Ship Target Detection in SAR Imagery Based on Band Recombination and Multi-Scale Feature Enhancement
Abstract
1. Introduction
2. Methodology
2.1. SAR Image Band Reorganization
2.1.1. Gaussian Pyramid Hierarchical Noise Suppression
2.1.2. High-Frequency Detail Extraction via Laplacian Pyramid
2.1.3. Goal-Oriented Dynamic Weight Fusion
2.2. Coordinate Attention Mechanism
2.3. Bottleneck Transformer
2.4. Multi-Scale Feature Enhancement Module
2.5. Multi-Scale Effective Feature Aggregation Module
3. Experimental Results and Analysis
3.1. Dataset and Experimental Configuration
3.2. Evaluation Metrics
3.3. Ablation Study on Network Architecture Effectiveness
3.4. Comparative Experiments with Other Methods
3.5. Generalization Performance Evaluation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, L.B. SAR Image Processing and Target Recognition; Aviation Industry Press: Beijing, China, 2013. [Google Scholar]
- Wei, S.J.; Jiang, P.F.; Yuan, Q.Z. Detection and Recognition of SAR Small Ship Objects Using Deep Neural Network. J. Northwestern Polytech. Univ. 2019, 37, 546–552. [Google Scholar] [CrossRef]
- Zheng, Z.Y.; Zhang, T.; Liu, Z.Y.; Li, Y.J.; Sun, C.M. Ship target detection in SAR images based on RCIoU loss function. J. Shandong Univ. (Eng. Sci.) 2022, 52, 15–22. [Google Scholar]
- Leng, X.G. Study on Ship Detection Technology Based on Complex-Valued Information in Single-Channel SAR Imagery. Master’s Thesis, National University of Defense Technology, Changsha, China, 2019. [Google Scholar]
- El-Darymli, K.; Gill, E.W.; Mcguire, P.; Power, D.; Moloney, C. Automatic target recognition in synthetic aperture radar imagery: A state-of-the-art review. IEEE Access 2016, 4, 6014–6058. [Google Scholar] [CrossRef]
- Gao, G. Statistical modeling of SAR images: A survey. Sensors 2010, 10, 775–795. [Google Scholar] [CrossRef]
- Liu, W.; Cao, H.; Xiong, G.; Liu, J.; Qi, C. GLRT-based detectors with enhanced selectivity for mismatched signals through a random-signal approach. Signal Process. 2026, 240, 110375. [Google Scholar] [CrossRef]
- Bakirci, M. Advanced ship detection and ocean monitoring with satellite imagery and deep learning for marine science applications. Reg. Stud. Mar. Sci. 2025, 81, 103975. [Google Scholar] [CrossRef]
- Adil, M.; Nunziata, F.; Buono, A.; Velotto, D.; Migliaccio, M. Polarimetric Scattering by a Vessel at Different Incidence Angles. IEEE Geosci. Remote Sens. Lett. 2023, 20, 4008605. [Google Scholar] [CrossRef]
- Li, Z.; Deng, Z.; Hao, K.; Zhao, X.; Jin, Z. A Ship Detection Model Based on Dynamic Convolution and an Adaptive Fusion Network for Complex Maritime Conditions. Sensors 2024, 24, 859. [Google Scholar] [CrossRef] [PubMed]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 580–587. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef]
- Cai, Z.; Vasconcelos, N. Cascade r-cnn: Delving into high quality object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 6154–6162. [Google Scholar]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single Shot MultiBox Detector. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; pp. 21–37. [Google Scholar]
- Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal Loss for Dense Object Detection. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2999–3007. [Google Scholar]
- Zhao, Y.; Lv, W.Y.; Xu, S.L.; Wei, J.M.; Wang, G.Z.; Dang, Q.Q.; Liu, Y.; Chen, J. DETRs Beat YOLOs on Real-time Object Detection. In Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 17–21 June 2024; pp. 16965–16974. [Google Scholar]
- He, S.; Wang, Y.Z.; Yang, Z.W. Multi-scale ship detection algorithm in SAR images in complex scenes. Appl. Electron. Tech. 2025, 51, 59–64. [Google Scholar]
- Tang, H.; Gao, S.; Li, S.; Wang, P.; Liu, J.; Wang, S.; Qian, J. A Lightweight SAR Image Ship Detection Method Based on Improved Convolution and YOLOv7. Remote Sens. 2024, 16, 486. [Google Scholar] [CrossRef]
- Liu, C.; Yan, C. FESAR: SAR ship detection model based on local spatial relationship capture and fused convolutional enhancement. Mach. Vis. Appl. 2024, 35, 34. [Google Scholar] [CrossRef]
- Tang, F.L.; Li, W.S.; Qiao, G.J. Ship Detection in SAR Images Based on Adaptive Coordinate Generation and Multi-Frequency Perception. Laser Optoelectron. Prog. 2025, 62, 2028006. [Google Scholar]
- Xu, J.T.; Wang, Z.W.; Zhao, G.P. Small target detection algorithm based on SAR images. Comput. Eng. Des. 2025, 46, 570–577. [Google Scholar]
- Zhang, Y.; Zhang, Y.; Wang, T.; Wang, B.Y. Lightweight research on ship target detection in large-scale SAR images. J. Geo-Inf. Sci. 2025, 27, 256–270. [Google Scholar]
- Gao, D.; Li, M.; Fan, D.Z.; Dong, Y.; Li, Z.X.; Wang, R. A ship detection method from lightweight SAR images under complex backgrounds. J. Geo-Inf. Sci. 2024, 26, 2612–2625. [Google Scholar]
- Xia, R.; Chen, J.; Huang, Z.; Wan, H.; Wu, B.; Sun, L.; Yao, B.; Xiang, H.; Xing, M. CRTransSar: A Visual Transformer Based on Contextual Joint Representation Learning for SAR Ship Detection. Remote Sens. 2022, 14, 1488. [Google Scholar] [CrossRef]
- Qu, H.C.; Shen, L.; Guo, W.; Wang, J.K. Ships Detection in SAR Images Based on Anchor-Free Model With Mask Guidance Features. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 666–675. [Google Scholar] [CrossRef]
- Qin, C.; Zhang, L.P.; Wang, X.Q.; Li, G.; He, Y.; Liu, Y.H. RDB-DINO: An Improved End-to-End Transformer With Refined De-Noising and Boxes for Small-Scale Ship Detection in SAR Images. IEEE Trans. Geosci. Remote Sens. 2025, 63, 1–17. [Google Scholar] [CrossRef]
- Cao, J.; Han, P.H.; Liang, H.P.; Niu, Y. SFRT-DETR: A SAR ship detection algorithm based on feature selection and multi-scale feature focus. Signal Image Video Process. 2025, 19, 115. [Google Scholar]
- Zhang, H.S.; Wu, W.; Xu, J.; Wu, F.; Ji, Y.M. A Ship Detection Method for SAR Images Based on Small Target Feature Enhanced RT-DETR. Comput. Sci. 2025, 1–11. [Google Scholar] [CrossRef]
- Kang, M. Study on the Methods of SAR Ship Detection and Recognition Based on Deep Learning. Master’s Thesis, National University of Defense Technology, Changsha, China, 2017. [Google Scholar]
