Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (329)

Search Parameters:
Keywords = multi-band SAR

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 4643 KB  
Article
JM-Guided Sentinel 1/2 Fusion and Lightweight APM-UNet for High-Resolution Soybean Mapping
by Ruyi Wang, Jixian Zhang, Xiaoping Lu, Zhihe Fu, Guosheng Cai, Bing Liu and Junfeng Li
Remote Sens. 2025, 17(24), 3934; https://doi.org/10.3390/rs17243934 - 5 Dec 2025
Viewed by 263
Abstract
Accurate soybean mapping is critical for food–oil security and cropping assessment, yet spatiotemporal heterogeneity arising from fragmented parcels and phenological variability reduces class separability and robustness. This study aims to deliver a high-resolution, reusable pipeline and quantify the marginal benefits of feature selection [...] Read more.
Accurate soybean mapping is critical for food–oil security and cropping assessment, yet spatiotemporal heterogeneity arising from fragmented parcels and phenological variability reduces class separability and robustness. This study aims to deliver a high-resolution, reusable pipeline and quantify the marginal benefits of feature selection and architecture design. We built a full-season multi-temporal Sentinel-1/2 stack and derived candidate optical/SAR features (raw bands, vegetation indices, textures, and polarimetric terms). Jeffries–Matusita (JM) distance was used for feature–phase joint selection, producing four comparable feature sets. We propose a lightweight APM-UNet: an Attention Sandglass Layer (ASL) in the shallow path to enhance texture/boundary details, and a Parallel Vision Mamba layer (PVML with Mamba-SSM) in the middle/bottleneck to model long-range/global context with near-linear complexity. Under a unified preprocessing and training/evaluation protocol, the four feature sets were paired with U-Net, SegFormer, Vision-Mamba, and APM-UNet, yielding 16 controlled configurations. Results showed consistent gains from JM-guided selection across architectures; given the same features, APM-UNet systematically outperformed all baselines. The best setup (JM-selected composite features + APM-UNet) achieved PA 92.81%, OA 97.95, Kappa 0.9649, Recall 91.42%, IoU 0.7986, and F1 0.9324, improving PA and OA by ~7.5 and 6.2 percentage points over the corresponding full-feature counterpart. These findings demonstrate that JM-guided, phenology-aware features coupled with a lightweight local–global hybrid network effectively mitigate heterogeneity-induced uncertainty, improving boundary fidelity and overall consistency while maintaining efficiency, offering a potentially transferable framework for soybean mapping in complex agricultural landscapes. Full article
(This article belongs to the Special Issue Machine Learning of Remote Sensing Imagery for Land Cover Mapping)
Show Figures

Figure 1

27 pages, 30998 KB  
Article
Ship Target Detection in SAR Imagery Based on Band Recombination and Multi-Scale Feature Enhancement
by Yi Zhou, Kun Zhu, Haitao Guo, Jun Lu, Zhihui Gong and Xiangyun Liu
Electronics 2025, 14(23), 4728; https://doi.org/10.3390/electronics14234728 - 30 Nov 2025
Viewed by 208
Abstract
Synthetic aperture radar images have all-weather and all-time capabilities and are widely used in the field of ship target surveillance at sea. However, its detection accuracy is often limited by factors such as complex sea conditions, diverse ship scales, and image noise. Aiming [...] Read more.
Synthetic aperture radar images have all-weather and all-time capabilities and are widely used in the field of ship target surveillance at sea. However, its detection accuracy is often limited by factors such as complex sea conditions, diverse ship scales, and image noise. Aiming at the problems such as inconsistent scale of ship target detection in SAR images, difficulty in detecting small targets, and interference from complex backgrounds, this paper proposes a ship detection method for SAR images based on band recombination and multi-scale feature enhancement. Firstly, aiming at the problem that the single-channel replication mode adopted by the deep neural network cannot fully extract the ship target information in SAR images, a band recombination method was designed to enhance the ship information in the images. Furthermore, the coordinate channel attention and bottleneck Transformer attention mechanisms are introduced in the backbone part of the network to enhance the network’s representation ability of the target spatial distribution and maintain the global feature modeling ability. Finally, a multi-scale feature enhancement and multi-scale effective feature aggregation module was designed to improve the detection accuracy of multi-scale ships in wide-format images. The experimental results on the LS-SSDD and HRSID datasets show that the average accuracies of the method proposed in this paper reach 78.1% and 94.5% respectively, which are improved by 6.9% and 0.8% compared with the baseline model, and are superior to other advanced algorithms, verifying the effectiveness of the method proposed in this paper. Meanwhile, the algorithm proposed in this paper has also demonstrated good performance in wide-format SAR images of actual large scenes. The method proposed in this paper effectively improves the problems of missed detection and false detection of small-target ships in SAR images of large scenes. At the same time, it enhances the efficiency of rapid and accurate detection in large scenes and can provide reliable technical support for the field of maritime target surveillance. Full article
Show Figures

