and AI-Driven Risk Assessment. J. Clin. Med. 2025, 14, 5374. [Google Scholar] [CrossRef] [PubMed]
- Ba, L.; Tangour, F.; El Abbassi, I.; Absi, R. Analysis of Digital Twin Applications in Energy Efficiency: A Systematic Review. Sustainability 2025, 17, 3560. [Google Scholar] [CrossRef]
- Lauer-Schmaltz, M.W.; Cash, P.; Paulin Hansen, J.; Das, N. Human Digital Twins in Rehabilitation: A Case Study on Exoskeleton and Serious-Game-Based Stroke Rehabilitation Using the ETHICA Methodology. IEEE Access 2024, 12, 180968–180991. [Google Scholar] [CrossRef]
- Gkintoni, E.; Halkiopoulos, C. Digital Twin Cognition: AI-Biomarker Integration in Biomimetic Neuropsychology. Biomimetics 2025, 10, 640. [Google Scholar] [CrossRef]
- Cluitmans, M.J.M.; Plank, G.; Heijman, J. Digital Twins for Cardiac Electrophysiology: State of the Art and Future Challenges. Herzschrittmacherther. Elektrophysiol. 2024, 35, 118–123. [Google Scholar] [CrossRef]
- Liu, W.; Wu, M.; Wan, G.; Xu, M. Digital Twin of Space Environment: Development, Challenges, Applications, and Future Outlook. Remote Sens. 2024, 16, 3023. [Google Scholar] [CrossRef]
- Zhu, H.; Sun, F.; Tang, K.; Wu, H.; Feng, J.; Tang, Z. Digital Twin-Enhanced Adaptive Traffic Signal Framework under Limited Synchronization Conditions. Sustainability 2024, 16, 5502. [Google Scholar] [CrossRef]
- Hollunder, B.; Ostrem, J.L.; Sahin, I.A.; Rajamani, N.; Oxenford, S.; Butenko, K.; Neudorfer, C.; Reinhardt, P.; Zvarova, P.; Polosan, M.; et al. Mapping Dysfunctional Circuits in the Frontal Cortex Using Deep Brain Stimulation. Nat. Neurosci. 2024, 27, 573–586. [Google Scholar] [CrossRef]
- Du, J.; Luo, S.; Shi, P. AI-Driven Multimodal Brain-State Decoding for Personalized Closed-Loop TENS: A Comprehensive Review. Brain Sci. 2025, 15, 903. [Google Scholar] [CrossRef] [PubMed]
- Koch, C.P.; Boscain, U.; Calarco, T.; Dirr, G.; Filipp, S.; Glaser, S.J.; Kosloff, R.; Montangero, S.; Schulte-Herbrüggen, T.; Sugny, D.; et al. Quantum Optimal Control in Quantum Technologies. Strategic Report on Current Status, Visions and Goals for Research in Europe. EPJ Quantum Technol. 2022, 9, 19. [Google Scholar] [CrossRef]
- Toader, C.; Serban, M.; Covache-Busuioc, R.-A.; Radoi, M.P.; Aljboor, G.S.R.; Glavan, L.-A.; Corlatescu, A.D.; Ilie, M.-M.; Gorgan, R.M. Navigating the Rare and Dangerous: Successful Clipping of a Superior Cerebellar Artery Aneurysm Against the Odds of Uncontrolled Hypertension. J. Clin. Med. 2024, 13, 7430. [Google Scholar] [CrossRef] [PubMed]
- Moosavi, S.A.; Feldman, J.S.; Truccolo, W. Controllability of Nonlinear Epileptic-Seizure Spreading Dynamics in Large-Scale Subject-Specific Brain Networks. Sci. Rep. 2025, 15, 6467. [Google Scholar] [CrossRef]
- Sun, C.; Zhao, W.; Liu, W.; Han, G.; Chen, Y.; Kong, X. Nonlinear Dynamics and Stability Analysis of Horizontal Vibration for Rolling System with Gyro-Precession and Eccentricity Effects. Alex. Eng. J. 2025, 124, 303–316. [Google Scholar] [CrossRef]
- Montanari, A.N.; Duan, C.; Aguirre, L.A.; Motter, A.E. Functional Observability and Target State Estimation in Large-Scale Networks. Proc. Natl. Acad. Sci. USA 2022, 119, e2113750119. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, C.; Wang, P. Research on Safe Multimodal Detection Method of Pilot Visual Observation Behavior Based on Cognitive State Decoding. Multimodal Technol. Interact. 2025, 9, 103. [Google Scholar] [CrossRef]
- Toader, C.; Serban, M.; Dobrin, N.; Covache-Busuioc, R.-A.; Radoi, M.P.; Ciurea, A.V.; Munteanu, O. Complex Anatomy, Advanced Techniques: Microsurgical Clipping of a Ruptured Hypophyseal Artery Aneurysm. J. Clin. Med. 2025, 14, 2361. [Google Scholar] [CrossRef]
- Hu, W.; Quan, J.; Ma, X.; Salah, M.M.; Shaker, A. Analytical Design of Optimal Model Predictive Control and Its Application in Small-Scale Helicopters. Mathematics 2023, 11, 1845. [Google Scholar] [CrossRef]
- Chen, Z.; Lai, J.; Li, P.; Awad, O.I.; Zhu, Y. Prediction Horizon-Varying Model Predictive Control (MPC) for Autonomous Vehicle Control. Electronics 2024, 13, 1442. [Google Scholar] [CrossRef]
- Li, J.-C.; Miao, C.-F.; Lei, Y.; Liu, A.-L. Physiologically Based Pharmacokinetic Modeling to Predict Lamotrigine Exposure in Special Populations to Facilitate Therapeutic Drug Monitoring and Guide Dosing Regimens. Pharmaceuticals 2025, 18, 637. [Google Scholar] [CrossRef]
