Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (213)

Search Parameters:
Keywords = multi-modal traffic

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 1832 KiB  
Review
Breaking the Traffic Code: How MaaS Is Shaping Sustainable Mobility Ecosystems
by Tanweer Alam
Future Transp. 2025, 5(3), 94; https://doi.org/10.3390/futuretransp5030094 (registering DOI) - 1 Aug 2025
Abstract
Urban areas are facing increasing traffic congestion, pollution, and infrastructure strain. Traditional urban transportation systems are often fragmented. They require users to plan, pay, and travel across multiple disconnected services. Mobility-as-a-Service (MaaS) integrates these services into a single digital platform, simplifying access and [...] Read more.
Urban areas are facing increasing traffic congestion, pollution, and infrastructure strain. Traditional urban transportation systems are often fragmented. They require users to plan, pay, and travel across multiple disconnected services. Mobility-as-a-Service (MaaS) integrates these services into a single digital platform, simplifying access and improving the user experience. This review critically examines the role of MaaS in fostering sustainable mobility ecosystems. MaaS aims to enhance user-friendliness, service variety, and sustainability by adopting a customer-centric approach to transportation. The findings reveal that successful MaaS systems consistently align with multimodal transport infrastructure, equitable access policies, and strong public-private partnerships. MaaS enhances the management of routes and traffic, effectively mitigating delays and congestion while concurrently reducing energy consumption and fuel usage. In this study, the authors examine MaaS as a new mobility paradigm for a sustainable transportation system in smart cities, observing the challenges and opportunities associated with its implementation. To assess the environmental impact, a sustainability index is calculated based on the use of different modes of transportation. Significant findings indicate that MaaS systems are proliferating in both quantity and complexity, increasingly integrating capabilities such as real-time multimodal planning, dynamic pricing, and personalized user profiles. Full article
Show Figures

Figure 1

27 pages, 7810 KiB  
Article
Mutation Interval-Based Segment-Level SRDet: Side Road Detection Based on Crowdsourced Trajectory Data
by Ying Luo, Fengwei Jiao, Longgang Xiang, Xin Chen and Meng Wang
ISPRS Int. J. Geo-Inf. 2025, 14(8), 299; https://doi.org/10.3390/ijgi14080299 (registering DOI) - 31 Jul 2025
Viewed by 37
Abstract
Accurate side road detection is essential for traffic management, urban planning, and vehicle navigation. However, existing research mainly focuses on road network construction, lane extraction, and intersection identification, while fine-grained side road detection remains underexplored. Therefore, this study proposes a road segment-level side [...] Read more.
Accurate side road detection is essential for traffic management, urban planning, and vehicle navigation. However, existing research mainly focuses on road network construction, lane extraction, and intersection identification, while fine-grained side road detection remains underexplored. Therefore, this study proposes a road segment-level side road detection method based on crowdsourced trajectory data: First, considering the geometric and dynamic characteristics of trajectories, SRDet introduces a trajectory lane-change pattern recognition method based on mutation intervals to distinguish the heterogeneity of lane-change behaviors between main and side roads. Secondly, combining geometric features with spatial statistical theory, SRDet constructs multimodal features for trajectories and road segments, and proposes a potential side road segment classification model based on random forests to achieve precise detection of side road segments. Finally, based on mutation intervals and potential side road segments, SRDet utilizes density peak clustering to identify main and side road access points, completing the fitting of side roads. Experiments were conducted using 2021 Beijing trajectory data. The results show that SRDet achieves precision and recall rates of 84.6% and 86.8%, respectively. This demonstrates the superior performance of SRDet in side road detection across different areas, providing support for the precise updating of urban road navigation information. Full article
Show Figures

