Machine Learning-Enhanced 3D GIS Urban Noise Mapping with Multi-Modal Factors
Abstract
:1. Introduction
- We propose a multi-source data fusion approach for noise prediction, integrating topography, vegetation, road network data, and utilizing machine learning optimization techniques to improve prediction accuracy.
- We present a technical solution for simulating noise propagation in the complex environment of mountainous cities, combining noise propagation models with machine learning techniques, and developing an urban noise simulation system integrated with 3D scenes, providing scientific support and visualization for urban noise management and decision-making.
2. Related Work
3. Materials and Methods
3.1. Overview
3.2. Pre-Noise Map Construction by Traffic Noise Propagation Model
3.3. Multi-Modal Factors-Driven Noise Optimization
3.3.1. Feature Selection
3.3.2. Ridge Regression Analysis
3.4. Construction of Noise Simulation System
4. Results
4.1. Study Area
4.2. Data Collection
4.3. Traffic Noise Propagation Model Noise Estimation
4.4. Noise Optimization
4.5. Noise Propagation Simulation
5. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gilani, T.A.; Mir, M.S. A study on the assessment of traffic noise induced annoyance and awareness levels about the potential health effects among residents living around a noise-sensitive area. Environ. Sci. Pollut. Res. Int. 2021, 28, 63045–63064. [Google Scholar] [CrossRef] [PubMed]
- Zare Sakhvidi, F.; Zare Sakhvidi, M.J.; Mehrparvar, A.H.; Dzhambov, A.M. Environmental Noise Exposure and Neurodevelopmental and Mental Health Problems in Children: A Systematic Review. Curr. Environ. Health Rep. 2018, 5, 365–374. [Google Scholar] [CrossRef] [PubMed]
- Khomenko, S.; Cirach, M.; Barrera-Gomez, J.; Pereira-Barboza, E.; Iungman, T.; Mueller, N.; Foraster, M.; Tonne, C.; Thondoo, M.; Jephcote, C.; et al. Impact of road traffic noise on annoyance and preventable mortality in European cities: A health impact assessment. Environ. Int. 2022, 162, 107160. [Google Scholar] [CrossRef] [PubMed]
- Hume, K.I.; Brink, M.; Basner, M. Effects of environmental noise on sleep. Noise Health 2012, 14, 297–302. [Google Scholar] [CrossRef]
- Smith, M.G.; Cordoza, M.; Basner, M. Environmental Noise and Effects on Sleep: An Update to the WHO Systematic Review and Meta-Analysis. Environ. Health Perspect. 2022, 130, 76001. [Google Scholar] [CrossRef]
- Babisch, W.; Pershagen, G.; Selander, J.; Houthuijs, D.; Breugelmans, O.; Cadum, E.; Vigna-Taglianti, F.; Katsouyanni, K.; Haralabidis, A.S.; Dimakopoulou, K.; et al. Noise annoyance--a modifier of the association between noise level and cardiovascular health? Sci. Total Environ. 2013, 452–453, 50–57. [Google Scholar] [CrossRef]
- Vienneau, D.; Saucy, A.; Schaffer, B.; Fluckiger, B.; Tangermann, L.; Stafoggia, M.; Wunderli, J.M.; Roosli, M.; SNC Study Group. Transportation noise exposure and cardiovascular mortality: 15-years of follow-up in a nationwide prospective cohort in Switzerland. Environ. Int. 2022, 158, 106974. [Google Scholar] [CrossRef]
- Davri, A.I.; Petropoulos, G.P.; Detsikas, S.E.; Kalogeropoulos, K.; Faka, A. Spatial distribution of noise levels in the Historic Centre of Athens in Greece using geoinformation technologies. In Geographical Information Science; Elsevier: Amsterdam, The Netherlands, 2024; pp. 429–454. [Google Scholar]
- Tsatsaris, A.; Kalogeropoulos, K.; Stathopoulos, N.; Louka, P.; Tsanakas, K.; Tsesmelis, D.E.; Krassanakis, V.; Petropoulos, G.P.; Pappas, V.; Chalkias, C. Geoinformation Technologies in Support of Environmental Hazards Monitoring under Climate Change: An Extensive Review. ISPRS Int. J. Geo-Inf. 2021, 10, 94. [Google Scholar] [CrossRef]