Figure 1

26 pages, 10538 KB  
Article
An Improved Change Detection Method for Time-Series Soil Moisture Retrieval in Semi-Arid Area
by Jing Zhang and Liangliang Tao
Remote Sens. 2025, 17(23), 3874; https://doi.org/10.3390/rs17233874 - 29 Nov 2025
Viewed by 243
Abstract
Although surface soil moisture (SSM) is particularly important in crop yield prediction, irrigation scheduling optimization, and runoff generation mechanisms, accurate monitoring of time-series SSM is still challenging for agricultural and hydrological research. This study presented an improved approach integrating Sentinel-1 C-band SAR and [...] Read more.
Although surface soil moisture (SSM) is particularly important in crop yield prediction, irrigation scheduling optimization, and runoff generation mechanisms, accurate monitoring of time-series SSM is still challenging for agricultural and hydrological research. This study presented an improved approach integrating Sentinel-1 C-band SAR and MODIS optical data (2019–2020) to estimate surface soil moisture. To address vegetation effects, we developed a piecewise function using fractional vegetation coverage (FVC) to correct soil moisture and backscatter extrema and established the normalized difference enhanced vegetation index (NDEVI) to characterize backscatter-vegetation relationships across various land covers. Furthermore, the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm identified anomalous surface changes, enabling segmentation of long-term series into invariant periods that satisfy the change detection method assumptions. Validation in the Shandian River Basin demonstrated significant improvement over traditional methods, achieving determination coefficients (R2) of 0.844 and root mean square errors (RMSE) of 0.030 m3/m3. The method effectively captured soil moisture dynamics from precipitation and irrigation events, providing reliable monitoring in heterogeneous landscapes. This integrated approach offers a robust technical framework for multi-source remote sensing of soil moisture in semi-arid areas, enhancing capability for agricultural water resource management. Full article
(This article belongs to the Section Remote Sensing in Agriculture and Vegetation)
Show Figures

Graphical abstract

40 pages, 6237 KB  
Article
Next-Generation C-Band SAR Mission: Design Concept for Earth Observation Service Continuity
by Igor Zakharov, Desmond Power, Peter McGuire, Michael Völker, Jung-Hyo Kim, Matteo Emanuelli, Joseph Chamberland, Mike Stott, Sherry Warren, Juergen Janoth, Alexander Kaptein, Michael D. Henschel and Yue Ma
Remote Sens. 2025, 17(22), 3761; https://doi.org/10.3390/rs17223761 - 19 Nov 2025
Viewed by 1251
Abstract
This paper presents the findings related to the design solution options for a next-generation C-band Synthetic Aperture Radar (SAR) mission, developed to address the Harmonized User Needs (HUN) in Earth observation (EO) data as defined by several departments of the Government of Canada. [...] Read more.
This paper presents the findings related to the design solution options for a next-generation C-band Synthetic Aperture Radar (SAR) mission, developed to address the Harmonized User Needs (HUN) in Earth observation (EO) data as defined by several departments of the Government of Canada. The work analyses various mission solution options, including multi-satellite constellations, and their performance to evaluate feasibility and assess their compliance with the HUN as well as minimize the associated lifecycle costs, technical risks, implementation schedule, and programmatic challenges. This mission concept contributes to the advancement of space-based surveillance solutions aligned with Canada’s long-term strategic objectives to ensure service continuity for Earth Observation and national security applications. Systematic user needs analysis helped to reveal the importance of high-resolution (1–5 m), enhanced interferometric, polarimetric SAR interferometry (PolInSAR) and other capabilities. Two satellite constellation configurations are proposed: (1) a three-medium-satellite setup with a tandem pair, and (2) a five-large-satellite system incorporating tandem and optimal orbits. Employing High-Resolution Wide Swath (HRWS) imaging modes and full polarimetric capability. Performance simulations indicate low Noise Equivalent Sigma Zero (NESZ) with wide swath width fully addresses driving needs for sea ice and ocean monitoring, covering most of the Canadian areas of interest, with the revisit time of less than 4–6 hours. Orbit optimization ensures high revisit rates, enabling novel interferometric SAR (InSAR) capabilities with observations separated by only a few hours. This mission concept, considering two options with three medium and with five large satellites, respectively, offers a flexible, scalable, and strategically impactful solution for Earth Observation (EO) service continuity and technological leadership for Canada until 2050 and beyond. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Figure 1