Figure 1

5 pages, 1355 KiB  
Proceeding Paper
Development of Detection and Prediction Response Technology for Black Ice Using Multi-Modal Imaging
by Seong-In Kang and Yoo-Seong Shin
Eng. Proc. 2025, 102(1), 8; https://doi.org/10.3390/engproc2025102008 - 29 Jul 2025
Viewed by 119
Abstract
As traffic accidents caused by black ice during the winter continue to occur, there is a growing need for technologies that enable drivers to recognize and respond to black ice in advance. In particular, to reduce major accidents and associated casualties, it is [...] Read more.
As traffic accidents caused by black ice during the winter continue to occur, there is a growing need for technologies that enable drivers to recognize and respond to black ice in advance. In particular, to reduce major accidents and associated casualties, it is essential to provide timely information and prevent incidents through accurate prediction. This paper proposes an artificial intelligence (AI) technology capable of detecting and predicting black ice using multimodal data. The study aims to enable a preemptive response in the field of digital disaster safety and discusses the applicability and effectiveness of the proposed approach in real-world road environments. Full article
Show Figures

Figure 1

18 pages, 500 KiB  
Article
Hybrid Model-Based Traffic Network Control Using Population Games
by Sindy Paola Amaya, Pablo Andrés Ñañez, David Alejandro Martínez Vásquez, Juan Manuel Calderón Chávez and Armando Mateus Rojas
Appl. Syst. Innov. 2025, 8(4), 102; https://doi.org/10.3390/asi8040102 - 25 Jul 2025
Viewed by 183
Abstract
Modern traffic management requires sophisticated approaches to address the complexities of urban road networks, which continue to grow in complexity due to increasing urbanization and vehicle usage. Traditional methods often fall short in mitigating congestion and optimizing traffic flow, inducing the exploration of [...] Read more.
Modern traffic management requires sophisticated approaches to address the complexities of urban road networks, which continue to grow in complexity due to increasing urbanization and vehicle usage. Traditional methods often fall short in mitigating congestion and optimizing traffic flow, inducing the exploration of innovative traffic control strategies based on advanced theoretical frameworks. In this sense, we explore different game theory-based control strategies in an eight-intersection traffic network modeled by means of hybrid systems and graph theory, using a software simulator that combines the multi-modal traffic simulation software VISSIM and MATLAB to integrate traffic network parameters and population game criteria. Across five distinct network scenarios with varying saturation conditions, we explore a fixed-time scheme of signaling by means of fictitious play dynamics and adaptive schemes, using dynamics such as Smith, replicator, Logit and Brown–Von Neumann–Nash (BNN). Results show better performance for Smith and replicator dynamics in terms of traffic parameters both for fixed and variable signaling times, with an interesting outcome of fictitious play over BNN and Logit. Full article
Show Figures

Figure 1

21 pages, 730 KiB  
Article
A Multimodal Artificial Intelligence Framework for Intelligent Geospatial Data Validation and Correction
by Lars Skaug and Mehrdad Nojoumian
Inventions 2025, 10(4), 59; https://doi.org/10.3390/inventions10040059 - 22 Jul 2025
Viewed by 246
Abstract
Accurate geospatial data are essential for intelligent transportation systems and automated reporting applications, as location precision directly impacts safety analysis and decision-making. GPS devices are now routinely employed by law enforcement officers when filing vehicle crash reports, yet our investigation reveals that significant [...] Read more.
Accurate geospatial data are essential for intelligent transportation systems and automated reporting applications, as location precision directly impacts safety analysis and decision-making. GPS devices are now routinely employed by law enforcement officers when filing vehicle crash reports, yet our investigation reveals that significant data quality issues persist. The high apparent precision of GPS coordinates belies their actual accuracy as we find that approximately 20% of crash sites need correction—results consistent with existing research. To address this challenge, we present a novel credibility scoring and correction algorithm that leverages a state-of-the-art multimodal large language model (LLM) capable of integrated visual and textual reasoning. Our framework synthesizes information from structured coordinates, crash diagrams, and narrative text, employing advanced artificial intelligence techniques for comprehensive geospatial validation. In addition to the LLM, our system incorporates open geospatial data from Overture Maps, an emerging collaborative mapping initiative, to enhance the spatial accuracy and robustness of the validation process. This solution was developed as part of research leading to a patent for autonomous vehicle routing systems that require high-precision crash location data. Applied to a dataset of 5000 crash reports, our approach systematically identifies records with location discrepancies requiring correction. By uniting the latest developments in multimodal AI and open geospatial data, our solution establishes a foundation for intelligent data validation in electronic reporting systems, with broad implications for automated infrastructure management and autonomous vehicle applications. Full article
Show Figures