- Li, J.Q.; Jiang, Z.J.; Yao, L.B.; Jian, T. A Ship Target Fusion Recognition Algorithm Based on Deep Learning. Ship Electron. Eng. 2020, 40, 31–35. [Google Scholar]
- He, J.L. Research on Detection and Classification of Ship Targets in SAR Images. Master’s Thesis, Xidian University, Xi’an, China, 2019. [Google Scholar]
- Fu, X.Y.; Zhou, Z.C.; Meng, H.; Li, S.T. A synthetic aperture radar small ship detector based on transformers and multi-dimensional parallel feature extraction. Eng. Appl. Artif. Intell. 2024, 137, 109049. [Google Scholar] [CrossRef]
- Jiao, L.C.; Zhao, J. A Survey on the New Generation of Deep Learning in Image Processing. IEEE Access 2019, 7, 172231–172263. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, W.; Li, Y.; Jia, Y.D.; Xu, Y.; Ling, Y.; Ma, J.Q. An attention mechanism module with spatial perception and channel information interaction. Complex Intell. Syst. 2024, 10, 5427–5444. [Google Scholar] [CrossRef]
- Srinivas, A.; Lin, T.Y.; Parmar, N.; Shlens, J.; Abbeel, P.; Vaswani, A. Bottleneck Transformers for Visual Recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 16519–16529. [Google Scholar]
- Zhang, Y.; Ye, M.; Zhu, G.Y.; Liu, Y.; Guo, P.Y.; Yan, J.H. FFCA-YOLO for Small Object Detection in Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2024, 62, 1–15. [Google Scholar] [CrossRef]
- Zhang, T.W.; Zhang, X.L.; Ke, X.; Zhan, X.; Shi, J.; Wei, S.J.; Pan, D.C.; Li, J.W.; Su, H.; Zhou, Y.; et al. LS-SSDD-v1.0: A Deep Learning Dataset Dedicated to Small Ship Detection from Large-Scale Sentinel-1 SAR Images. Remote Sens. 2020, 12, 2997. [Google Scholar] [CrossRef]
- Wei, S.J.; Zeng, X.; Qu, Q.; Wang, M.; Su, H.; Shi, J. HRSID: A High-Resolution SAR Images Dataset for Ship Detection and Instance Segmentation. IEEE Access 2020, 8, 120234–120254. [Google Scholar] [CrossRef]
- Tan, M.; Pang, R.; Le, Q.V. EfficientDet: Scalable and efficient object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 10781–10790. [Google Scholar]
- Tian, Z.; Shen, C.; Chen, H.; He, T. Fcos: Fully convolutional one-stage object detection. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Long Beach, CA, USA, 15–20 June 2019; pp. 9627–9636. [Google Scholar]
- Li, C.; Hei, Y.Q.; Xi, L.H.; Li, W.T.; Xiao, Z. GL-DETR: Global-to-Local Transformers for Small Ship Detection in SAR Images. IEEE Geosci. Remote Sens. Lett. 2024, 21, 1–5. [Google Scholar] [CrossRef]
- Wei, S.J.; Su, H.; Ming, J.; Wang, C.; Yan, M.; Kumar, D.; Shi, J.; Zhang, X.L. Precise and robust ship detection for high-resolution SAR imagery based on HR-SDNet. Remote Sens. 2020, 12, 167. [Google Scholar] [CrossRef]
- Gao, S.; Liu, J.M.; Miao, Y.H.; He, Z.J. A high-effective implementation of ship detector for SAR images. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Zhang, S.F.; Chi, C.; Yao, Y.Q.; Lei, Z.; Li, S.Z. Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection. arXiv 2020, arXiv:1912.02424. [Google Scholar]
- Li, Y.X.; Li, X.; Li, W.J.; Hou, Q.B.; Liu, L.; Cheng, M.M.; Yang, J. SARDet-100K: Towards Open-Source Benchmark and ToolKit for Large-Scale SAR Object Detection. arXiv 2025, arXiv:2403.06534. [Google Scholar]