- Scott, D.N.; Frank, M.J. Adaptive Control of Synaptic Plasticity Integrates Micro- and Macroscopic Network Function. Neuropsychopharmacology 2023, 48, 121–144. [Google Scholar] [CrossRef]
- Hyatt, P.; Johnson, C.C.; Killpack, M.D. Model Reference Predictive Adaptive Control for Large-Scale Soft Robots. Front. Robot. AI 2020, 7, 558027. [Google Scholar] [CrossRef]
- Glushchenko, A.; Lastochkin, K. Quadrotor Trajectory Tracking Using Model Reference Adaptive Control, Neural Network-Based Parameter Uncertainty Compensator, and Different Plant Parameterizations. Computation 2023, 11, 163. [Google Scholar] [CrossRef]
- Faria, R.d.R.; Capron, B.D.O.; Secchi, A.R.; de Souza, M.B. Where Reinforcement Learning Meets Process Control: Review and Guidelines. Processes 2022, 10, 2311. [Google Scholar] [CrossRef]
- Vani, M.S.; Sudhakar, R.V.; Mahendar, A.; Ledalla, S.; Radha, M.; Sunitha, M. Personalized Health Monitoring Using Explainable AI: Bridging Trust in Predictive Healthcare. Sci. Rep. 2025, 15, 31892. [Google Scholar] [CrossRef]
- Hildt, E. What Is the Role of Explainability in Medical Artificial Intelligence? A Case-Based Approach. Bioengineering 2025, 12, 375. [Google Scholar] [CrossRef]
- Xiao, G.; Cai, Y.; Zhang, Y.; Xie, J.; Wu, L.; Xie, H.; Wu, J.; Dai, Q. Mesoscale Neuronal Granular Trial Variability In Vivo Illustrated by Nonlinear Recurrent Network In Silico. Nat. Commun. 2024, 15, 9894. [Google Scholar] [CrossRef]
- Huang, Q.; Zambrini, J.-C. From Second-Order Differential Geometry to Stochastic Geometric Mechanics. J. Nonlinear Sci. 2023, 33, 67. [Google Scholar] [CrossRef]
- van Bree, S.; Levenstein, D.; Krause, M.R.; Voytek, B.; Gao, R. Processes and Measurements: A Framework for Understanding Neural Oscillations in Field Potentials. Trends Cogn. Sci. 2025, 29, 448–466. [Google Scholar] [CrossRef]
- Dai, W.; Qiao, X.; Fang, Y.; Guo, R.; Bai, P.; Liu, S.; Li, T.; Jiang, Y.; Wei, S.; Na, Z.; et al. Epigenetics-Targeted Drugs: Current Paradigms and Future Challenges. Signal Transduct. Target. Ther. 2024, 9, 332. [Google Scholar] [CrossRef] [PubMed]
- Publik, M.A.; Filipoiu, F.M.; Dumitru, A.V.; Precup, A.; Petrescu, I.-A.; Slavu, I.; Tulin, R.F.; Tulin, A.; Baloiu, A.I.; Cirstoiu, M.M.; et al. An Extensive Study Regarding the Microscopic Anatomy of the Early Fetal Human Optic Nerve. Neurol. Int. 2024, 16, 470–482. [Google Scholar] [CrossRef] [PubMed]
- Ferrero, J.J.; Hassan, A.R.; Yu, Z.; Zhao, Z.; Ma, L.; Wu, C.; Shao, S.; Kawano, T.; Engel, J.; Doyle, W.; et al. Closed-Loop Electrical Stimulation Prevents Focal Epilepsy Progression and Long-Term Memory Impairment. Nat. Neurosci. 2025, 28, 1753–1762. [Google Scholar] [CrossRef] [PubMed]
- Lerman, I.; Bu, Y.; Singh, R.; Silverman, H.A.; Bhardwaj, A.; Mann, A.J.; Widge, A.; Palin, J.; Puleo, C.; Lim, H. Next Generation Bioelectronic Medicine: Making the Case for Non-Invasive Closed-Loop Autonomic Neuromodulation. Bioelectron. Med. 2025, 11, 1. [Google Scholar] [CrossRef]
- Zhang, M.; Frohlich, F. Cell Type-Specific Excitability Probed by Optogenetic Stimulation Depends on the Phase of the Alpha Oscillation. Brain Stimul. 2022, 15, 472–482. [Google Scholar] [CrossRef]
- Calderone, A.; Latella, D.; La Fauci, E.; Puleo, R.; Sergi, A.; De Francesco, M.; Mauro, M.; Foti, A.; Salemi, L.; Calabrò, R.S. Artificial Intelligence-Driven Neuromodulation in Neurodegenerative Disease: Precision in Chaos, Learning in Loss. Biomedicines 2025, 13, 2118. [Google Scholar] [CrossRef]
- Toader, C.; Brehar, F.-M.; Radoi, M.P.; Serban, M.; Covache-Busuioc, R.-A.; Aljboor, G.S.; Gorgan, R.M. Stroke and Pulmonary Thromboembolism Complicating a Kissing Aneurysm in the M1 Segment of the Right MCA. J. Clin. Med. 2025, 14, 564. [Google Scholar] [CrossRef]
- Dohle, E.; Swanson, E.; Jovanovic, L.; Yusuf, S.; Thompson, L.; Horsfall, H.L.; Muirhead, W.; Bashford, L.; Brannigan, J. Toward the Clinical Translation of Implantable Brain–Computer Interfaces for Motor Impairment: Research Trends and Outcome Measures. Adv. Sci. 2025, 12, e01912. [Google Scholar] [CrossRef]