Figure 1

18 pages, 7391 KiB  
Article
Reliable QoE Prediction in IMVCAs Using an LMM-Based Agent
by Michael Sidorov, Tamir Berger, Jonathan Sterenson, Raz Birman and Ofer Hadar
Sensors 2025, 25(14), 4450; https://doi.org/10.3390/s25144450 - 17 Jul 2025
Viewed by 266
Abstract
Face-to-face interaction is one of the most natural forms of human communication. Unsurprisingly, Video Conferencing (VC) Applications have experienced a significant rise in demand over the past decade. With the widespread availability of cellular devices equipped with high-resolution cameras, Instant Messaging Video Call [...] Read more.
Face-to-face interaction is one of the most natural forms of human communication. Unsurprisingly, Video Conferencing (VC) Applications have experienced a significant rise in demand over the past decade. With the widespread availability of cellular devices equipped with high-resolution cameras, Instant Messaging Video Call Applications (IMVCAs) now constitute a substantial portion of VC communications. Given the multitude of IMVCA options, maintaining a high Quality of Experience (QoE) is critical. While content providers can measure QoE directly through end-to-end connections, Internet Service Providers (ISPs) must infer QoE indirectly from network traffic—a non-trivial task, especially when most traffic is encrypted. In this paper, we analyze a large dataset collected from WhatsApp IMVCA, comprising over 25,000 s of VC sessions. We apply four Machine Learning (ML) algorithms and a Large Multimodal Model (LMM)-based agent, achieving mean errors of 4.61%, 5.36%, and 13.24% for three popular QoE metrics: BRISQUE, PIQE, and FPS, respectively. Full article
Show Figures

Figure 1

30 pages, 4491 KiB  
Article
IoT-Enabled Adaptive Traffic Management: A Multiagent Framework for Urban Mobility Optimisation
by Ibrahim Mutambik
Sensors 2025, 25(13), 4126; https://doi.org/10.3390/s25134126 - 2 Jul 2025
Cited by 2 | Viewed by 611
Abstract
This study evaluates the potential of IoT-enabled adaptive traffic management systems for mitigating urban congestion, enhancing mobility, and reducing environmental impacts in densely populated cities. Using London as a case study, the research develops a multiagent simulation framework to assess the effectiveness of [...] Read more.
This study evaluates the potential of IoT-enabled adaptive traffic management systems for mitigating urban congestion, enhancing mobility, and reducing environmental impacts in densely populated cities. Using London as a case study, the research develops a multiagent simulation framework to assess the effectiveness of advanced traffic management strategies—including adaptive signal control and dynamic rerouting—under varied traffic scenarios. Unlike conventional models that rely on static or reactive approaches, this framework integrates real-time data from IoT-enabled sensors with predictive analytics to enable proactive adjustments to traffic flows. Distinctively, the study couples this integration with a multiagent simulation environment that models the traffic actors—private vehicles, buses, cyclists, and emergency services—as autonomous, behaviourally dynamic agents responding to real-time conditions. This enables a more nuanced, realistic, and scalable evaluation of urban mobility strategies. The simulation results indicate substantial performance gains, including a 30% reduction in average travel times, a 50% decrease in congestion at major intersections, and a 28% decline in CO2 emissions. These findings underscore the transformative potential of sensor-driven adaptive systems for advancing sustainable urban mobility. The study addresses critical gaps in the existing literature by focusing on scalability, equity, and multimodal inclusivity, particularly through the prioritisation of high-occupancy and essential traffic. Furthermore, it highlights the pivotal role of IoT sensor networks in real-time traffic monitoring, control, and optimisation. By demonstrating a novel and practical application of sensor technologies to traffic systems, the proposed framework makes a significant and timely contribution to the field and offers actionable insights for smart city planning and transportation policy. Full article
(This article belongs to the Special Issue Vehicular Sensing for Improved Urban Mobility: 2nd Edition)
Show Figures

