Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (33)

Search Parameters:
Keywords = moving liquid film

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2071 KiB  
Article
Instability of a Film Falling Down a Bounded Plate and Its Application to Structured Packing
by Giulio Croce and Nicola Suzzi
Fluids 2025, 10(2), 30; https://doi.org/10.3390/fluids10020030 - 27 Jan 2025
Cited by 1 | Viewed by 849
Abstract
The instability of a film falling down a vertical plate with lateral walls, which is the base configuration describing the structured packing geometry, is numerically investigated via the lubrication theory. The solid substrate wettability is imposed through the disjoining pressure, while the assumption [...] Read more.
The instability of a film falling down a vertical plate with lateral walls, which is the base configuration describing the structured packing geometry, is numerically investigated via the lubrication theory. The solid substrate wettability is imposed through the disjoining pressure, while the assumption of a tiny, precursor film thickness allows for modelling a moving contact line. Contact angles up to 60, which falls in the range of structured packing applications, are investigated, thanks to the full implementation of the capillary pressure instead of the small slope approximation. Parametric computations are run for a film falling down a vertical plate bounded by lateral walls, changing the plate width and the flow characteristics. An in-house, finite volume method (FVM) code, previously developed in FORTRAN language and validated in the case of film instability and rivulet flow, is used. The number of observed rivulets, triggered by the instability induced by the lateral walls, is traced for each computation. The numerical results suggest that rivulets with a given wavelength, equal to the one provided by the linear stability analysis, are generated, but only those characterized by a wavelength greater than a minimum threshold, which depends on the substrate wettability, induce partial dewetting of the domain. This allowed for the development of a simplified, statistically based model to predict the effective interface area and the rivulet holdup (required to estimate the mass transfer rate in absorption/distillation applications). Compared to the literature models of the structured packing hydrodynamics, which usually assume a continuous wetting layer, the influence of the flow pattern (continuous film or ensemble of rivulets) on the liquid holdup and on the interfacial area is introduced. The predicted flow regime is successfully verified with evidence from the literature, involving a flow down a corrugated sheet. Full article
(This article belongs to the Special Issue Contact Line Dynamics and Droplet Spreading)
Show Figures

Figure 1

13 pages, 5482 KiB  
Article
Simulation Analysis of the Annular Liquid Disturbance Induced by Gas Leakage from String Seals During Annular Pressure Relief
by Qiang Du, Ruikang Ke, Xiangwei Bai, Cheng Du, Zhaoqian Luo, Yao Huang, Lang Du, Senqi Pei and Dezhi Zeng
Modelling 2024, 5(4), 1674-1686; https://doi.org/10.3390/modelling5040087 - 8 Nov 2024
Viewed by 860
Abstract
Due to the failure of string seals, gas can leak and result in the abnormal annulus pressure in gas wells, so it is necessary to relieve the pressure in gas wells. In the process of pressure relief, the leaked gas enters the annulus, [...] Read more.
Due to the failure of string seals, gas can leak and result in the abnormal annulus pressure in gas wells, so it is necessary to relieve the pressure in gas wells. In the process of pressure relief, the leaked gas enters the annulus, causes a the great disturbance to the annulus flow field, and thus reduces the protection performance of the annular protection fluid in the string. In order to investigate the influence of gas leakage on the annular flow field, a VOF finite element model of the gas-liquid two-phase flow disturbed by gas leakage in a casing was established to simulate the transient flow field in the annular flow disturbed by gas leakage, and the influences of leakage pressure differences, leakage direction, and leakage time on annular flow field disturbance and wall shear force were analyzed. The analysis results showed that the larger leakage pressure difference corresponded to the faster diffusion rate of the leaked gas in the annulus, the faster the flushing rate of the leaked gas against the casing wall, and a larger shear force on the tubing wall was detrimental to the formation of the corrosion inhibitor film on the tubing wall and casing wall. Under the same conditions, the shear action on the outer wall of tubing in the leakage direction of 90° was stronger than that in the leakage directions of 135° and 45° and the diffusion range was also larger. With the increase in leakage time, leaked gas further moved upward in the annulus and the shear effect on the outer wall of tubing was gradually strengthened. The leaked acid gas flushed the outer wall of casing, thus increasing the peeling-off risk of the corrosion inhibitor film. The study results show that the disturbance law of gas leakage to annular protection fluid is clear, and it was suggested to reduce unnecessary pressure relief time in the annulus to ensure the safety and integrity of gas wells. Full article
(This article belongs to the Topic Oil and Gas Pipeline Network for Industrial Applications)
Show Figures