- Ricci, J.-E. Tumor-Induced Metabolic Immunosuppression: Mechanisms and Therapeutic Targets. Cell Rep. 2025, 44, 115206. [Google Scholar] [CrossRef]
- Kumar, R.; Dougherty, C.; Sporn, K.; Khanna, A.; Ravi, P.; Prabhakar, P.; Zaman, N. Intelligence Architectures and Machine Learning Applications in Contemporary Spine Care. Bioengineering 2025, 12, 967. [Google Scholar] [CrossRef]
- Shine, J.M. Neuromodulatory Control of Complex Adaptive Dynamics in the Brain. Interface Focus 2023, 13, 20220079. [Google Scholar] [CrossRef]
- Khan, A.U.; Hoy, C.W.; Anderson, K.L.; Piai, V.; King-Stephens, D.; Laxer, K.D.; Weber, P.; Lin, J.J.; Knight, R.T.; Bentley, J.N. Neural Dynamics of Proactive and Reactive Cognitive Control in Medial and Lateral Prefrontal Cortex. iScience 2025, 28, 113375. [Google Scholar] [CrossRef] [PubMed]
- Balsdon, T.; Philiastides, M.G. Confidence Control for Efficient Behaviour in Dynamic Environments. Nat. Commun. 2024, 15, 9089. [Google Scholar] [CrossRef] [PubMed]
- Seo, M.; Pyeon, S.Y.; Kim, M.S. Molecular Links Between Metabolism and Mental Health: Integrative Pathways from GDF15-Mediated Stress Signaling to Brain Energy Homeostasis. Int. J. Mol. Sci. 2025, 26, 7611. [Google Scholar] [CrossRef] [PubMed]
- Galvan-Perez, D.; Yañez-Badillo, H.; Beltran-Carbajal, F.; Rivas-Cambero, I.; Favela-Contreras, A.; Tapia-Olvera, R. Neural Adaptive Robust Motion-Tracking Control for Robotic Manipulator Systems. Actuators 2022, 11, 255. [Google Scholar] [CrossRef]
- Kang, C.Y.; Been, K.W.; Kang, M.-H.; Choi, M.S.; Kang, R.H.; Hur, J.W.; Hur, J.K. Advances in Therapeutic Applications of CRISPR Genome Editing for Spinal Pain Management. Neurospine 2025, 22, 421–440. [Google Scholar] [CrossRef]
- Șerban, M.; Toader, C.; Covache-Busuioc, R.-A. Precision Neuro-Oncology in Glioblastoma: AI-Guided CRISPR Editing and Real-Time Multi-Omics for Genomic Brain Surgery. Int. J. Mol. Sci. 2025, 26, 7364. [Google Scholar] [CrossRef]
- Bendixen, L.; Jensen, T.I.; Bak, R.O. CRISPR-Cas-Mediated Transcriptional Modulation: The Therapeutic Promises of CRISPRa and CRISPRi. Mol. Ther. 2023, 31, 1920–1937. [Google Scholar] [CrossRef]
- Elnaggar, K.S.; Gamal, O.; Hesham, N.; Ayman, S.; Mohamed, N.; Moataz, A.; Elzayat, E.M.; Hassan, N. A Guide in Synthetic Biology: Designing Genetic Circuits and Their Applications in Stem Cells. SynBio 2025, 3, 11. [Google Scholar] [CrossRef]
- Chen, P.J.; Liu, D.R. Prime Editing for Precise and Highly Versatile Genome Manipulation. Nat. Rev. Genet. 2023, 24, 161–177. [Google Scholar] [CrossRef]
- Policarpi, C.; Dabin, J.; Hackett, J.A. Epigenetic Editing: Dissecting Chromatin Function in Context. BioEssays 2021, 43, 2000316. [Google Scholar] [CrossRef]
- Ilyas, M.; Shah, Q.; Gul, A.; Ibrahim, H.; Fatima, R.; Babar, M.M.; Rajadas, J. Advances in CRISPR-Cas Systems for Epigenetics. Prog. Mol. Biol. Transl. Sci. 2024, 208, 185–209. [Google Scholar] [CrossRef]
- Yano, N.; Fedulov, A.V. Targeted DNA Demethylation: Vectors, Effectors and Perspectives. Biomedicines 2023, 11, 1334. [Google Scholar] [CrossRef]
- Sánchez-Lafuente, C.L.; Kalynchuk, L.E.; Caruncho, H.J.; Ausió, J. The Role of MeCP2 in Regulating Synaptic Plasticity in the Context of Stress and Depression. Cells 2022, 11, 748. [Google Scholar] [CrossRef]
- Lossi, L.; Castagna, C.; Merighi, A. An Overview of the Epigenetic Modifications in the Brain under Normal and Pathological Conditions. Int. J. Mol. Sci. 2024, 25, 3881. [Google Scholar] [CrossRef]
- Peng, H.-R.; Zhang, Y.-K.; Zhou, J.-W. The Structure and Function of Glial Networks: Beyond the Neuronal Connections. Neurosci. Bull. 2022, 39, 531–540. [Google Scholar] [CrossRef]
- Toader, C.; Tataru, C.P.; Munteanu, O.; Serban, M.; Covache-Busuioc, R.-A.; Ciurea, A.V.; Enyedi, M. Decoding Neurodegeneration: A Review of Molecular Mechanisms and Therapeutic Advances in Alzheimer’s, Parkinson’s, and ALS. Int. J. Mol. Sci. 2024, 25, 12613. [Google Scholar] [CrossRef] [PubMed]
- McNeill, J.; Rudyk, C.; Hildebrand, M.E.; Salmaso, N. Ion Channels and Electrophysiological Properties of Astrocytes: Implications for Emergent Stimulation Technologies. Front. Cell. Neurosci. 2021, 15, 644126. [Google Scholar] [CrossRef]
- Li, N.; Deng, M.; Hu, G.; Li, N.; Yuan, H.; Zhou, Y. New Insights into Microglial Mechanisms of Memory Impairment in Alzheimer’s Disease. Biomolecules 2022, 12, 1722. [Google Scholar] [CrossRef]