Figure 1

22 pages, 7580 KiB  
Article
Fuzzy-Based Multi-Modal Query-Forwarding in Mini-Datacenters
by Sami J. Habib and Paulvanna Nayaki Marimuthu
Computers 2025, 14(7), 261; https://doi.org/10.3390/computers14070261 - 1 Jul 2025
Viewed by 302
Abstract
The rapid growth of Internet of Things (IoT) enabled devices in industrial environments and the associated increase in data generation are paving the way for the development of localized, distributed datacenters. In this paper, we have proposed a novel mini-datacenter in the form [...] Read more.
The rapid growth of Internet of Things (IoT) enabled devices in industrial environments and the associated increase in data generation are paving the way for the development of localized, distributed datacenters. In this paper, we have proposed a novel mini-datacenter in the form of wireless sensor networks to efficiently handle query-based data collection from Industrial IoT (IIoT) devices. The mini-datacenter comprises a command center, gateways, and IoT sensors, designed to manage stochastic query-response traffic flow. We have developed a duplication/aggregation query flow model, tailored to emphasize reliable transmission. We have developed a dataflow management framework that employs a multi-modal query forwarding approach to forward queries from the command center to gateways under varying environments. The query forwarding includes coarse-grain and fine-grain strategies, where the coarse-grain strategy uses a direct data flow using a single gateway at the expense of reliability, while the fine-grain approach uses redundant gateways to enhance reliability. A fuzzy-logic-based intelligence system is integrated into the framework to dynamically select the appropriate granularity of the forwarding strategy based on the resource availability and network conditions, aided by a buffer watching algorithm that tracks real-time buffer status. We carried out several experiments with gateway nodes varying from 10 to 100 to evaluate the framework’s scalability and robustness in handling the query flow under complex environments. The experimental results demonstrate that the framework provides a flexible and adaptive solution that balances buffer usage while maintaining over 95% reliability in most queries. Full article
(This article belongs to the Section Internet of Things (IoT) and Industrial IoT)
Show Figures

Figure 1

35 pages, 1399 KiB  
Systematic Review
Congestion Forecasting Using Machine Learning Techniques: A Systematic Review
by Mehdi Attioui and Mohamed Lahby
Future Transp. 2025, 5(3), 76; https://doi.org/10.3390/futuretransp5030076 - 1 Jul 2025
Viewed by 1080
Abstract
Traffic congestion constitutes a substantial global issue, adversely impacting economic productivity and quality of life, with associated costs estimated at approximately 2% of GDP in various nations. This systematic review investigates the application of machine learning (ML) in traffic congestion forecasting from 2010 [...] Read more.
Traffic congestion constitutes a substantial global issue, adversely impacting economic productivity and quality of life, with associated costs estimated at approximately 2% of GDP in various nations. This systematic review investigates the application of machine learning (ML) in traffic congestion forecasting from 2010 to 2024, adhering to the PRISMA 2020 guidelines. A comprehensive search of three major databases (IEEE Xplore, SpringerLink, and ScienceDirect) yielded 9695 initial records, with 115 studies meeting the inclusion criteria following rigorous screening. Data extraction encompassed methodological approaches, ML techniques, traffic characteristics, and forecasting periods, with quality assessment achieving near-perfect inter-rater reliability (Cohen’s κ = 0.89). Deep Neural Networks were the predominant technical approach (47%), with supervised learning being the most prevalent (57%). Classification tasks were the most common (42%), primarily addressing recurrent congestion scenarios (76%) and passenger vehicles (90%). The quality of publications was notably high, with 85% appearing in Q1-ranked journals, demonstrating exponential growth from minimal activity in 2010 to 18 studies in 2022. Significant research gaps persist: reinforcement learning is underutilized (8%), rural road networks are underrepresented (2%), and industry–academia collaboration is limited (3%). Future research should prioritize multimodal transportation systems, real-time adaptation mechanisms, and enhanced practical implementation to advance intelligent transportation systems (ITSs). This review was not registered because it focused on mapping the research landscape rather than intervention effects. Full article
Show Figures