18 pages, 16502 KB  
Article
Settlement and Deformation Characteristics of Grouting-Filled Goaf Areas Using Integrated InSAR Technologies
by Xingli Li, Huayang Dai, Fengming Li, Haolei Zhang and Jun Fang
Sustainability 2025, 17(22), 10015; https://doi.org/10.3390/su172210015 - 10 Nov 2025
Viewed by 437
Abstract
Subsidence over abandoned goaves is a primary trigger for secondary geological hazards such as surface collapse, landslides, and cracking. This threatens safe mining operations, impairs regional economic progress, and endangers local inhabitants and their assets. At present, goaf areas are mainly treated through [...] Read more.
Subsidence over abandoned goaves is a primary trigger for secondary geological hazards such as surface collapse, landslides, and cracking. This threatens safe mining operations, impairs regional economic progress, and endangers local inhabitants and their assets. At present, goaf areas are mainly treated through grouting. However, owing to the deficiencies of traditional deformation monitoring methods (e.g., leveling and GPS), including their slow speed, high cost, and limited data accuracy influenced by the number of monitoring points, the surface deformation features of goaf zones treated with grouting cannot be obtained in a timely fashion. Therefore, this study proposes a method to analyze the spatio-temporal patterns of surface deformation in grout-filled goaves based on the fusion of Multi-temporal InSAR technologies, leveraging the complementary advantages of D-InSAR, PS-InSAR, and SBAS-InSAR techniques. An investigation was conducted in a coal mine located in Shandong Province, China, utilizing an integrated suite of C-band satellite data. This dataset included 39 scenes from the RadarSAT-2 and 40 scenes from the Sentinel missions, acquired between September 2019 and September 2022. Key results reveal a significant reduction in surface deformation rates following grouting operations: pre-grouting deformation reached up to −98 mm/a (subsidence) and +134 mm/a (uplift), which decreased to −11.2 mm/a and +18.7 mm/a during grouting, and further stabilized to −10.0 mm/a and +16.0 mm/a post-grouting. Time-series analysis of cumulative deformation and typical coherent points confirmed that grouting effectively mitigated residual subsidence and induced localized uplift due to soil compaction and fracture expansion. The comparison with the leveling measurement data shows that the accuracy of this method meets the requirements, confirming the method’s efficacy in capturing the actual ground dynamics during grouting. It provides a scientific basis for the safe expansion of mining cities and the safe reuse of land resources. Full article
Show Figures