Figure 1

20 pages, 8410 KiB  
Article
A Study on the Lubrication Characteristics and Parameter Influence of a High-Speed Train Herringbone Gearbox
by Shuai Shao, Kailin Zhang, Yuan Yao, Yi Liu, Jieren Yang, Zhuangzhuang Xin and Kuangzhou He
Lubricants 2024, 12(8), 270; https://doi.org/10.3390/lubricants12080270 - 29 Jul 2024
Cited by 7 | Viewed by 1582
Abstract
To investigate the lubrication characteristics in high-speed train gearboxes, a two-stage herringbone gearbox with an idle gear was analyzed. The lubricant flow and distribution were shown using the moving particle semi-implicit (MPS) method. A liquid film flow model was brought in to enhance [...] Read more.
To investigate the lubrication characteristics in high-speed train gearboxes, a two-stage herringbone gearbox with an idle gear was analyzed. The lubricant flow and distribution were shown using the moving particle semi-implicit (MPS) method. A liquid film flow model was brought in to enhance the non-slip wall boundary conditions, enabling MPS to predict the film flow characteristics. This study investigates the influence of gear rotating speed, lubricant volume, and temperature on lubricant flow, liquid film distribution, lubrication state in the meshing zone, and churning power loss. The results indicate that lubrication characteristics depend on the splashing effect of rotating gears and lubricant fluidity. Increasing gear rotating speed and lubricant temperature can improve liquid film distribution on the inner wall, increase lubricant volume, and thus enhance film thickness. The lubricant particles in the meshing zone correlate positively with the gear rotating speed and lubricant volume, correlate negatively with a temperature above 20 °C, and decrease notably at low temperatures. Churning power loss mainly comes from the output gear. As lubricant volume and gear rotating speed increase, churning torque and power loss increase. Above 20 °C, viscosity decreases, reducing power loss; low temperatures lessen lubricant fluidity, reducing churning power loss. Full article
(This article belongs to the Special Issue Friction–Vibration Interactions)
Show Figures