- Du, W.T.; Chen, J.; Zhang, C.C.; Zhao, P.; Wan, H.Y.; Zhou, Z.; Cao, Y.C.; Huang, Z.X.; Li, Y.S.; Wu, B.C. SARNas: A hardware-aware SAR target detection algorithm via multi-objective neural architecture search. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–23. [Google Scholar]
- Wang, P.; Luo, Y.; Zhu, Z.L. FDI-YOLO: Feature disentanglement and interaction network based on YOLO for SAR object detection. Expert Syst. Appl. 2025, 260, 125442. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, X.; Wang, N.N.; Gao, X.B. A robust one-stage detector for multiscale ship detection with complex background in massive SAR images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–12. [Google Scholar] [CrossRef]
- Wang, H.; Liu, S.L.; Lv, Y.X.; Li, S.Y. Scattering information fusion network for oriented ship detection in SAR images. IEEE Geosci. Remote Sens. Lett. 2023, 20, 1–5. [Google Scholar] [CrossRef]
- Cao, R.; Sui, J. A Dynamic Multi-Scale Feature Fusion Network for Enhanced SAR Ship Detection. Sensors 2025, 25, 5194. [Google Scholar] [CrossRef]
- Zhu, H.; Li, D.; Wang, H.; Yang, R.; Liang, J.; Liu, S.; Wan, J. A Progressive Saliency-Guided Small Ship Detection Method for Large Scene SAR Images. Remote Sens. 2025, 17, 3085. [Google Scholar] [CrossRef]
- Khanam, R.; Hussain, M. What is YOLOv5: A deep look into the internal features of the popular object detector. arXiv 2024, arXiv:2407.20892. [Google Scholar] [CrossRef]
- Varghese, R.; Sambath, M. Yolov8: A novel object detection algorithm with enhanced performance and robustness. In Proceedings of the 2024 International Conference on Advances in Data Engineering and Intelligent Computing Systems (ADICS), Chennai, India, 18–19 April 2024; pp. 1–6. [Google Scholar]
- Khanam, R.; Hussain, M. Yolov11: An overview of the key architectural enhancements. arXiv 2024, arXiv:2410.17725. [Google Scholar] [CrossRef]
- Tian, Y.; Ye, Q.; Doermann, D. Yolov12: Attention-centric real-time object detectors. arXiv 2025, arXiv:2502.12524. [Google Scholar]
- Torres, R.; Snoeij, P.; Geudtner, D.; Bibby, D.; Davidson, M.; Attema, E.; Potin, P.; Rommen, B.; Floury, N.; Brown, M.; et al. GMES Sentinel-1 mission. Remote Sens. Environ. 2012, 120, 9–24. [Google Scholar] [CrossRef]
- Pelich, R.; Chini, M.; Hostache, R.; Matgen, P.; Lopez-Martinez, C.; Nuevo, M.; Ries, P.; Eiden, G. Large-scale automatic vessel monitoring based on dual-polarization Sentinel-1 and AIS data. Remote Sens. 2019, 11, 1078. [Google Scholar] [CrossRef]












| Parameter | LS-SSDD | HRSID |
|---|---|---|
| Satellite | Sentinel-1 | Sentinel-1, TerraSAR-X |
| Sensor Mode | IW | SM, ST, HS |
| Resolution | m | 0.5 m, 1 m, 3 m |
| Polarization | VV, VH | HH, HV, VV |
| Image Size | pixels | pixels |
| Yolov8 | BR | CA | BOT3 | MEFA | MSFE | P | R | GFLOPs | Para | FPS | ||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| ✓ | 0.828 | 0.626 | 0.712 | 0.279 | 3.0 | 8.1 | 625.00 | |||||
| ✓ | ✓ | 0.852 | 0.653 | 0.743 | 0.299 | 3.0 | 8.1 | 669.23 | ||||
| ✓ | ✓ | 0.863 | 0.664 | 0.766 | 0.309 | 28.5 | 11.1 | 370.37 | ||||