- Yu, H.; Zhang, L.; Song, B.; Ren, K.; Chen, X.; Dai, Y.; Yang, Y.; Xu, Y.; Wei, Z. TREM2-Mediated Regulation of Microglial Activity: A Promising Target for the Treatment of Ischemic Stroke. J. Transl. Med. 2025, 23, 782. [Google Scholar] [CrossRef] [PubMed]
- Osanai, Y.; Yamazaki, R.; Shinohara, Y.; Ohno, N. Heterogeneity and Regulation of Oligodendrocyte Morphology. Front. Cell Dev. Biol. 2022, 10, 1030486. [Google Scholar] [CrossRef] [PubMed]
- Enger, R.; Heuser, K. Astrocytes as Critical Players of the Fine Balance between Inhibition and Excitation in the Brain: Spreading Depolarization as a Mechanism to Curb Epileptic Activity. Front. Netw. Physiol. 2024, 4, 1360297. [Google Scholar] [CrossRef] [PubMed]
- Hinzman, J.M.; Wilson, J.A.; Mazzeo, A.T.; Bullock, M.R.; Hartings, J.A. Excitotoxicity and Metabolic Crisis Are Associated with Spreading Depolarizations in Severe Traumatic Brain Injury Patients. J. Neurotrauma 2016, 33, 1775–1783. [Google Scholar] [CrossRef] [PubMed]
- Paladines, N.; Dawson, S.; Ryan, W.; Serrano-Lopez, R.; Messer, R.; Huo, Y.; Cutler, C.W.; Ramos-Junior, E.S.; Morandini, A.C. Metabolic Reprogramming through Mitochondrial Biogenesis Drives Adenosine Anti-Inflammatory Effects: New Mechanism Controlling Gingival Fibroblast Hyper-Inflammatory State. Front. Immunol. 2023, 14, 1148216. [Google Scholar] [CrossRef]
- Mallick, R.; Montaser, A.B.; Komi, H.; Juusola, G.; Tirronen, A.; Gurzeler, E.; Barbiera, M.; Korpisalo, P.; Terasaki, T.; Nieminen, T.; et al. VEGF-B Is a Novel Mediator of ER Stress Which Induces Cardiac Angiogenesis via RGD-Binding Integrins Independent of VEGFR1/NRP Activities. Mol. Ther. J. Am. Soc. Gene Ther. 2025, 33, 3242–3256. [Google Scholar] [CrossRef]
- Bolonduro, O.A.; Chen, Z.; Fucetola, C.P.; Lai, Y.-R.; Cote, M.; Kajola, R.O.; Rao, A.A.; Liu, H.; Tzanakakis, E.S.; Timko, B.P. An Integrated Optogenetic and Bioelectronic Platform for Regulating Cardiomyocyte Function. Adv. Sci. 2024, 11, e2402236. [Google Scholar] [CrossRef]
- Zhao, E.M.; Lalwani, M.A.; Chen, J.-M.; Orillac, P.; Toettcher, J.E.; Avalos, J.L. Optogenetic Amplification Circuits for Light-Induced Metabolic Control. ACS Synth. Biol. 2021, 10, 1143–1154. [Google Scholar] [CrossRef]
- Kovalev, M.A.; Mamaeva, N.Y.; Kristovskiy, N.V.; Feskin, P.G.; Vinnikov, R.S.; Oleinikov, P.D.; Sosnovtseva, A.O.; Yakovlev, V.A.; Glukhov, G.S.; Shaytan, A.K. Epigenome Engineering Using dCas Systems for Biomedical Applications and Biotechnology: Current Achievements, Opportunities and Challenges. Int. J. Mol. Sci. 2025, 26, 6371. [Google Scholar] [CrossRef]
- Cai, Y.; Wang, Y.; Hu, S. Synthetic Gene Circuits Enable Sensing in Engineered Living Materials. Biosensors 2025, 15, 556. [Google Scholar] [CrossRef]
- Ross, J.A.; Van Bockstaele, E.J. The Locus Coeruleus- Norepinephrine System in Stress and Arousal: Unraveling Historical, Current, and Future Perspectives. Front. Psychiatry 2021, 11, 601519. [Google Scholar] [CrossRef]
- Song, J.; Yang, P.; Chen, C.; Ding, W.; Tillement, O.; Bai, H.; Zhang, S. Targeting Epigenetic Regulators as a Promising Avenue to Overcome Cancer Therapy Resistance. Signal Transduct. Target. Ther. 2025, 10, 219. [Google Scholar] [CrossRef] [PubMed]
- Badea, T.G.; Dogaru, I.A.; Filipoiu, Z.F.; Mutu, D.E.G.; Filipoiu, F.; Badea, T.G.; Dogaru, I.A.; Filipoiu, Z.F.; Mutu, D.E.G.; Filipoiu, F., Sr. Dissection of the Sympathetic Nerves Around the Mesorectum at the Abdominopelvic Border. Cureus 2024, 16, e69091. [Google Scholar] [CrossRef] [PubMed]
- Chbeir, S.; Carrión, V. Resilience by Design: How Nature, Nurture, Environment, and Microbiome Mitigate Stress and Allostatic Load. World J. Psychiatry 2023, 13, 144–159. [Google Scholar] [CrossRef] [PubMed]
- Barragán-Álvarez, C.P.; Flores-Fernandez, J.M.; Hernández-Pérez, O.R.; Ávila-Gónzalez, D.; Díaz, N.F.; Padilla-Camberos, E.; Dublan-García, O.; Gómez-Oliván, L.M.; Diaz-Martinez, N.E. Recent Advances in the Use of CRISPR/Cas for Understanding the Early Development of Molecular Gaps in Glial Cells. Front. Cell Dev. Biol. 2022, 10, 947769. [Google Scholar] [CrossRef]