Figure 1

34 pages, 498 KiB  
Review
Leading Paediatric Infectious Diseases—Current Trends, Gaps, and Future Prospects in Oral Pharmacotherapeutic Interventions
by Penelope N. Rampedi, Modupe O. Ogunrombi and Oluwatoyin A. Adeleke
Pharmaceutics 2024, 16(6), 712; https://doi.org/10.3390/pharmaceutics16060712 - 26 May 2024
Cited by 7 | Viewed by 2934
Abstract
Paediatric infectious diseases contribute significantly to global health challenges. Conventional therapeutic interventions are not always suitable for children, as they are regularly accompanied with long-standing disadvantages that negatively impact efficacy, thus necessitating the need for effective and child-friendly pharmacotherapeutic interventions. Recent advancements in [...] Read more.
Paediatric infectious diseases contribute significantly to global health challenges. Conventional therapeutic interventions are not always suitable for children, as they are regularly accompanied with long-standing disadvantages that negatively impact efficacy, thus necessitating the need for effective and child-friendly pharmacotherapeutic interventions. Recent advancements in drug delivery technologies, particularly oral formulations, have shown tremendous progress in enhancing the effectiveness of paediatric medicines. Generally, these delivery methods target, and address challenges associated with palatability, dosing accuracy, stability, bioavailability, patient compliance, and caregiver convenience, which are important factors that can influence successful treatment outcomes in children. Some of the emerging trends include moving away from creating liquid delivery systems to developing oral solid formulations, with the most explored being orodispersible tablets, multiparticulate dosage forms using film-coating technologies, and chewable drug products. Other ongoing innovations include gastro-retentive, 3D-printed, nipple-shield, milk-based, and nanoparticulate (e.g., lipid-, polymeric-based templates) drug delivery systems, possessing the potential to improve therapeutic effectiveness, age appropriateness, pharmacokinetics, and safety profiles as they relate to the paediatric population. This manuscript therefore highlights the evolving landscape of oral pharmacotherapeutic interventions for leading paediatric infectious diseases, crediting the role of innovative drug delivery technologies. By focusing on the current trends, pointing out gaps, and identifying future possibilities, this review aims to contribute towards ongoing efforts directed at improving paediatric health outcomes associated with the management of these infectious ailments through accessible and efficacious drug treatments. Full article
16 pages, 4837 KiB  
Article
Study on the Consumption Mechanism and Lubrication of Mold Powder Based on Non-Sinusoidal Oscillation Mode
by Minghui Cao, Yuanhe Liu and Xingzhong Zhang
Metals 2024, 14(1), 72; https://doi.org/10.3390/met14010072 - 8 Jan 2024
Cited by 2 | Viewed by 1478
Abstract
A two-dimensional mold model coupled multiphase flow, heat transfer, solidification and mold oscillation was established based on the casting parameters of the mold of plant. The accuracy of the model was verified by comparing the measured by plant and calculated mold powder consumption [...] Read more.
A two-dimensional mold model coupled multiphase flow, heat transfer, solidification and mold oscillation was established based on the casting parameters of the mold of plant. The accuracy of the model was verified by comparing the measured by plant and calculated mold powder consumption under the same casting conditions. The mechanism of mold powder consumption and lubrication was analyzed based on the non-sinusoidal oscillation mode, and the effect of non-sinusoidal oscillation parameters on mold powder consumption was discussed. Mold powder consumption was determined by the downward flow velocity of liquid mold powder and the thickness of liquid mold powder film, the liquid mold powder consumption decreased with the decrease of those. When the mold moved downward, the mold powder thickness and downward flow velocity decreased, the minimum mold powder consumption reached at the middle of the negative strip time, and the variation was to opposite when the mold moved upward, the maximum mold powder consumption appeared during the positive strip time. With the decrease of casting speed and modification ratio, and increase of oscillation frequency and oscillation amplitude, the mold powder consumption had the tendency to increase. The nonlinear regression equation was fitted by the Levenberg–Marquardt method combined with the universal global optimization method to evaluate mold powder consumption. Full article
Show Figures

Figure 1

16 pages, 4901 KiB  
Article
Water Entry of a Heated Axisymmetric Vertical Cylinder
by Alen Cukrov, Darko Landek, Yohei Sato, Ivanka Boras and Bojan Ničeno
Energies 2023, 16(24), 7926; https://doi.org/10.3390/en16247926 - 5 Dec 2023
Cited by 3 | Viewed by 1625
Abstract
The computational model that is able to estimate the temperature distribution inside a solid specimen during the film boiling phase of immersion quenching (water entry) process has been presented in this paper. It is based on the prescribed initial temperatures of the solid [...] Read more.
The computational model that is able to estimate the temperature distribution inside a solid specimen during the film boiling phase of immersion quenching (water entry) process has been presented in this paper. It is based on the prescribed initial temperatures of the solid specimen and the liquid quenchant. In addition, the turbulence effects have to be considered using the assumed turbulence kinetic energy value, i.e., the “frozen turbulence” approach, that remains constant thorough the simulation. The studied material is nickel alloy, Inconel 600, for which extensive experimental data are available. The work has been carried out using ANSYS Fluent computational fluid dynamics software and the methods for solution of Stefan problem by Eulerian two fluid VOF model. A satisfactory agreement between the experimental and the calculated data has been achieved, yielding thereby the computationally obtained data that fit to a great extent the prescribed error band of ±10% during the estimated film boiling phase of the immersion quenching process itself. It was, however, found that the temperature calculated in the center of a specimen fits this error band until reaching somewhere t < 6 s due to low presumed turbulence level in the domain. In addition, the explosion of the vapor phase after the body reaches the free surface of the quenchant has also been successfully tracked using the numerical simulation model proposed herein. The major novelty of the present research lies in the fact that a moving boundary problem has been successfully resolved in conjunction with, to a great extent, basic-principle-based heat and mass transfer in a turbulent flow conjugate heat transfer (CHT) numerical simulation using moderate computational resources. Full article
(This article belongs to the Special Issue Multiphase Flow in Energy and Process Systems)
Show Figures