| ✓ | ✓ | 0.862 | 0.665 | 0.765 | 0.308 | 29.1 | 12.0 | 639.23 | ||||
| ✓ | ✓ | 0.864 | 0.665 | 0.765 | 0.306 | 36.2 | 15.3 | 556.33 | ||||
| ✓ | ✓ | 0.867 | 0.664 | 0.765 | 0.306 | 37.2 | 14.3 | 400.00 | ||||
| ✓ | ✓ | ✓ | 0.864 | 0.669 | 0.76 | 0.307 | 11.1 | 28.5 | 294.12 | |||
| ✓ | ✓ | ✓ | ✓ | 0.871 | 0.674 | 0.772 | 0.311 | 12.0 | 29.1 | 270.27 | ||
| ✓ | ✓ | ✓ | ✓ | 0.868 | 0.673 | 0.758 | 0.297 | 44.9 | 18.5 | 200.00 | ||
| ✓ | ✓ | ✓ | ✓ | ✓ | 0.872 | 0.676 | 0.750 | 0.296 | 45.0 | 18.5 | 200.00 | |
| ✓ | ✓ | ✓ | ✓ | ✓ | 0.880 | 0.681 | 0.780 | 0.313 | 15.2 | 37.8 | 208.33 | |
| ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | 0.867 | 0.682 | 0.781 | 0.316 | 19.4 | 45.6 | 175.44 |
| ✓ | ✓ | ✓ | ✓ | ✓ | 0.851 | 0.644 | 0.744 | 0.293 | 45.6 | 19.4 | 333.33 | |
| ✓ | ✓ | ✓ | ✓ | +FEM | 0.877 | 0.679 | 0.772 | 0.311 | 13.6 | 32.7 | 250.00 | |
| ✓ | ✓ | ✓ | ✓ | ✓ | +FEM | 0.860 | 0.680 | 0.779 | 0.313 | 17.8 | 40.5 | 204.08 |
| ✓ | +WT | ✓ | ✓ | ✓ | ✓ | 0.860 | 0.668 | 0.755 | 0.296 | 3.0 | 8.1 | 183.56 |
| ✓ | +PCA | ✓ | ✓ | ✓ | ✓ | 0.857 | 0.627 | 0.731 | 0.291 | 3.0 | 8.1 | 196.45 |
| Yolov8 | BR | CA | BOT3 | MEFA | MSFE | P | R | GFLOPs | Para | FPS | ||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| ✓ | 0.925 | 0.862 | 0.937 | 0.693 | 3.0 | 8.1 | 190.31 | |||||
| ✓ | ✓ | 0.913 | 0.881 | 0.941 | 0.721 | 3.0 | 8.1 | 192.31 | ||||
| ✓ | ✓ | 0.929 | 0.864 | 0.940 | 0.706 | 28.5 | 11.1 | 357.14 | ||||
| ✓ | ✓ | 0.922 | 0.880 | 0.942 | 0.722 | 29.1 | 11.9 | 238.10 | ||||
| ✓ | ✓ | 0.922 | 0.865 | 0.937 | 0.695 | 36.2 | 15.3 | 153.85 | ||||
| ✓ | ✓ | 0.922 | 0.884 | 0.943 | 0.721 | 37.2 | 14.3 | 243.90 | ||||
| ✓ | ✓ | ✓ | 0.923 | 0.882 | 0.942 | 0.724 | 11.1 | 28.5 | 181.82 | |||
| ✓ | ✓ | ✓ | ✓ | 0.908 | 0.879 | 0.943 | 0.730 | 12.0 | 29.1 | 208.33 | ||
| ✓ | ✓ | ✓ | ✓ | 0.913 | 0.873 | 0.943 | 0.727 | 44.9 | 18.5 | 203.34 | ||
| ✓ | ✓ | ✓ | ✓ | ✓ | 0.915 | 0.862 | 0.943 | 0.729 | 45.0 | 18.5 | 192.31 | |
| ✓ | ✓ | ✓ | ✓ | ✓ | 0.920 | 0.890 | 0.944 | 0.730 | 15.2 | 37.8 | 196.08 | |
| ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | 0.935 | 0.889 | 0.945 | 0.724 | 19.4 | 45.6 | 125.00 |
| ✓ | ✓ | ✓ | ✓ | ✓ | 0.934 | 0.848 | 0.942 | 0.722 | 45.6 | 19.4 | 270.27 | |
| ✓ | ✓ | ✓ | ✓ | +FEM | 0.917 | 0.879 | 0.943 | 0.727 | 13.6 | 32.7 | 322.58 | |
| ✓ | ✓ | ✓ | ✓ | ✓ | +FEM | 0.916 | 0.889 | 0.944 | 0.724 | 17.8 | 40.5 | 132.36 |
| ✓ | +WT | ✓ | ✓ | ✓ | ✓ | 0.931 | 0.869 | 0.939 | 0.698 | 19.4 | 45.6 | 134.45 |
| ✓ | +PCA | ✓ | ✓ | ✓ | ✓ | 0.922 | 0.871 | 0.939 | 0.708 | 19.4 | 45.6 | 145.55 |
| Method | P | R | GFLOPs | Para | FPS | ||
|---|---|---|---|---|---|---|---|
| Faster R-CNN [12] | 0.828 | 0.626 | 0.712 | 0.279 | 134.38 | 41.35 | – |
| Cascade R-CNN [13] | 0.852 | 0.653 | 0.743 | 0.299 | 162.18 | 69.15 | – |
| EfficientDet [40] | 0.864 | 0.669 | 0.76 | 0.307 | 107.52 | 39.40 | – |
| HR-SDNet [43] | 0.871 | 0.674 | 0.772 | 0.311 | 260.39 | 90.92 | – |
| SARNet [44] | 0.583 | 0.819 | 0.762 | – | 104.20 | 42.60 | – |
| GL-DETR [42] | 0.781 | 0.792 | 0.751 | 0.149 | – | – | 18.5 |
| MSIF [45] | 0.865 | 0.781 | 0.751 | – | – | – | – |