Figure 1

21 pages, 15478 KiB  
Review
Small Object Detection in Traffic Scenes for Mobile Robots: Challenges, Strategies, and Future Directions
by Zhe Wei, Yurong Zou, Haibo Xu and Sen Wang
Electronics 2025, 14(13), 2614; https://doi.org/10.3390/electronics14132614 - 28 Jun 2025
Viewed by 504
Abstract
Small object detection in traffic scenes presents unique challenges for mobile robots operating under constrained computational resources and highly dynamic environments. Unlike general object detection, small targets often suffer from low resolution, weak semantic cues, and frequent occlusion, especially in complex outdoor scenarios. [...] Read more.
Small object detection in traffic scenes presents unique challenges for mobile robots operating under constrained computational resources and highly dynamic environments. Unlike general object detection, small targets often suffer from low resolution, weak semantic cues, and frequent occlusion, especially in complex outdoor scenarios. This study systematically analyses the challenges, technical advances, and deployment strategies for small object detection tailored to mobile robotic platforms. We categorise existing approaches into three main strategies: feature enhancement (e.g., multi-scale fusion, attention mechanisms), network architecture optimisation (e.g., lightweight backbones, anchor-free heads), and data-driven techniques (e.g., augmentation, simulation, transfer learning). Furthermore, we examine deployment techniques on embedded devices such as Jetson Nano and Raspberry Pi, and we highlight multi-modal sensor fusion using Light Detection and Ranging (LiDAR), cameras, and Inertial Measurement Units (IMUs) for enhanced environmental perception. A comparative study of public datasets and evaluation metrics is provided to identify current limitations in real-world benchmarking. Finally, we discuss future directions, including robust detection under extreme conditions and human-in-the-loop incremental learning frameworks. This research aims to offer a comprehensive technical reference for researchers and practitioners developing small object detection systems for real-world robotic applications. Full article
(This article belongs to the Special Issue New Trends in Computer Vision and Image Processing)
Show Figures

Figure 1

24 pages, 4468 KiB  
Article
Cross-Modal Behavioral Intelligence in Regard to a Ship Bridge: A Rough Set-Driven Framework with Enhanced Spatiotemporal Perception and Object Semantics
by Chen Chen, Yuenan Wei, Feng Ma and Zhongcheng Shu
Appl. Sci. 2025, 15(13), 7220; https://doi.org/10.3390/app15137220 - 26 Jun 2025
Viewed by 245
Abstract
Aberrant or non-standard operations by ship drivers are a leading cause of water traffic accidents, making the development of real-time and reliable behavior detection systems critically important. However, the environment within a ship’s bridge is significantly more complex than typical scenarios, such as [...] Read more.
Aberrant or non-standard operations by ship drivers are a leading cause of water traffic accidents, making the development of real-time and reliable behavior detection systems critically important. However, the environment within a ship’s bridge is significantly more complex than typical scenarios, such as vehicle driving or general security monitoring, which results in poor performance when applying generic algorithms. In such settings, both the accuracy and efficiency of existing methods are notably limited. To address these challenges, this paper proposes a cross-modal behavioral intelligence framework designed specifically for a ship’s bridge, integrating multi-target tracking, behavior recognition, and feature object association. The framework employs ByteTrack, a high-performance multi-object tracker that maintains stable tracking even when subject to occlusions or motion blur through its novel association mechanism, using both high and low confidence detection boxes, for multi-driver tracking. Combined with an improved Temporal Shift Module (TSM) algorithm for behavior recognition, which effectively resolves issues concerning target association and action ambiguity in complex environments, the proposed framework achieves a Top-1 accuracy of 82.1%, based on the SCA dataset. Furthermore, the method incorporates a multi-modal decision optimization strategy, based on spatiotemporal correlation rules, leveraging YOLOv7-e6 for simultaneous personnel and small object detection, and introduces the Accuracy of Focused Anomaly Recognition (AFAR) metric to enhance the anomaly detection performance. This approach improves the anomaly detection rate, up to 81.37%, with an overall accuracy of 80.66%, significantly outperforming single-modality solutions. Full article
Show Figures