- Petropoulos, G.P.; Kalivas, D.P.; Georgopoulou, I.A.; Srivastava, P.K. Urban vegetation cover extraction from hyperspectral imagery and geographic information system spatial analysis techniques: Case of Athens, Greece. J. Appl. Remote Sens. 2015, 9, 096088. [Google Scholar] [CrossRef]
- Farcaş, F.; Sivertunb, Å. Road Traffic Noise: GIS Tools for Noise Mapping and a Case Study for Skåne Region. In Proceedings of the ISPRS Workshop on Quality, Scale and Analysis Aspects of City Models, Lund, Sweden, 3–4 December 2009. [Google Scholar]
- Debnath, A.; Singh, P.K. Environmental traffic noise modelling of Dhanbad township area—A mathematical based approach. Appl. Acoust. 2018, 129, 161–172. [Google Scholar] [CrossRef]
- Kumar, V.; Ahirwar, A.V.; Prasad, A.D. Monitoring and mapping noise levels of university campus in central part of India. J. Air Pollut. Health 2023, 8, 1–12. [Google Scholar] [CrossRef]
- Almansi, K.Y.; Ujang, U.; Azri, S.; Wickramathilaka, N. Traffic noise prediction model using GIS and ensemble machine learning: A case study at Universiti Teknologi Malaysia (UTM) Campus. Environ. Sci. Pollut. Res. Int. 2024, 31, 60905–60926. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Compendium of WHO and Other UN Guidance on Health and Environment; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- Chen, L.; Tang, B.; Liu, T.; Xiang, H.; Sheng, Q.; Gong, H. Modeling traffic noise in a mountainous city using artificial neural networks and gradient correction. Transp. Res. Part D Transp. Environ. 2020, 78, 102196. [Google Scholar] [CrossRef]
- Xie, D.; Liu, Y.; Chen, J. Mapping urban environmental noise: A land use regression method. Environ. Sci. Technol. 2011, 45, 7358–7364. [Google Scholar] [CrossRef]
- Ibili, F.; Adanu, E.K.; Adams, C.A.; Andam-Akorful, S.A.; Turay, S.S.; Ajayi, S.A. Traffic noise models and noise guidelines: A review. Noise Vib. Worldw. 2021, 53, 65–79. [Google Scholar] [CrossRef]
- Umar, I.K.; Nourani, V.; Gökçekuş, H.; Abba, S.I. An intelligent hybridized computing technique for the prediction of roadway traffic noise in urban environment. Soft Comput. 2023, 27, 10807–10825. [Google Scholar] [CrossRef]
- Umar, I.K.; Gökçekuş, H.; Nourani, V. An intelligent soft computing technique for prediction of vehicular traffic noise. Arab. J. Geosci. 2022, 15, 1571. [Google Scholar] [CrossRef]
- AlKheder, S.; Almutairi, R. Roadway traffic noise modelling in the hot hyper-arid Arabian Gulf region using adaptive neuro-fuzzy interference system. Transp. Res. Part D Transp. Environ. 2021, 97, 102917. [Google Scholar] [CrossRef]
- Nourani, V.; Gokcekus, H.; Umar, I.K. Artificial intelligence based ensemble model for prediction of vehicular traffic noise. Environ. Res. 2020, 180, 108852. [Google Scholar] [CrossRef]
- Navarro, J.M.; Pita, A. Machine Learning Prediction of the Long-Term Environmental Acoustic Pattern of a City Location Using Short-Term Sound Pressure Level Measurements. Appl. Sci. 2023, 13, 1613. [Google Scholar] [CrossRef]
- Alam, P.; Ahmad, K.; Khan, A.H.; Khan, N.A.; Dehghani, M.H. 2D and 3D mapping of traffic induced noise near major roads passing through densely populated residential area of South Delhi, India. PLoS ONE 2021, 16, e0248939. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Li, T.; Xie, P.; Du, S.; Teng, F.; Yang, X. Urban big data fusion based on deep learning: An overview. Inf. Fusion 2020, 53, 123–133. [Google Scholar] [CrossRef]