- Venkatesh, R.; Cardone, K.M.; Bradford, Y.; Moore, A.K.; Kumar, R.; Moore, J.H.; Shen, L.; Kim, D.; Ritchie, M.D. Integrative Multi-omics Approaches Identify Molecular Pathways and Improve Alzheimer’s Disease Risk Prediction. Alzheimers Dement. 2025, 21, e70886. [Google Scholar] [CrossRef]
- Williamson, S.M.; Prybutok, V. Balancing Privacy and Progress: A Review of Privacy Challenges, Systemic Oversight, and Patient Perceptions in AI-Driven Healthcare. Appl. Sci. 2024, 14, 675. [Google Scholar] [CrossRef]
- Hogan, M.K.; Hamilton, G.F.; Horner, P.J. Neural Stimulation and Molecular Mechanisms of Plasticity and Regeneration: A Review. Front. Cell. Neurosci. 2020, 14, 271. [Google Scholar] [CrossRef]
- Covache-Busuioc, R.-A.; Toader, C.; Rădoi, M.P.; Șerban, M. Precision Recovery After Spinal Cord Injury: Integrating CRISPR Technologies, AI-Driven Therapeutics, Single-Cell Omics, and System Neuroregeneration. Int. J. Mol. Sci. 2025, 26, 6966. [Google Scholar] [CrossRef]
- Baluška, F.; Levin, M. On Having No Head: Cognition throughout Biological Systems. Front. Psychol. 2016, 7, 902. [Google Scholar] [CrossRef]
- Grimaldi, A.; Gruel, A.; Besnainou, C.; Jérémie, J.-N.; Martinet, J.; Perrinet, L.U. Precise Spiking Motifs in Neurobiological and Neuromorphic Data. Brain Sci. 2023, 13, 68. [Google Scholar] [CrossRef]
- Rygvold, T.W.; Hatlestad-Hall, C.; Elvsåshagen, T.; Moberget, T.; Andersson, S. Long-Term Potentiation-Like Visual Synaptic Plasticity Is Negatively Associated with Self-Reported Symptoms of Depression and Stress in Healthy Adults. Front. Hum. Neurosci. 2022, 16, 867675. [Google Scholar] [CrossRef]
- Fujii, S.; Tanaka, H.; Hirano, T. Suppression of AMPA Receptor Exocytosis Contributes to Hippocampal LTD. J. Neurosci. Off. J. Soc. Neurosci. 2018, 38, 5523–5537. [Google Scholar] [CrossRef]
- Toader, C.; Serban, M.; Munteanu, O.; Covache-Busuioc, R.-A.; Enyedi, M.; Ciurea, A.V.; Tataru, C.P. From Synaptic Plasticity to Neurodegeneration: BDNF as a Transformative Target in Medicine. Int. J. Mol. Sci. 2025, 26, 4271. [Google Scholar] [CrossRef]
- Hansel, C.; Yuste, R. Neural Ensembles: Role of Intrinsic Excitability and Its Plasticity. Front. Cell. Neurosci. 2024, 18, 1440588. [Google Scholar] [CrossRef]
- Goikolea-Vives, A.; Stolp, H.B. Connecting the Neurobiology of Developmental Brain Injury: Neuronal Arborisation as a Regulator of Dysfunction and Potential Therapeutic Target. Int. J. Mol. Sci. 2021, 22, 8220. [Google Scholar] [CrossRef]
- Li, J.; Park, E.; Zhong, L.; Chen, L. Homeostatic Synaptic Plasticity as a Metaplasticity Mechanism—A Molecular and Cellular Perspective. Curr. Opin. Neurobiol. 2019, 54, 44–53. [Google Scholar] [CrossRef] [PubMed]
- Anisimova, M.; van Bommel, B.; Wang, R.; Mikhaylova, M.; Wiegert, J.S.; Oertner, T.G.; Gee, C.E. Spike-Timing-Dependent Plasticity Rewards Synchrony Rather than Causality. Cereb. Cortex 2022, 33, 23–34. [Google Scholar] [CrossRef] [PubMed]
- Gradwell, M.A.; Boyle, K.A.; Browne, T.J.; Bell, A.M.; Leonardo, J.; Peralta Reyes, F.S.; Dickie, A.C.; Smith, K.M.; Callister, R.J.; Dayas, C.V.; et al. Diversity of Inhibitory and Excitatory Parvalbumin Interneuron Circuits in the Dorsal Horn. Pain 2022, 163, e432–e452. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, A.-M.; Nothwang, H.G. NKCC1 and KCC2: Structural Insights into Phospho-Regulation. Front. Mol. Neurosci. 2022, 15, 964488. [Google Scholar] [CrossRef]
- Capsoni, S.; Arisi, I.; Malerba, F.; D’Onofrio, M.; Cattaneo, A.; Cherubini, E. Targeting the Cation-Chloride Co-Transporter NKCC1 to Re-Establish GABAergic Inhibition and an Appropriate Excitatory/Inhibitory Balance in Selective Neuronal Circuits: A Novel Approach for the Treatment of Alzheimer’s Disease. Brain Sci. 2022, 12, 783. [Google Scholar] [CrossRef]
- Patrono, E.; Hrůzova, K.; Svoboda, J.; Stuchlík, A. The Role of Optogenetic Stimulations of Parvalbumin-Positive Interneurons in the Prefrontal Cortex and the Ventral Hippocampus on an Acute MK-801 Model of Schizophrenia-like Cognitive Inflexibility. Schizophr. Res. 2023, 252, 198–205. [Google Scholar] [CrossRef]
- Cariani, P.; Baker, J.M. Time Is of the Essence: Neural Codes, Synchronies, Oscillations, Architectures. Front. Comput. Neurosci. 2022, 16, 898829. [Google Scholar] [CrossRef]