Figure 1

18 pages, 3980 KiB  
Article
Experimental Investigation of a Self-Sustained Liquid Fuel Burner Using Inert Porous Media
by Huaibin Gao, Yongyong Wang, Shouchao Zong, Yu Ma and Chuanwei Zhang
Energies 2023, 16(14), 5564; https://doi.org/10.3390/en16145564 - 23 Jul 2023
Viewed by 1870
Abstract
A self-sustained porous burner without a sprayed atomizer was built for diesel oil. It consisted of metal fiber felt as an evaporator upstream and ceramic foam as an emitter downstream. The liquid fuel underwent film boiling in the porous evaporator and was rapidly [...] Read more.
A self-sustained porous burner without a sprayed atomizer was built for diesel oil. It consisted of metal fiber felt as an evaporator upstream and ceramic foam as an emitter downstream. The liquid fuel underwent film boiling in the porous evaporator and was rapidly evaporated by the heat recirculated from the porous emitter to the porous evaporator through intense irradiative heat flux. The effect of the porous structure and its installation location on the performance of the porous burner was investigated. The results indicated that the evaporation and combustion of liquid fuel could be prompted by the radiation of porous media. The position of the flame moved downstream, and the flame temperature decreased when the distance between the metal fiber felt and the ceramic foam was increased. The lowest NOx concentration was obtained when the distance between the foam and the metal fiber felt was 90 mm. When the diameter of the central hole of the ceramic foam was increased, the position of the flame moved towards the burner outlet, and the flame temperature and NOx emission declined. The flame temperature of the divergent configuration as emitter was higher than that of the convergent configuration, and the flame temperature of the C–D configuration was higher than that of the D–C configuration. Different ceramic foam structures had a significant effect on the temperature and emission in the combustion chamber, which showed that the evaporation and radiation performance of inert porous media burners with different structures is quite different. Full article
(This article belongs to the Section I1: Fuel)
Show Figures