- De Kluijver, H.; Stoter, J. Noise mapping and GIS: Optimising quality and efficiency of noise effect studies. Comput. Environ. Urban Syst. 2003, 27, 85–102. [Google Scholar] [CrossRef]
- Reijnen, R.; Foppen, R.; Veenbaas, G. Disturbance by traffic of breeding birds: Evaluation of the effect and considerations in planning and managing road corridors. Biodivers. Conserv. 1997, 6, 567–581. [Google Scholar] [CrossRef]
- Shim, E.; Kim, D.; Woo, H.; Cho, Y. Designing a Sustainable Noise Mapping System Based on Citizen Scientists Smartphone Sensor Data. PLoS ONE 2016, 11, e0161835. [Google Scholar] [CrossRef]
- Steele, C. A critical review of some traffic noise prediction models. Appl. Acoust. 2001, 62, 271–287. [Google Scholar] [CrossRef]
- Givargis, S.; Mahmoodi, M. Converting the UK calculation of road traffic noise (CORTN) to a model capable of calculating LAeq,1h for the Tehran’s roads. Appl. Acoust. 2008, 69, 1108–1113. [Google Scholar] [CrossRef]
- Garg, N.; Maji, S. A critical review of principal traffic noise models: Strategies and implications. Environ. Impact Assess. Rev. 2014, 46, 68–81. [Google Scholar] [CrossRef]
- Yamamoto, K. Road traffic noise prediction model “ASJ RTN-Model 2008”: Report of the Research Committee on Road Traffic Noise. Acoust. Sci. Technol. 2010, 31, 2–55. [Google Scholar] [CrossRef]
- Kephalopoulos, S.; Paviotti, M.; Anfosso-Ledee, F.; Van Maercke, D.; Shilton, S.; Jones, N. Advances in the development of common noise assessment methods in Europe: The CNOSSOS-EU framework for strategic environmental noise mapping. Sci. Total Environ. 2014, 482–483, 400–410. [Google Scholar] [CrossRef]
- Dutilleux, G.; Defrance, J.; Ecotière, D.; Gauvreau, B.; Bérengier, M.; Besnard, F.; Duc, E.L. NMPB-Routes-2008: The Revision of the French Method for Road Traffic Noise Prediction. Acta Acust. United Acust. 2010, 96, 452–462. [Google Scholar] [CrossRef]
- HJ 2.4-2009; Technical Guidelines for Noise Impact Assessment. State Environmental Protection Administration of China: Beijing, China, 2009.
- Zhu, L.; Li, X.; Jiang, C.; Liu, L.; Wu, R.; Wang, W.; Zhang, B. Rapid Modeling Method for Road Traffic Noise Sources: A case study in Beijing. Noise Mapp. 2015, 2, 31–39. [Google Scholar] [CrossRef]
- Kumar, P.; Nigam, S.P.; Kumar, N. Vehicular traffic noise modeling using artificial neural network approach. Transp. Res. Part C Emerg. Technol. 2014, 40, 111–122. [Google Scholar] [CrossRef]
- Bravo-Moncayo, L.; Lucio Naranjo, J.; Pavón García, I.; Mosquera, R. Neural based contingent valuation of road traffic noise. Transp. Res. Part D Transp. Environ. 2017, 50, 26–39. [Google Scholar] [CrossRef]
- Hamad, K.; Ali Khalil, M.; Shanableh, A. Modeling roadway traffic noise in a hot climate using artificial neural networks. Transp. Res. Part D Transp. Environ. 2017, 53, 161–177. [Google Scholar] [CrossRef]
- Liu, Y.; Oiamo, T.; Rainham, D.; Chen, H.; Hatzopoulou, M.; Brook, J.R.; Davies, H.; Goudreau, S.; Smargiassi, A. Integrating random forests and propagation models for high-resolution noise mapping. Environ. Res. 2021, 195, 110905. [Google Scholar] [CrossRef]
- Sieber, C.; Ragettli, M.S.; Brink, M.; Toyib, O.; Baatjies, R.; Saucy, A.; Probst-Hensch, N.; Dalvie, M.A.; Roosli, M. Land Use Regression Modeling of Outdoor Noise Exposure in Informal Settlements in Western Cape, South Africa. Int. J. Environ. Res. Public Health 2017, 14, 1262. [Google Scholar] [CrossRef]
- Chang, T.Y.; Liang, C.H.; Wu, C.F.; Chang, L.T. Application of land-use regression models to estimate sound pressure levels and frequency components of road traffic noise in Taichung, Taiwan. Environ. Int. 2019, 131, 104959. [Google Scholar] [CrossRef]