- Abubaker, M.; Al Qasem, W.; Pilátová, K.; Ježdík, P.; Kvašňák, E. Theta-Gamma-Coupling as Predictor of Working Memory Performance in Young and Elderly Healthy People. Mol. Brain 2024, 17, 74. [Google Scholar] [CrossRef]
- Toader, C.; Dumitru, A.V.; Eva, L.; Serban, M.; Covache-Busuioc, R.-A.; Ciurea, A.V. Nanoparticle Strategies for Treating CNS Disorders: A Comprehensive Review of Drug Delivery and Theranostic Applications. Int. J. Mol. Sci. 2024, 25, 13302. [Google Scholar] [CrossRef]
- Pallares Di Nunzio, M.; Montani, F. Spike Timing-Dependent Plasticity with Enhanced Long-Term Depression Leads to an Increase of Statistical Complexity. Entropy 2022, 24, 1384. [Google Scholar] [CrossRef]
- Sorrentino, P.; Ambrosanio, M.; Rucco, R.; Cabral, J.; Gollo, L.L.; Breakspear, M.; Baselice, F. Detection of Cross-Frequency Coupling Between Brain Areas: An Extension of Phase Linearity Measurement. Front. Neurosci. 2022, 16, 846623. [Google Scholar] [CrossRef]
- Akin, M.; Onderdonk, A.; Guo, Y. Effects of Local Network Topology on the Functional Reconstruction of Spiking Neural Network Models. Appl. Netw. Sci. 2017, 2, 22. [Google Scholar] [CrossRef]
- Bamburg, J.R.; Minamide, L.S.; Wiggan, O.; Tahtamouni, L.H.; Kuhn, T.B. Cofilin and Actin Dynamics: Multiple Modes of Regulation and Their Impacts in Neuronal Development and Degeneration. Cells 2021, 10, 2726. [Google Scholar] [CrossRef]
- Chmiel, J.; Malinowska, A. The Influence of Circadian Rhythms on Transcranial Direct Current Stimulation (tDCS) Effects: Theoretical and Practical Considerations. Cells 2025, 14, 1152. [Google Scholar] [CrossRef]
- Khanjanianpak, M.; Azimi-Tafreshi, N.; Valizadeh, A. Emergence of Complex Oscillatory Dynamics in the Neuronal Networks with Long Activity Time of Inhibitory Synapses. iScience 2024, 27, 109401. [Google Scholar] [CrossRef] [PubMed]
- Navi, F.F.T.; Heysieattalab, S.; Raoufy, M.R.; Sabaghypour, S.; Nazari, M.; Nazari, M.A. Adaptive Closed-Loop Modulation of Cortical Theta Oscillations: Insights into the Neural Dynamics of Navigational Decision-Making. Brain Stimul. Basic Transl. Clin. Res. Neuromodulation 2024, 17, 1101–1118. [Google Scholar] [CrossRef]
- Gu, H.; Lee, J.; Kim, S.; Lim, J.; Lee, H.-J.; Lee, H.; Choe, M.J.; Yoo, D.-G.; Joshua Ryu, J.H.; Lim, S.; et al. Attractor Dynamics of Working Memory Explain a Concurrent Evolution of Stimulus-Specific and Decision-Consistent Biases in Visual Estimation. Neuron 2025, 113, 3476–3490. [Google Scholar] [CrossRef] [PubMed]
- Baloiu, A.I.; Filipoiu, F.; Toader, C.; Covache-Busuioc, R.-A.; Munteanu, O.; Serban, M. Sphenoid Sinus Hyperpneumatization: Anatomical Variants, Molecular Blueprints, and AI-Augmented Roadmaps for Skull Base Surgery. Front. Endocrinol. 2025, 16, 1634206. [Google Scholar] [CrossRef] [PubMed]
- Nayak, M.; Das, D.; Pradhan, J.; Ahmed, R.G.; Laureano-Melo, R.; Dandapat, J. Epigenetic Signature in Neural Plasticity: The Journey so Far and Journey Ahead. Heliyon 2022, 8, e12292. [Google Scholar] [CrossRef]
- Wang, S.; Falcone, R.; Richmond, B.; Averbeck, B.B. Attractor Dynamics Reflect Decision Confidence in Macaque Prefrontal Cortex. Nat. Neurosci. 2023, 26, 1970–1980. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, S.; Jacobi, A.A.; Jeng, G.; Ulrich, J.D.; Stein, I.S.; Patriarchi, T.; Hell, J.W. Rapid Sequential Clustering of NMDARs, CaMKII, and AMPARs upon Activation of NMDARs at Developing Synapses. Front. Synaptic Neurosci. 2024, 16, 1291262. [Google Scholar] [CrossRef]
- Kriener, B.; Hu, H.; Vervaeke, K. Parvalbumin Interneuron Dendrites Enhance Gamma Oscillations. Cell Rep. 2022, 39, 110948. [Google Scholar] [CrossRef]
- Bogaj, K.; Kaplon, R.; Urban-Ciecko, J. GABAAR-Mediated Tonic Inhibition Differentially Modulates Intrinsic Excitability of VIP- and SST- Expressing Interneurons in Layers 2/3 of the Somatosensory Cortex. Front. Cell. Neurosci. 2023, 17, 1270219. [Google Scholar] [CrossRef]
- Tamura, M.; Spellman, T.J.; Rosen, A.M.; Gogos, J.A.; Gordon, J.A. Hippocampal-Prefrontal Theta-Gamma Coupling during Performance of a Spatial Working Memory Task. Nat. Commun. 2017, 8, 2182. [Google Scholar] [CrossRef]