Figure 1

29 pages, 43932 KB  
Article
Study on the Surface Deformation Pattern Induced by Mining in Shallow-Buried Thick Coal Seams of Semi-Desert Aeolian Sand Area Based on SAR Observation Technology
by Tao Tao, Xin Yao, Zhenkai Zhou, Zuoqi Wu and Xuwen Tian
Remote Sens. 2025, 17(21), 3648; https://doi.org/10.3390/rs17213648 - 5 Nov 2025
Viewed by 459
Abstract
In the semi-desert aeolian sand areas of Northern China, surface deformation monitoring with SAR is challenged by loss of coherence due to mobile dunes, seasonal vegetation changes, and large-gradient, nonlinear subsidence from underground mining. This study utilizes PALSAR-2 (L-band, 3 m resolution) and [...] Read more.
In the semi-desert aeolian sand areas of Northern China, surface deformation monitoring with SAR is challenged by loss of coherence due to mobile dunes, seasonal vegetation changes, and large-gradient, nonlinear subsidence from underground mining. This study utilizes PALSAR-2 (L-band, 3 m resolution) and Sentinel-1 (C-band, 30 m resolution) data, applying InSAR and Offset tracking methods combined with differential, Stacking, and SBAS techniques to analyze deformation monitoring effectiveness and propose an efficient dynamic monitoring strategy for the Shendong Coalfield. The main conclusions can be summarized as follows: (1) PALSAR-2 data, which has advantages in wavelength and resolution (L-band, multi-look spatial resolution of 3 m), exhibits better interference effects and deformation details compared to Sentinel-1 data (C-band, multi-look spatial resolution of 30 m). The highly sensitive differential-InSAR (D-InSAR) can promptly detect new deformations, while Stacking-InSAR can accurately delineate the range of rock strata movement. SBAS-InSAR can reflect the dynamic growth process of the deformation range as a whole, and SBAS-Offset is suitable for observing the absolute values and morphology of the surface moving basin. The combined application of Stacking-InSAR and Stacking-Offset methods can accurately acquire the three-dimensional deformation field of mining-induced strata movement. (2) The spatiotemporal process of surface deformation caused by coal mining-induced strata movement revealed by InSAR exhibits good correspondence with both the underground mining progress and the development of ground fissures identified in UAV images. (3) The maximum displacement along the line of sight (LOS) measured in the mining area is approximately 2 to 3 m, which is close to the 2.14 m observed on site and aligns with previous studies. The calculated advance influence angle of the No. 22308 working face in the study area is about 38.3°. The influence angle on the solid coal side is 49°, while that on the goaf side approaches 90°. These findings further deepen the understanding of rock movement and surface displacement parameters in this region. The dynamic monitoring strategy proposed in this study is cost-effective and operational, enhancing the observational effectiveness of InSAR technology for surface deformation due to coal mining in this area, and it enriches the understanding of surface strata movement patterns and parameters in this region. Full article
Show Figures

Figure 1

19 pages, 4683 KB  
Technical Note
Geometric Error Analysis and Correction of Long-Term In-Orbit Measured Calibration Data of the LuTan-1 SAR Satellite
by Liyuan Liu, Aichun Wang, Mingxia Zhang, Qijin Han, Minghui Hou and Yanru Li
Remote Sens. 2025, 17(21), 3611; https://doi.org/10.3390/rs17213611 - 31 Oct 2025
Viewed by 455
Abstract
LuTan-1 (LT-1) is China’s first L-band differential interferometric synthetic aperture radar system, comprising two multi-polarization SAR satellites, LT-1A and LT-1B. The satellite uses differential deformation measurement and interferometric altimetry technology to realize surface deformation monitoring and topographic mapping in designated areas. It has [...] Read more.
LuTan-1 (LT-1) is China’s first L-band differential interferometric synthetic aperture radar system, comprising two multi-polarization SAR satellites, LT-1A and LT-1B. The satellite uses differential deformation measurement and interferometric altimetry technology to realize surface deformation monitoring and topographic mapping in designated areas. It has the characteristics of all-weather, all-time, and multi-polarization and can be applied to military and civilian fields. In order to further improve the accuracy of image geometric positioning, this paper analyzes the error sources of geometric positioning for the differential deformation measurement mode (strip 1) of the satellite service. The in-orbit data of three years since the launch (2022–2024) are selected to analyze the positioning accuracy and stability of the uncontrolled plane based on the corner reflector and active calibrator deployed in the calibration field. The experimental results show that the positioning accuracy of the satellite strip 1 image without a control plane meets the requirements of the in-orbit index and remains relatively stable. The geometric precision correction positioning accuracy after error source compensation is better than 3.0 m, providing a favorable support for the subsequent application. Full article
(This article belongs to the Special Issue Spaceborne SAR Calibration Technology)
Show Figures