- Xu, X.; Ge, Y.; Wang, W.; Lei, X.; Kan, H.; Cai, J. Application of land use regression to map environmental noise in Shanghai, China. Environ. Int. 2022, 161, 107111. [Google Scholar] [CrossRef]
- Staab, J.; Stark, T.; Wurm, M.; Wolf, K.; Dallavalle, M.; Schady, A.; Lakes, T.; Taubenböck, H. Using CNNs on Sentinel-2 data for road traffic noise modelling. In Proceedings of the 2023 Joint Urban Remote Sensing Event (JURSE), Heraklion, Greece, 17–19 May 2023; pp. 1–4. [Google Scholar]
- Tiwari, S.K.; Kumaraswamidhas, L.A.; Gautam, C.; Garg, N. An auto-encoder based LSTM model for prediction of ambient noise levels. Appl. Acoust. 2022, 195, 108849. [Google Scholar] [CrossRef]
- Li, B.; Tao, S.; Dawson, R.W.; Cao, J.; Lam, K. A GIS based road traffic noise prediction model. Appl. Acoust. 2002, 63, 679–691. [Google Scholar] [CrossRef]
- Reed, S.E.; Boggs, J.L.; Mann, J.P. A GIS tool for modeling anthropogenic noise propagation in natural ecosystems. Environ. Model. Softw. 2012, 37, 1–5. [Google Scholar] [CrossRef]
- Gulliver, J.; Morley, D.; Vienneau, D.; Fabbri, F.; Bell, M.; Goodman, P.; Beevers, S.; Dajnak, D.; Kelly, F.J.; Fecht, D. Development of an open-source road traffic noise model for exposure assessment. Environ. Model. Softw. 2015, 74, 183–193. [Google Scholar] [CrossRef]
- Bocher, E.; Guillaume, G.; Picaut, J.; Petit, G.; Fortin, N. NoiseModelling: An Open Source GIS Based Tool to Produce Environmental Noise Maps. ISPRS Int. J. Geo-Inf. 2019, 8, 130. [Google Scholar] [CrossRef]
- Le Bescond, V.; Can, A.; Aumond, P.; Gastineau, P. Open-source modeling chain for the dynamic assessment of road traffic noise exposure. Transp. Res. Part D Transp. Environ. 2021, 94, 102793. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, X.; Boano, C.A. Intelligent Noise Mapping for Smart Cities: Solutions, Trends, and Research Opportunities. IEEE Commun. Mag. 2024, 62, 18–25. [Google Scholar] [CrossRef]
- Ascari, E.; Cerchiai, M.; Gorrasi, P.; Longo, A.; Mencagli, G.; Miccoli, F.; Zappatore, M. OUTFIT: Crowdsourced Data Feeding Noise Maps in Digital Twins. In Proceedings of the 4th Workshop on Flexible Resource and Application Management on the Edge, Pisa, Italy, 3–7 June 2024; pp. 39–46. [Google Scholar]
- Barczak, A.; Woźniak, H. Comparative Study on Game Engines. Stud. Inform. 2020, 1, 5–24. [Google Scholar] [CrossRef]
- Soni, L.; Kaur, A. Merits and Demerits of Unreal and Unity: A Comprehensive Comparison. In Proceedings of the 2024 International Conference on Computational Intelligence for Green and Sustainable Technologies (ICCIGST), Vijayawada, India, 18–19 July 2024; pp. 1–5. [Google Scholar]
- Stephens, R. Creating an acoustic simulation of the noise pollution affecting a residential area. In Proceedings of the 179th Meeting of the Acoustical Society of America, Virtual, 7–11 December 2020. [Google Scholar]
- Khan, J.; Ketzel, M.; Jensen, S.S.; Gulliver, J.; Thysell, E.; Hertel, O. Comparison of Road Traffic Noise prediction models: CNOSSOS-EU, Nord2000 and TRANEX. Environ. Pollut. 2021, 270, 116240. [Google Scholar] [CrossRef]
- Xuan, H.; Li, X. Analysis on CNOSSOS-EU Traffic Noise Prediction Model. Noise Vib. Control 2014, 34, 269–272. (In Chinese) [Google Scholar]
- Gharehchahi, E.; Hashemi, H.; Yunesian, M.; Samaei, M.; Azhdarpoor, A.; Oliaei, M.; Hoseini, M. Geospatial analysis for environmental noise mapping: A land use regression approach in a metropolitan city. Environ. Res. 2024, 257, 119375. [Google Scholar] [CrossRef]