Figure 1

15 pages, 3545 KiB  
Article
Stability Analysis of Hydrodynamic Mechanical Seals in Multifrequency Excitation
by Dianfeng Sun, Jianjun Sun, Fei Liu, Xiaohua Xu and Dongliang Zhang
Coatings 2023, 13(7), 1157; https://doi.org/10.3390/coatings13071157 - 26 Jun 2023
Viewed by 1615
Abstract
The dynamic characteristics of the complex relationship among the sealing system, excitation, and response have a considerable impact on the operational reliability of hydrodynamic mechanical seals, which is a critical issue in the field of sealing theory and technology. Scholars at home and [...] Read more.
The dynamic characteristics of the complex relationship among the sealing system, excitation, and response have a considerable impact on the operational reliability of hydrodynamic mechanical seals, which is a critical issue in the field of sealing theory and technology. Scholars at home and abroad have established dynamic models and calculated the displacement responses of dynamic and static rings in the time domain based on the force on these rings so that the response results can be used for system stability analysis. Neither are the excitation characteristics of cavitation load extracted, nor are the distance response and system leakage rate of the dynamic and static rings analyzed under coupled cavitation and random excitation. In this study, under different operating conditions of the hydrodynamic mechanical seal system, the liquid film evaporation load and seismic load are applied to study the frequency domain response of the distance between the dynamic and static rings and the system leakage rate. The following conclusions have been obtained: Assuming that the chamber pressure is 0.5 MPa and the spring specific pressure is 0.055 MPa, during stable operation, the distance between the moving and stationary rings at 1500 rpm~3000 rpm speeds is 1.12 μm~3.05 μm. For a specific spring pressure of 0.055 MPa, medium pressures of 0.2 MPa~1.0 MPa, and spindle speeds of 1500 rpm~3000 rpm, the excitation force is 30 N, and the frequency is 30 Hz, And the seismic load is assumed to be sinusoidal, the excitation force is 6 N, the fundamental frequency is 120 Hz, and the system leak rate is in 0.1 mL/min~1.3 mL/min. Under multi-frequency excitation coupling, the distance between the dynamic and static rings will decrease as the pressure of the medium in the sealing cavity increases, and this will increase with the increase in the rotating speed. The leakage rate of the system will increase with the increase in the rotating speed and the pressure of the medium, and the test value is largely consistent with the theoretical value. Full article
(This article belongs to the Section Liquid–Fluid Coatings, Surfaces and Interfaces)
Show Figures

Figure 1

16 pages, 7740 KiB  
Article
Tribological Behavior of Doped DLC Coatings in the Presence of Ionic Liquid Additive under Different Lubrication Regimes
by Mohammadamin Sadeghi, Takeru Omiya, Filipe Fernandes, Luís Vilhena, Amilcar Ramalho and Fábio Ferreira
Coatings 2023, 13(5), 891; https://doi.org/10.3390/coatings13050891 - 9 May 2023
Cited by 11 | Viewed by 3051
Abstract
Diamond-like carbon (DLC) coatings are widely used in industries that require high durability and wear resistance, and low friction. The unique characteristics of DLC coatings allow for the possibility of creating adsorption sites for lubricant additives through the doping process. In this study, [...] Read more.
Diamond-like carbon (DLC) coatings are widely used in industries that require high durability and wear resistance, and low friction. The unique characteristics of DLC coatings allow for the possibility of creating adsorption sites for lubricant additives through the doping process. In this study, the combined use of europium-doped diamond-like carbon (Eu-DLC), gadolinium-doped diamond-like carbon (Gd-DLC), and pure DLC coatings and an ionic liquid (IL) additive, namely, trihexyltetradecylphosphonium bis (2-ethylhexyl) phosphate [P66614] [DEHP], with a 1 wt.% concentration in polyalphaolefin (PAO) 8 as a base lubricant was investigated. Higher hardness, higher thin-film adhesion, a higher ratio of hardness to elastic modulus, and a higher plastic deformation resistance factor were achieved with the Gd-DLC coating. The CoF of the Gd-DLC coating paired with the IL was superior compared to the other pairs in all lubrication regimes, and the pure DLC coating had a better performance than the Eu-DLC coating. The wear could not be quantified due to the low wear on the surface of the DLC coatings. The friction reduction demonstrates that tribological systems combining Gd-DLC thin films with an IL can be a potential candidate for future research and development efforts to reduce friction and increase the efficiency of moving parts in internal combustion engines, for instance. Full article
(This article belongs to the Special Issue Trends in Coatings and Surface Technology)
Show Figures