Figure 1

12 pages, 22225 KB  
Article
Soil Organic Carbon Mapping Using Multi-Frequency SAR Data and Machine Learning Algorithms
by Pavan Kumar Bellam, Murali Krishna Gumma, Narayanarao Bhogapurapu and Venkata Reddy Keesara
Land 2025, 14(11), 2105; https://doi.org/10.3390/land14112105 - 23 Oct 2025
Viewed by 605
Abstract
Soil organic carbon (SOC) is a critical component of soil health, influencing soil structure, soil water retention capacity, and nutrient cycling while playing a key role in the global carbon cycle. Accurate SOC estimation over croplands is essential for sustainable land management and [...] Read more.
Soil organic carbon (SOC) is a critical component of soil health, influencing soil structure, soil water retention capacity, and nutrient cycling while playing a key role in the global carbon cycle. Accurate SOC estimation over croplands is essential for sustainable land management and climate change mitigation. This study explores a novel approach to SOC estimation using multi-frequency synthetic aperture radar (SAR) data, specifically Sentinel-1 and ALOS-2/PALSAR-2 imagery, combined with advanced machine learning techniques for cropland SOC estimation. Diverse agricultural practices, with major crop types such as rice (Oryza sativa), finger millet (Eleusine coracana), Niger (Guizotia abyssinica), maize (Zea mays), and vegetable cultivation, characterize the study region. By integrating C-band (Sentinel-1) and L-band (ALOS-2/PALSAR-2) SAR data with key polarimetric features such as the C2 matrix, entropy, and degree of polarization, this study enhances SOC estimation. These parameters help distinguish variations in soil moisture, texture, and mineral composition, reducing their confounding effects on SOC estimation. An ensemble model incorporating Random Forest (RF) and neural networks (NNs) was developed to capture the complex relationships between SAR data and SOC. The NN component effectively models complex non-linear relationships, while the RF model helps prevent overfitting. The proposed model achieved a correlation coefficient (r) of 0.64 and a root mean square error (RMSE) of 0.18, demonstrating its predictive capability. In summary, our results offer an efficient approach for enhanced SOC mapping in diverse agricultural landscapes, with ongoing work targeting challenges in data availability to facilitate large-scale SOC mapping. Full article
Show Figures

Figure 1

18 pages, 2350 KB  
Article
Deep Ensembles and Multisensor Data for Global LCZ Mapping: Insights from So2Sat LCZ42
by Loris Nanni and Sheryl Brahnam
Algorithms 2025, 18(10), 657; https://doi.org/10.3390/a18100657 - 17 Oct 2025
Viewed by 473
Abstract
Classifying multiband images acquired by advanced sensors, including those mounted on satellites, is a central task in remote sensing and environmental monitoring. These sensors generate high-dimensional outputs rich in spectral and spatial information, enabling detailed analyses of Earth’s surface. However, the complexity of [...] Read more.
Classifying multiband images acquired by advanced sensors, including those mounted on satellites, is a central task in remote sensing and environmental monitoring. These sensors generate high-dimensional outputs rich in spectral and spatial information, enabling detailed analyses of Earth’s surface. However, the complexity of such data presents substantial challenges to achieving both accuracy and efficiency. To address these challenges, we tested the ensemble learning framework based on ResNet50, MobileNetV2, and DenseNet201, each trained on distinct three-channel representations of the input to capture complementary features. Training is conducted on the LCZ42 dataset of 400,673 paired Sentinel-1 SAR and Sentinel-2 multispectral image patches annotated with Local Climate Zone (LCZ) labels. Experiments show that our best ensemble surpasses several recent state-of-the-art methods on the LCZ42 benchmark. Full article
Show Figures