- Al-Shargabi, A.A.; Almhafdy, A.; AlSaleem, S.S.; Berardi, U.; Ali, A.A.M. Optimizing Regression Models for Predicting Noise Pollution Caused by Road Traffic. Sustainability 2023, 15, 10020. [Google Scholar] [CrossRef]
- Tiwari, S.K.; Kumaraswamidhas, L.A.; Prince; Kamal, M.; Rehman, M.U. A hybrid deep leaning model for prediction and parametric sensitivity analysis of noise annoyance. Environ. Sci. Pollut. Res. Int. 2023, 30, 49666–49684. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Goudreau, S.; Oiamo, T.; Rainham, D.; Hatzopoulou, M.; Chen, H.; Davies, H.; Tremblay, M.; Johnson, J.; Bockstael, A.; et al. Comparison of land use regression and random forests models on estimating noise levels in five Canadian cities. Environ. Pollut. 2020, 256, 113367. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, S.; Zhang, D. Prediction of Si content of blast furnace hot metal based on data-driven approach. Baosteel Technol. 2024, 6, 11–16. (In Chinese) [Google Scholar]
- McDonald, G.C. Ridge regression. WIREs Comp. Stat. 2009, 1, 93–100. [Google Scholar] [CrossRef]
- Jin, D.; Liu, X. Exploring the carbon emission reduction effects, drivers, and peak carbon strategies in China’s energy structure transformation. J. Saf. Environ. 2024, 24, 4908–4916. (In Chinese) [Google Scholar]
- Ragettli, M.S.; Goudreau, S.; Plante, C.; Fournier, M.; Hatzopoulou, M.; Perron, S.; Smargiassi, A. Statistical modeling of the spatial variability of environmental noise levels in Montreal, Canada, using noise measurements and land use characteristics. J. Expo. Sci. Environ. Epidemiol. 2016, 26, 597–605. [Google Scholar] [CrossRef]
- HJ 640-2012; Technical Specifications for Environmental Noise Monitoring, Routine Monitoring for Urban Environmental Noise. State Environmental Protection Administration of China: Beijing, China, 2012.
Lmeasure (dB(A)) | Ltnpm (dB(A)) | |
---|---|---|
Mean | 61.23 | 74.77 |
Median | 62.70 | 76.31 |
SD 1 | 4.87 | 10.41 |
Minimum | 50.90 | 50.64 |
Maximum | 68.75 | 91.02 |
Variable Name | Unit of the Coef. and the (95% CI) | Coef. | (95% CI) | p-Value |
---|---|---|---|---|
LVD150 | # 1 | −5.747 | (−7.659, −3.835) | <0.001 |
WAVD50 | # | −3.212 | (−5.100, −1.323) | 0.001 |
len100 | m | −2.760 | (−4.697, −0.822) | 0.006 |
Lmeasure (dB(A)) | Lenv (dB(A)) | |
---|---|---|
Mean | 61.23 | 60.96 |
Median | 62.70 | 62.50 |
SD 1 | 4.87 | 6.38 |
Minimum | 50.90 | 45.93 |
Maximum | 68.75 | 71.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the International Society for Photogrammetry and Remote Sensing. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, J.; He, Y.; Ma, W.; An, S.; Li, L.; Huang, D.; Jia, D. Machine Learning-Enhanced 3D GIS Urban Noise Mapping with Multi-Modal Factors. ISPRS Int. J. Geo-Inf. 2025, 14, 223. https://doi.org/10.3390/ijgi14060223
Pan J, He Y, Ma W, An S, Li L, Huang D, Jia D. Machine Learning-Enhanced 3D GIS Urban Noise Mapping with Multi-Modal Factors. ISPRS International Journal of Geo-Information. 2025; 14(6):223. https://doi.org/10.3390/ijgi14060223
Chicago/Turabian StylePan, Jianping, Yuzhe He, Wei Ma, Shengwang An, Lu Li, Dan Huang, and Dunxin Jia. 2025. "Machine Learning-Enhanced 3D GIS Urban Noise Mapping with Multi-Modal Factors" ISPRS International Journal of Geo-Information 14, no. 6: 223. https://doi.org/10.3390/ijgi14060223
APA StylePan, J., He, Y., Ma, W., An, S., Li, L., Huang, D., & Jia, D. (2025). Machine Learning-Enhanced 3D GIS Urban Noise Mapping with Multi-Modal Factors. ISPRS International Journal of Geo-Information, 14(6), 223. https://doi.org/10.3390/ijgi14060223