Figure 1

13 pages, 2247 KiB  
Article
Molecular Simulation of Pervaporation on Polyurethane Membranes
by Ivan P. Anashkin, Alexander V. Klinov and Ilsiya M. Davletbaeva
Membranes 2023, 13(2), 128; https://doi.org/10.3390/membranes13020128 - 19 Jan 2023
Cited by 3 | Viewed by 2427
Abstract
This article discusses a molecular simulation of membrane processes for the separation of liquid mixtures during pervaporation. A method for simulating the structure of polyurethane membranes was developed. The method was based on the known mechanisms of the formation of macromolecules from constituent [...] Read more.
This article discusses a molecular simulation of membrane processes for the separation of liquid mixtures during pervaporation. A method for simulating the structure of polyurethane membranes was developed. The method was based on the known mechanisms of the formation of macromolecules from constituent monomers. For the formation of a chemical bond between the monomers, values of the parameters of the potentials of intermolecular interactions were set so that bonds were formed only between the corresponding atoms. The algorithm was validated to produce polymer films from diphenylmethane diisocyanate (MDI) and amino ethers of boric acid (AEBA). The polymer film obtained according to the developed algorithm was used to study the adsorption of ethanol and water. The concentration distributions of the components inside the polymer film were obtained for films of various thicknesses. Modifications of the DCV-GCMD method were proposed for the molecular simulation of pervaporation. The algorithm was based on maintaining a constant density of the mixture in the control volume. After the molecules were added to the control volume, thermodynamic equilibrium was established. During this process, molecules moved only in the control volume, while the rest of the molecules were fixed. The proposed algorithm was used to calculate the flows of water and ethanol through the polymer film. Full article
Show Figures

Figure 1

21 pages, 6019 KiB  
Article
A Novel Method for Simulating Micro-Scale Water Droplet Movements
by Zhijie Lin, Zhongtian Hu, Senyu Lou, Lingling Guo and Jingjing Chen
Separations 2022, 9(12), 451; https://doi.org/10.3390/separations9120451 - 19 Dec 2022
Viewed by 2428
Abstract
Micro-scale fluids are tiny droplets that adhere to the surface of an object as a result of rainfall, perspiration, etc. Micro-scale fluid simulation is widely used in fields such as film and games. The existing state-of-the-art simulation methods are not suitable for simulating [...] Read more.
Micro-scale fluids are tiny droplets that adhere to the surface of an object as a result of rainfall, perspiration, etc. Micro-scale fluid simulation is widely used in fields such as film and games. The existing state-of-the-art simulation methods are not suitable for simulating water droplets moving on a surface due to the fact that the water droplets cannot leave the texture space and their movements always depend on the continuous UV region. In this study, a novel method for simulating water droplets moving on a surface is proposed. We divide the droplets into two types: (1) two-dimensional droplets and (2) three-dimensional droplets and we implement the transformation between two-dimensional droplets in the texture space and three-dimensional droplets in the physical space. In the preprocessing phase, jump textures, coordinate transform textures and force field textures are generated in the non-continuous UV regions on a 3D object’s surface. In the process of simulation, water droplets are treated as rigid particles. The Velocity-Verlet-based method is adopted to solve the motion trajectory equation, and the boundary droplet transport algorithm is implemented based on jump texture. In the process of rendering, the height map is generated according to the simulation in the texture space and then the liquid bridge phenomenon between the droplets is simulated based on the Gaussian blur and the color rank algorithm. Finally, they are converted into normal texture-rendering droplets. The experimental result shows that the proposed method works well when simulating the movements of water droplets on a surface in a real-time manner, and it makes the movement simulation of dimension-reducing water droplets no longer depend on the continuous surface and continuous UV region. Moreover, the simulation efficiency of the proposed method is two times higher than that of the Smoothed Particle Hydrodynamics (SPH) method. Full article
(This article belongs to the Special Issue Advances in Separation Engineering)
Show Figures