Figure 1

26 pages, 14672 KB  
Article
InSAR-Based Assessment of Land Subsidence Induced by Coal Mining in Karaganda, Kazakhstan
by Assel Satbergenova, Dinara Talgarbayeva, Andrey Vilayev, Asset Urazaliyev, Alena Yelisseyeva, Azamat Kaldybayev and Semen Gavruk
Geomatics 2025, 5(4), 55; https://doi.org/10.3390/geomatics5040055 - 16 Oct 2025
Viewed by 1145
Abstract
The objective of this study is to quantify and characterize ground deformations induced by underground coal mining in the Karaganda coal basin, Kazakhstan, in order to improve the understanding of subsidence processes and their long-term evolution. The SBAS-InSAR method was applied to Sentinel-1 [...] Read more.
The objective of this study is to quantify and characterize ground deformations induced by underground coal mining in the Karaganda coal basin, Kazakhstan, in order to improve the understanding of subsidence processes and their long-term evolution. The SBAS-InSAR method was applied to Sentinel-1 (C-band) and TerraSAR-X (X-band) data from 2019–2021 to estimate the magnitude, extent, and temporal behavior of displacements over the Kostenko, Kuzembayev, Aktasskaya, and Saranskaya mines. The results reveal spatially coherent and progressive deformation, with maximum cumulative LOS displacements exceeding –800 mm in TerraSAR-X data within active longwall mining zones. Time-series analysis confirmed acceleration of displacement during active extraction and its subsequent attenuation after mining ceased. Comparative assessment demonstrated a strong agreement between Sentinel-1 and TerraSAR-X results (r = 0.9628), despite differences in resolution and acquisition geometry, highlighting the robustness of the SBAS-InSAR approach. Analysis of displacement over individual longwalls showed that several panels (3, 5, 8, 15, and 18) already exceeded their projected maximum subsidence values, underlining the necessity of continuous monitoring for ensuring safety. In contrast, other longwalls have not yet reached their maximum deformation, indicating potential for further activity. Overall, this study demonstrates the value of multi-sensor InSAR monitoring for reliable assessment of mining-induced subsidence and for supporting geotechnical risk management in post-industrial regions. Full article
Show Figures

Figure 1

24 pages, 108802 KB  
Article
Enhanced Garlic Crop Identification Using Deep Learning Edge Detection and Multi-Source Feature Optimization with Random Forest
by Junli Zhou, Quan Diao, Xue Liu, Hang Su, Zhen Yang and Zhanlin Ma
Sensors 2025, 25(19), 6014; https://doi.org/10.3390/s25196014 - 30 Sep 2025
Viewed by 951
Abstract
Garlic, as an important economic crop, plays a crucial role in the global agricultural production system. Accurate identification of garlic cultivation areas is of great significance for agricultural resource allocation and industrial development. Traditional crop identification methods face challenges of insufficient accuracy and [...] Read more.
Garlic, as an important economic crop, plays a crucial role in the global agricultural production system. Accurate identification of garlic cultivation areas is of great significance for agricultural resource allocation and industrial development. Traditional crop identification methods face challenges of insufficient accuracy and spatial fragmentation in complex agricultural landscapes, limiting their effectiveness in precision agriculture applications. This study, focusing on Kaifeng City, Henan Province, developed an integrated technical framework for garlic identification that combines deep learning edge detection, multi-source feature optimization, and spatial constraint optimization. First, edge detection training samples were constructed using high-resolution Jilin-1 satellite data, and the DexiNed deep learning network was employed to achieve precise extraction of agricultural field boundaries. Second, Sentinel-1 SAR backscatter features, Sentinel-2 multispectral bands, and vegetation indices were integrated to construct a multi-dimensional feature space containing 28 candidate variables, with optimal feature subsets selected through random forest importance analysis combined with recursive feature elimination techniques. Finally, field boundaries were introduced as spatial constraints to optimize pixel-level classification results through majority voting, generating field-scale crop identification products. The results demonstrate that feature optimization improved overall accuracy from 0.91 to 0.93 and the Kappa coefficient from 0.8654 to 0.8857 by selecting 13 optimal features from 28 candidates. The DexiNed network achieved an F1-score of 94.16% for field boundary extraction. Spatial optimization using field constraints effectively eliminated salt-and-pepper noise, with successful validation in Kaifeng’s garlic. Full article
(This article belongs to the Section Smart Agriculture)
Show Figures