- Tedeschi, A.; Dupraz, S.; Curcio, M.; Laskowski, C.J.; Schaffran, B.; Flynn, K.C.; Santos, T.E.; Stern, S.; Hilton, B.J.; Larson, M.J.E.; et al. ADF/Cofilin-Mediated Actin Turnover Promotes Axon Regeneration in the Adult CNS. Neuron 2019, 103, 1073–1085.e6. [Google Scholar] [CrossRef]
- Kutsarova, E.; Schohl, A.; Munz, M.; Wang, A.; Zhang, Y.Y.; Bilash, O.M.; Ruthazer, E.S. BDNF Signaling in Correlation-Dependent Structural Plasticity in the Developing Visual System. PLoS Biol. 2023, 21, e3002070. [Google Scholar] [CrossRef]
- Toader, C.; Serban, M.; Covache-Busuioc, R.-A.; Radoi, M.P.; Ciurea, A.V.; Dobrin, N. Comprehensive Management of a Giant Left Frontal AVM Coexisting with a Bilobed PComA Aneurysm: A Case Report Highlighting Multidisciplinary Strategies and Advanced Neurosurgical Techniques. J. Clin. Med. 2025, 14, 1232. [Google Scholar] [CrossRef] [PubMed]
- Mulhern, M. Cognitive Rehabilitation Interventions for Post-Stroke Populations. Del. J. Public Health 2023, 9, 70–74. [Google Scholar] [CrossRef] [PubMed]
- Di Palma, R.; Falco, L.; Coccia, A.; Amitrano, F.; Pagano, G.; D’Addio, G. Frontiers in Neuro-Rehabilitation: Neural Basis of Cognitive Contributions to Movement across Neurological Populations. Front. Neurol. 2025, 16, 1638254. [Google Scholar] [CrossRef] [PubMed]
- Chmiel, J.; Nadobnik, J.; Smerdel, S.; Niedzielska, M. Neural Correlates of Huntington’s Disease Based on Electroencephalography (EEG): A Mechanistic Review and Discussion of Excitation and Inhibition (E/I) Imbalance. J. Clin. Med. 2025, 14, 5010. [Google Scholar] [CrossRef]
- Melchiorre, M.; Salamina, L.; Scimmi, L.S.; Mauro, S.; Pastorelli, S. Experiments on the Artificial Potential Field with Local Attractors for Mobile Robot Navigation. Robotics 2023, 12, 81. [Google Scholar] [CrossRef]
- Su, J.; Song, Y.; Zhu, Z.; Huang, X.; Fan, J.; Qiao, J.; Mao, F. Cell–Cell Communication: New Insights and Clinical Implications. Signal Transduct. Target. Ther. 2024, 9, 196. [Google Scholar] [CrossRef]
- Baud, M.O.; Kleen, J.K.; Mirro, E.A.; Andrechak, J.C.; King-Stephens, D.; Chang, E.F.; Rao, V.R. Multi-Day Rhythms Modulate Seizure Risk in Epilepsy. Nat. Commun. 2018, 9, 88. [Google Scholar] [CrossRef]
- Boddeti, U.; Farooque, P.; McGrath, H.; Percy, J.; Chishti, O.; Duckrow, R.B.; Spencer, D.; Zaveri, H.P.; Ksendzovsky, A. Identifying the Epileptic Network by Linking Interictal Functional and Structural Connectivity. Sci. Rep. 2025, 15, 9106. [Google Scholar] [CrossRef]
- Adibi, S.; Rajabifard, A.; Shojaei, D.; Wickramasinghe, N. Enhancing Healthcare through Sensor-Enabled Digital Twins in Smart Environments: A Comprehensive Analysis. Sensors 2024, 24, 2793. [Google Scholar] [CrossRef]
- Li, B.; Rietmeijer, R.A.; Brohawn, S.G. Structural Basis for pH Gating of the Two-Pore Domain K+ Channel TASK2. Nature 2020, 586, 457–462. [Google Scholar] [CrossRef]
- Wang, H.E.; Dollomaja, B.; Triebkorn, P.; Duma, G.M.; Williamson, A.; Makhalova, J.; Lemarechal, J.-D.; Bartolomei, F.; Jirsa, V. Virtual Brain Twins for Stimulation in Epilepsy. Nat. Comput. Sci. 2025, 5, 754–768. [Google Scholar] [CrossRef] [PubMed]
- Saikia, B.; S, R.; Debbarma, J.; Maharana, J.; Sastry, G.N.; Chikkaputtaiah, C. CRISPR/Cas9-Based Genome Editing and Functional Analysis of SlHyPRP1 and SlDEA1 Genes of Solanum lycopersicum L. in Imparting Genetic Tolerance to Multiple Stress Factors. Front. Plant Sci. 2024, 15, 1304381. [Google Scholar] [CrossRef] [PubMed]
- Ghizdovat, V.; Molcalut, M.; Nedeff, F.; Nedeff, V.; Mirila, D.C.; Panainte-Lehăduș, M.; Rusu, D.-I.; Agop, M.; Vasincu, D. Dynamics of Complex Systems and Their Associated Attractors in a Multifractal Paradigm of Motion. Fractal Fract. 2025, 9, 623. [Google Scholar] [CrossRef]
- Binns, T.S.; Köhler, R.M.; Vanhoecke, J.; Chikermane, M.; Gerster, M.; Merk, T.; Pellegrini, F.; Busch, J.L.; Habets, J.G.V.; Cavallo, A.; et al. Shared Pathway-Specific Network Mechanisms of Dopamine and Deep Brain Stimulation for the Treatment of Parkinson’s Disease. Nat. Commun. 2025, 16, 3587. [Google Scholar] [CrossRef]
- Feldmann, L.K.; Lofredi, R.; Neumann, W.-J.; Al-Fatly, B.; Roediger, J.; Bahners, B.H.; Nikolov, P.; Denison, T.; Saryyeva, A.; Krauss, J.K.; et al. Toward Therapeutic Electrophysiology: Beta-Band Suppression as a Biomarker in Chronic Local Field Potential Recordings. Npj Park. Dis. 2022, 8, 44. [Google Scholar] [CrossRef]