| MSFA [46] | 0.858 | 0.712 | 0.754 | 0.286 | – | – | – |
| DRGD-YOLO [51] | – | – | 0.756 | 0.301 | 10.4 | 2.95 | – |
| PSG [52] | – | – | 0.733 | – | – | – | 21.5 |
| YOLO-SARSI [19] | – | – | 0.737 | 0.285 | – | 18.43 | – |
| YOLOv5s [53] | 0.806 | 0.723 | 0.761 | – | 7.1 | 2.5 | 454.55 |
| YOLOv8s [54] | 0.828 | 0.626 | 0.712 | 0.279 | 3.0 | 8.1 | 625.00 |
| YOLOv11 [55] | 0.821 | 0.622 | 0.703 | 0.256 | 6.3 | 25.8 | 476.19 |
| YOLOv12 [56] | 0.805 | 0.636 | 0.722 | 0.270 | 6.3 | 25.3 | 434.60 |
| Our Model | 0.867 | 0.682 | 0.781 | 0.316 | 19.4 | 45.6 | 175.44 |
| Method | P | R | GFLOPs | Para | FPS | ||
|---|---|---|---|---|---|---|---|
| Faster R-CNN [12] | 0.888 | 0.725 | 0.779 | 0.589 | 134.38 | 41.35 | 8.9 |
| Cascade R-CNN [13] | 0.861 | 0.823 | 0.811 | 0.551 | 162.18 | 69.15 | 8.9 |
| SARNas [47] | 0.892 | 0.883 | 0.908 | – | 1.28 | 5.46 | – |
| GL-DETR [42] | 0.914 | 0.875 | 0.921 | – | – | 16.1 | – |
| FESAR [20] | 0.935 | 0.858 | 0.940 | – | 3.5 | 46.8 | – |
| FCOS [41] | 0.776 | 0.902 | 0.877 | 0.373 | 170.60 | 50.80 | 7.8 |
| SSD [15] | 0.941 | 0.584 | 0.820 | 0.582 | 87.80 | 24.40 | 13.1 |
| ROSD [49] | 0.927 | 0.881 | 0.927 | – | 123.50 | 65.80 | – |
| SIF-Net [50] | 0.799 | 0.827 | 0.797 | – | – | – | – |
| DRGD-YOLO [51] | 0.924 | 0.856 | 0.931 | 0.698 | 10.4 | 2.95 | – |
| PSG [52] | – | 0.870 | 0.831 | – | – | – | 18.1 |
| SSD-YOLO [33] | 0.928 | 0.872 | 0.930 | – | 21.30 | 7.37 | – |
| FDI-YOLO [48] | 0.962 | 0.819 | 0.909 | 0.710 | 7.9 | 2.27 | 200 |
| YOLOv5s [53] | 0.863 | 0.821 | 0.904 | 0.602 | 7.1 | 2.5 | 184.45 |
| YOLOv8s [54] | 0.925 | 0.862 | 0.937 | 0.621 | 3.0 | 8.1 | 190.31 |
| YOLOv11 [55] | 0.921 | 0.839 | 0.935 | 0.618 | 6.3 | 25.8 | 202.12 |
| YOLOv12 [56] | 0.910 | 0.821 | 0.911 | 0.602 | 6.3 | 25.3 | 178.34 |
| Our Model | 0.923 | 0.889 | 0.945 | 0.631 | 19.4 | 45.6 | 125.00 |
| Image Location | False Alarm Rate | Detection Rate | Precision | TP | FN | FD |
|---|---|---|---|---|---|---|
| West Coast | 9.6% | 90.4% | 90.4% | 75 | 10 | 8 |
| Mexico Gulf | 12.5% | 87.5% | 87.5% | 28 | 13 | 4 |
| East Coast | 20% | 80% | 80% | 12 | 9 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; Zhu, K.; Guo, H.; Lu, J.; Gong, Z.; Liu, X. Ship Target Detection in SAR Imagery Based on Band Recombination and Multi-Scale Feature Enhancement. Electronics 2025, 14, 4728. https://doi.org/10.3390/electronics14234728
Zhou Y, Zhu K, Guo H, Lu J, Gong Z, Liu X. Ship Target Detection in SAR Imagery Based on Band Recombination and Multi-Scale Feature Enhancement. Electronics. 2025; 14(23):4728. https://doi.org/10.3390/electronics14234728
Chicago/Turabian StyleZhou, Yi, Kun Zhu, Haitao Guo, Jun Lu, Zhihui Gong, and Xiangyun Liu. 2025. "Ship Target Detection in SAR Imagery Based on Band Recombination and Multi-Scale Feature Enhancement" Electronics 14, no. 23: 4728. https://doi.org/10.3390/electronics14234728
APA StyleZhou, Y., Zhu, K., Guo, H., Lu, J., Gong, Z., & Liu, X. (2025). Ship Target Detection in SAR Imagery Based on Band Recombination and Multi-Scale Feature Enhancement. Electronics, 14(23), 4728. https://doi.org/10.3390/electronics14234728