Figure 1

36 pages, 9276 KB  
Article
Understanding Landslide Expression in SAR Backscatter Data: Global Study and Disaster Response Application
by Erin Lindsay, Alexandra Jarna Ganerød, Graziella Devoli, Johannes Reiche, Steinar Nordal and Regula Frauenfelder
Remote Sens. 2025, 17(19), 3313; https://doi.org/10.3390/rs17193313 - 27 Sep 2025
Viewed by 1551
Abstract
Cloud cover can delay landslide detection in optical satellite imagery for weeks, complicating disaster response. Synthetic Aperture Radar (SAR) backscatter imagery, which is widely used for monitoring floods and avalanches, remains underutilised for landslide detection due to a limited understanding of landslide signatures [...] Read more.
Cloud cover can delay landslide detection in optical satellite imagery for weeks, complicating disaster response. Synthetic Aperture Radar (SAR) backscatter imagery, which is widely used for monitoring floods and avalanches, remains underutilised for landslide detection due to a limited understanding of landslide signatures in SAR data. We developed a conceptual model of landslide expression in SAR backscatter (σ°) change images through iterative investigation of over 1000 landslides across 30 diverse study areas. Using multi-temporal composites and dense time series Sentinel-1 C-band SAR data, we identified characteristic patterns linked to land cover, terrain, and landslide material. The results showed either increased or decreased backscatter depending on environmental conditions, with reduced visibility in urban or mixed vegetation areas. Detection was also hindered by geometric distortions and snow cover. The diversity of landslide expression illustrates the need to consider local variability and multi-track (ascending and descending) satellite data in designing representative training datasets for automated detection models. The conceptual model was applied to three recent disaster events using the first post-event Sentinel-1 image, successfully identifying previously unknown landslides before optical imagery became available in two cases. This study provides a theoretical foundation for interpreting landslides in SAR imagery and demonstrates its utility for rapid landslide detection. The findings support further exploration of rapid landslides in SAR backscatter data and future development of automated detection models, offering a valuable tool for disaster response. Full article
Show Figures

Graphical abstract

18 pages, 8631 KB  
Article
Forest Biomass Estimation of Linpan in Western Sichuan Using Multi-Source Remote Sensing
by Jiaming Lai, Yuxuan Lin, Yan Lu, Mingdi Yue and Gang Chen
Sustainability 2025, 17(17), 7855; https://doi.org/10.3390/su17177855 - 31 Aug 2025
Viewed by 779
Abstract
Linpan ecosystems, distinct to western Sichuan, China, are integral to regional biodiversity and carbon cycling. However, comprehensive biomass estimation for these systems has not been thoroughly investigated. This study seeks to fill this gap by enhancing the accuracy and precision of biomass estimation [...] Read more.
Linpan ecosystems, distinct to western Sichuan, China, are integral to regional biodiversity and carbon cycling. However, comprehensive biomass estimation for these systems has not been thoroughly investigated. This study seeks to fill this gap by enhancing the accuracy and precision of biomass estimation in these ecologically vital landscapes through the application of multi-source remote sensing techniques, specifically by integrating the strengths of optical and radar remote sensing data. The focus of this research is on the forest biomass of Linpan, encompassing the tree layer, which includes the trunk, branches, leaves, and underground roots. Specifically, the research focused on the Linpan ecosystems in the Wenjiang District of western Sichuan, utilizing an integration of Sentinel-1 SAR, Sentinel-2 multispectral, and GF-2 high-resolution data for multi-source remote sensing-based biomass estimation. Through the preprocessing of these data, Pearson correlation analysis was conducted to identify variables significantly correlated with the forest biomass as determined by field surveys. Ultimately, 19 key modeling factors were selected, including band information, vegetation indices, texture features, and phenological characteristics. Subsequently, three algorithms—multiple stepwise regression (MSR), support vector machine (SVM), and random forest (RF)—were employed to model biomass across mixed-type, deciduous broadleaved, evergreen broadleaved, and bamboo Linpan. The key findings include the following: (1) Sentinel-2 spectral data and Sentinel-1 VH backscatter coefficients during the summer, combined with vegetation indices and texture features, were critical predictors, while phenological indices exhibited unique correlations with biomass. (2) Biomass displayed a marked north–south gradient, characterized by higher values in the south and lower values in the north, with a mean value of 161.97 t ha−1, driven by dominant tree species distribution and management intensity. (3) The RF model demonstrated optimal performance in mixed-type Linpan (R2 = 0.768), whereas the SVM was more suitable for bamboo Linpan (R2 = 0.892). The research suggests that integrating multi-source remote sensing data significantly enhances Linpan biomass estimation accuracy, offering a robust framework to improve estimation precision. Full article
Show Figures