Figure 1

26 pages, 3424 KiB  
Article
MFF: A Multimodal Feature Fusion Approach for Encrypted Traffic Classification
by Hong Huang, Yinghang Zhou, Feng Jiang, Xiaolin Zhou and Qingping Jiang
Electronics 2025, 14(13), 2584; https://doi.org/10.3390/electronics14132584 - 26 Jun 2025
Viewed by 343
Abstract
With the widespread adoption of encryption technologies, encrypted traffic classification has become essential for maintaining network security awareness and optimizing service quality. However, existing deep learning-based methods often rely on fixed-length truncation during preprocessing, which can lead to the loss of critical information [...] Read more.
With the widespread adoption of encryption technologies, encrypted traffic classification has become essential for maintaining network security awareness and optimizing service quality. However, existing deep learning-based methods often rely on fixed-length truncation during preprocessing, which can lead to the loss of critical information and degraded classification performance. To address this issue, we propose a Multi-Feature Fusion (MFF) model that learns robust representations of encrypted traffic through a dual-path feature extraction architecture. The temporal modeling branch incorporates a Squeeze-and-Excitation (SE) attention mechanism into ResNet18 to dynamically emphasize salient temporal patterns. Meanwhile, the global statistical feature branch uses an autoencoder for the nonlinear dimensionality reduction and semantic reconstruction of 52-dimensional statistical features, effectively preserving high-level semantic information of traffic interactions. MFF integrates both feature types to achieve feature enhancement and construct a more robust representation, thereby improving classification accuracy and generalization. In addition, SHAP-based interpretability analysis further validates the model’s decision-making process and reliability. Experimental results show that MFF achieves classification accuracies of 99.61% and 99.99% on the ISCX VPN-nonVPN and USTC-TFC datasets, respectively, outperforming mainstream baselines. Full article
(This article belongs to the Section Networks)
Show Figures

Figure 1

15 pages, 26611 KiB  
Article
Unveiling Multistability in Urban Traffic Through Percolation Theory and Network Analysis
by Rui Chen, Jiazhen Liu, Yong Li and Yuming Lin
Entropy 2025, 27(7), 668; https://doi.org/10.3390/e27070668 - 22 Jun 2025
Viewed by 315
Abstract
Traffic congestion poses a persistent challenge for modern cities, yet the complex behavior of urban road networks—particularly multistability in traffic flow—remains poorly understood. To address this gap, we analyzed a high-resolution traffic dataset from four Chinese cities over 20 working days (5-min intervals), [...] Read more.
Traffic congestion poses a persistent challenge for modern cities, yet the complex behavior of urban road networks—particularly multistability in traffic flow—remains poorly understood. To address this gap, we analyzed a high-resolution traffic dataset from four Chinese cities over 20 working days (5-min intervals), applying percolation theory to characterize system performance via congestion rate (f) and the size of the largest functional cluster (G). Our analysis revealed clear bimodal and multimodal distributions of G versus f across different periods, ruling out random failure models and confirming the presence of multistability. Leveraging data-driven clustering and classification techniques, we demonstrated that road segments with high betweenness centrality are disproportionately likely to become congested, and that the top 1% most topologically important roads accurately predict both stable state types and the joint behavior of G and f. These findings offer the first large-scale empirical evidence of multistability in urban traffic, laying a quantitative foundation for forecasting phase transitions in congestion and informing more effective traffic management strategies. Full article
(This article belongs to the Special Issue Statistical Physics Approaches for Modeling Human Social Systems)
Show Figures