- Cellina, M.; Cè, M.; Alì, M.; Irmici, G.; Ibba, S.; Caloro, E.; Fazzini, D.; Oliva, G.; Papa, S. Digital Twins: The New Frontier for Personalized Medicine? Appl. Sci. 2023, 13, 7940. [Google Scholar] [CrossRef]
- Kunoh, S.; Nakashima, H.; Nakashima, K. Epigenetic Regulation of Neural Stem Cells in Developmental and Adult Stages. Epigenomes 2024, 8, 22. [Google Scholar] [CrossRef]


| Domain | Core Mechanisms | Dysregulation | Therapeutic/Engineering Opportunities | References |
|---|---|---|---|---|
| Synaptic plasticity | NMDA-Ca2+ signaling drives LTP/LTD (CaMKII/PKC/PKA → AMPAR insertion/removal). Local dendritic translation (mTOR). Retrograde endocannabinoids tune presynaptic release. Intrinsic excitability plasticity via ion-channel regulation. | Weak LTP/LTD → shallow adaptive basins, unstable memory attractors. Excess potentiation → deep pathological basins (epilepsy). Faulty trafficking/translation → faster decline. | Optogenetic STDP. Chemogenetic steering of cAMP/PKA or mTOR. Activity-gated TFs for plasticity genes. Metaplasticity tuning (CREB, chromatin). | [88,236] |
| Excitation–inhibition balance | PV+ interneurons synchronize gamma states. SST+ gates dendrites. VIP+ enables disinhibition. KCC2/NKCC1 set GABA polarity. ACh/NE/5-HT shift inhibitory tone and basin depth. | Too much excitation → hypersynchrony, seizure basins. Too much inhibition → fragmented trajectories, low flexibility. KCC2 loss → GABA becomes depolarizing. | PV-optogenetic suppression of hypersynchrony. VIP-disinhibition to exit rigid mood basins. KCC2/NKCC1 pharmacology. Closed-loop E/I tuning. | [237,238] |
| Oscillatory dynamics | Gamma supports binding/WM. Theta supports HPC-PFC coordination. Cross-frequency coupling gates plasticity. Phase controls STDP direction. | Beta trapping in PD. Loss of theta–gamma coupling → unstable memory states. Low coherence → reduced repertoire. | Phase-locked closed-loop stimulation. tACS entrainment. Sub-cycle optogenetic phase control. Cross-frequency restoration. | [223,239] |
| Structural plasticity | Spine turnover (actin; Rac1/Cdc42/cofilin). Axonal sprouting/synaptogenesis (BDNF, semaphorins). Perineuronal nets set adult limits. Activity-dependent myelination (FGF/ErbB/Notch) tunes timing and eigenmodes. | Low spine turnover (aging/AD). Rigid ECM blocks rewiring. Demyelination disrupts synchrony. | Perineuronal-net digestion to reopen windows. Molecular biasing of synaptogenesis. Closed-loop stimulation/rehab to stabilize new paths. OPC activation + training for remyelination. | [240,241] |
| Engineered attractors | Joint tuning of synapses, E/I, rhythms, topology. Higher dimensionality → flexibility. Deeper selected basins → stable attention/memory/mood. | Fewer attractors → limited recovery. Shallow basins → fragile dynamics. Rigid landscapes → poor rehab. | Strengthen recurrent loops post-stroke. HPC-PFC rewiring for new memory strategies. Rhythm/neuromodulator shaping for stabilization or enhancement. Digital twin-guided multiscale design. | [242,243,244,245] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Tataru, C.P.; Dumitru, A.V.; Dobrin, N.; Rădoi, M.P.; Ciurea, A.V.; Munteanu, O.; Munteanu, L.V. Designing Neural Dynamics: From Digital Twin Modeling to Regeneration. Int. J. Mol. Sci. 2026, 27, 122. https://doi.org/10.3390/ijms27010122
Tataru CP, Dumitru AV, Dobrin N, Rădoi MP, Ciurea AV, Munteanu O, Munteanu LV. Designing Neural Dynamics: From Digital Twin Modeling to Regeneration. International Journal of Molecular Sciences. 2026; 27(1):122. https://doi.org/10.3390/ijms27010122
Chicago/Turabian StyleTataru, Calin Petru, Adrian Vasile Dumitru, Nicolaie Dobrin, Mugurel Petrinel Rădoi, Alexandru Vlad Ciurea, Octavian Munteanu, and Luciana Valentina Munteanu. 2026. "Designing Neural Dynamics: From Digital Twin Modeling to Regeneration" International Journal of Molecular Sciences 27, no. 1: 122. https://doi.org/10.3390/ijms27010122
APA StyleTataru, C. P., Dumitru, A. V., Dobrin, N., Rădoi, M. P., Ciurea, A. V., Munteanu, O., & Munteanu, L. V. (2026). Designing Neural Dynamics: From Digital Twin Modeling to Regeneration. International Journal of Molecular Sciences, 27(1), 122. https://doi.org/10.3390/ijms27010122