Figure 1

26 pages, 30091 KB  
Article
Crop Mapping Using kNDVI-Enhanced Features from Sentinel Imagery and Hierarchical Feature Optimization Approach in GEE
by Yanan Liu, Ai Zhang, Xingtao Zhao, Yichen Wang, Yuetong Hao and Pingbo Hu
Remote Sens. 2025, 17(17), 3003; https://doi.org/10.3390/rs17173003 - 29 Aug 2025
Viewed by 1218
Abstract
Accurate crop mapping is vital for monitoring agricultural resources, food security, and ecosystem sustainability. Advances in high-resolution sensing technologies now enable precise, large-scale crop mapping, improving agricultural management and decision-making. However, in scenarios where balancing precision and computational resources is important, obtaining the [...] Read more.
Accurate crop mapping is vital for monitoring agricultural resources, food security, and ecosystem sustainability. Advances in high-resolution sensing technologies now enable precise, large-scale crop mapping, improving agricultural management and decision-making. However, in scenarios where balancing precision and computational resources is important, obtaining the optimal feature combination (especially newly proposed features) and strategies from the rich feature sets contained in multi-source remote sensing imagery remains one of the challenges. In this paper, we propose a hierarchical feature optimization method, incorporating a newly reported vegetation feature, for mapping crop types by combining the Sentinel-1 Synthetic Aperture Radar (SAR) and Sentinel-2 optical imagery within the Google Earth Engine (GEE) platform. The method first calculates spectral features, texture features, polarization features, vegetation index features, and crop phenological features, with a particular focus on infrared band features and the newly developed Kernel Normalized Difference Vegetation Index (kNDVI). These 126 features are then selected to construct 15 crop type mapping models based on different feature combinations and a random forest (RF) classifier. Feature selection was performed using the feature correlation analysis and random forest recursive feature elimination (RF-RFE) to identify the optimal subset. The experiment was conducted in the Linhe region, covering an area of 2333 km2. The resulting 10 m crop map, generated by the optimal model (Model 15) with 34 key features, demonstrated that integrating multi-source features significantly enhances mapping accuracy. The model achieved an overall accuracy of 90.10% across five crop types (corn, wheat, sunflower, soybean, and beet), outperforming other representative feature optimization methods, Relief-F (87.50%) and CFS (89.60%). The study underscores the importance of feature optimization and reduction of redundant features while also showcasing the effectiveness of red edge and infrared features, as well as the kNDVI, in mapping crop type. Full article
(This article belongs to the Special Issue GeoAI and EO Big Data Driven Advances in Earth Environmental Science)
Show Figures

Graphical abstract

10 pages, 3412 KB  
Article
Broadband Flexible Metasurface for SAR Imaging Cloaking
by Bo Yang, Hui Jin, Chaobiao Chen, Peixuan Zhu, Siqi Zhang, Rongrong Zhu, Bin Zheng and Huan Lu
Materials 2025, 18(17), 3969; https://doi.org/10.3390/ma18173969 - 25 Aug 2025
Viewed by 857
Abstract
Most electromagnetic invisibility devices are designed while relying on rigid structures, which have limitations in adapting to complex curved surfaces and dynamic deployment. In contrast, flexible invisibility structures have great application value due to their bendable and easy-to-fit characteristics. In this paper, we [...] Read more.
Most electromagnetic invisibility devices are designed while relying on rigid structures, which have limitations in adapting to complex curved surfaces and dynamic deployment. In contrast, flexible invisibility structures have great application value due to their bendable and easy-to-fit characteristics. In this paper, we propose a flexible metasurface suitable for broadband SAR (Synthetic Aperture Radar) imaging invisibility, which realizes multi-domain joint regulation of electromagnetic waves by designing two subwavelength unit structures with differentiated reflection characteristics and combining array inverse optimization methods. The metasurface employs a sponge-like dielectric substrate and integrates resistive ink to construct a resonant structure, which can suppress electromagnetic scattering through joint phase and amplitude modulation, achieving low detectability of targets in UAV (Unmanned Aerial Vehicle) detection scenarios. Indoor microwave anechoic chamber tests and outdoor UAV-borne SAR experiments verify its stable invisibility performance in a wide frequency band, providing theoretical and experimental support for the application of flexible metasurfaces in dynamic electromagnetic detection countermeasures. Full article
Show Figures

Figure 1

Back to TopTop