Figure 1

37 pages, 7361 KiB  
Review
Evolution and Knowledge Structure of Wearable Technologies for Vulnerable Road User Safety: A CiteSpace-Based Bibliometric Analysis (2000–2025)
by Gang Ren, Zhihuang Huang, Tianyang Huang, Gang Wang and Jee Hang Lee
Appl. Sci. 2025, 15(12), 6945; https://doi.org/10.3390/app15126945 - 19 Jun 2025
Viewed by 507
Abstract
This study presents a systematic bibliometric review of wearable technologies aimed at vulnerable road user (VRU) safety, covering publications from 2000 to 2025. Guided by PRISMA procedures and a PICo-based search strategy, 58 records were extracted and analyzed in CiteSpace, yielding visualizations of [...] Read more.
This study presents a systematic bibliometric review of wearable technologies aimed at vulnerable road user (VRU) safety, covering publications from 2000 to 2025. Guided by PRISMA procedures and a PICo-based search strategy, 58 records were extracted and analyzed in CiteSpace, yielding visualizations of collaboration networks, publication trajectories, and intellectual structures. The results indicate a clear evolution from single-purpose, stand-alone devices to integrated ecosystem solutions that address the needs of diverse VRU groups. Six dominant knowledge clusters emerged—street-crossing assistance, obstacle avoidance, human–computer interaction, cyclist safety, blind navigation, and smart glasses. Comparative analysis across pedestrians, cyclists and motorcyclists, and persons with disabilities shows three parallel transitions: single- to multisensory interfaces, reactive to predictive systems, and isolated devices to V2X-enabled ecosystems. Contemporary research emphasizes context-adaptive interfaces, seamless V2X integration, and user-centered design, and future work should focus on lightweight communication protocols, adaptive sensory algorithms, and personalized safety profiles. The review provides a consolidated knowledge map to inform researchers, practitioners, and policy-makers striving for inclusive and proactive road safety solutions. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

18 pages, 6877 KiB  
Article
Machine Learning-Enhanced 3D GIS Urban Noise Mapping with Multi-Modal Factors
by Jianping Pan, Yuzhe He, Wei Ma, Shengwang An, Lu Li, Dan Huang and Dunxin Jia
ISPRS Int. J. Geo-Inf. 2025, 14(6), 223; https://doi.org/10.3390/ijgi14060223 - 4 Jun 2025
Viewed by 820
Abstract
Geographic Information System (GIS)-based noise management is crucial in urban environments as it provides precise spatial analysis, helping to identify noise hotspots and optimize noise control measures. By integrating noise propagation models with GIS technology, dynamic simulation and visualization of noise distribution can [...] Read more.
Geographic Information System (GIS)-based noise management is crucial in urban environments as it provides precise spatial analysis, helping to identify noise hotspots and optimize noise control measures. By integrating noise propagation models with GIS technology, dynamic simulation and visualization of noise distribution can be achieved, offering scientific support for urban planning and noise management. Most existing noise prediction models fail to fully account for three-dimensional (3D) spatial information and a wide range of environmental factors. As a result, there are often discrepancies between the actual noise measurements at monitoring points and the predicted values generated by these models. Furthermore, there is a lack of a system that can effectively integrate noise data with three-dimensional scenes for simulation. This paper proposes a new method to simulate urban noise propagation, aiming to achieve more accurate noise prediction and visualization in a three-dimensional environment. First, we computed the preliminary noise propagation based on a traffic noise model. Next, machine learning techniques were applied to analyze the relationship between noise discrepancies and multi-modal factors, thereby improving the accuracy of environmental noise level estimation. Based on this, we developed an urban noise simulation system. The system integrates functions such as noise simulation, traffic simulation, and weather changes, enabling accurate noise visualization within a three-dimensional virtual environment. Experimental results demonstrate that this method enhances the accuracy of urban noise prediction and visualization, providing users with a more comprehensive understanding of the spatial distribution of urban noise. Full article
Show Figures

Figure 1

Back to TopTop