Figure 1

11 pages, 2141 KiB  
Review
Development and Prospect of Viewing Angle Switchable Liquid Crystal Devices
by Le Zhou and Sijie Liu
Crystals 2022, 12(10), 1347; https://doi.org/10.3390/cryst12101347 - 24 Sep 2022
Cited by 22 | Viewed by 4909
Abstract
As we move from the industrial age to the information age, nowadays, the opportunity to access personal information in public increases as personal computers (PCs), cell phones, automated teller machines (ATM) and other portable display devices have come into wider use, so it [...] Read more.
As we move from the industrial age to the information age, nowadays, the opportunity to access personal information in public increases as personal computers (PCs), cell phones, automated teller machines (ATM) and other portable display devices have come into wider use, so it is well suited for these liquid crystal displays (LCDs) to switch between wide viewing angle (WVA) (share mode) and narrow viewing angle (NVA) (privacy mode). In this review, we have summarized structures, principles and characteristics of several devices that show great potential application in controllable anti-peeping displays in the eyesight of materials consist of pure liquid crystals (LCs), polymer dispersed LCs (PDLCs), polymer stabilized LCs (PSLCs) or polymer network LCs (PNLCs) and non-LCs, which provides systematic information for next-generation viewing angle-controllable LCDs with lower operating voltage, higher transmittance and good viewing angle controllable characteristics. Because LCs/polymer composite films have the advantages of long life, low power consumption and energy saving, they are regarded as the mainstream technology of next-generation viewing angle controllable displays. Full article
(This article belongs to the Special Issue Advances in Liquid Crystal Optical Devices)
Show Figures

Figure 1

20 pages, 11175 KiB  
Article
Modeling Solution Drying by Moving a Liquid-Vapor Interface: Method and Applications
by Yanfei Tang, John E. McLaughlan, Gary S. Grest and Shengfeng Cheng
Polymers 2022, 14(19), 3996; https://doi.org/10.3390/polym14193996 - 23 Sep 2022
Cited by 8 | Viewed by 2739
Abstract
A method of simulating the drying process of a soft matter solution with an implicit solvent model by moving the liquid-vapor interface is applied to various solution films and droplets. For a solution of a polymer and nanoparticles, we observe “polymer-on-top” stratification, similar [...] Read more.
A method of simulating the drying process of a soft matter solution with an implicit solvent model by moving the liquid-vapor interface is applied to various solution films and droplets. For a solution of a polymer and nanoparticles, we observe “polymer-on-top” stratification, similar to that found previously with an explicit solvent model. Furthermore, “polymer-on-top” is found even when the nanoparticle size is smaller than the radius of gyration of the polymer chains. For a suspension droplet of a bidisperse mixture of nanoparticles, we show that core-shell clusters of nanoparticles can be obtained via the “small-on-outside” stratification mechanism at fast evaporation rates. “Large-on-outside” stratification and uniform particle distribution are also observed when the evaporation rate is reduced. Polymeric particles with various morphologies, including Janus spheres, core-shell particles, and patchy particles, are produced from drying droplets of polymer solutions by combining fast evaporation with a controlled interaction between the polymers and the liquid-vapor interface. Our results validate the applicability of the moving interface method to a wide range of drying systems. The limitations of the method are pointed out and cautions are provided to potential practitioners on cases where the method might fail. Full article
(This article belongs to the Special Issue Molecular Dynamics Simulations of Polymers)
Show Figures

Figure 1

13 pages, 3735 KiB  
Article
Upgraded Combined Inject-and-Transfer System for Serial Femtosecond Crystallography
by Keondo Lee, Donghyeon Lee, Jaehyun Park, Jong-Lam Lee, Wan Kyun Chung, Yunje Cho and Ki Hyun Nam
Appl. Sci. 2022, 12(18), 9125; https://doi.org/10.3390/app12189125 - 11 Sep 2022
Cited by 7 | Viewed by 2098
Abstract
Serial femtosecond crystallography (SFX) using an X-ray free-electron laser (XFEL) can be applied to determine the room-temperature structure of target molecules while minimizing radiation damage and visualizing molecular dynamics. In SFX, a sample delivery system is required to deliver microcrystals to the XFEL [...] Read more.
Serial femtosecond crystallography (SFX) using an X-ray free-electron laser (XFEL) can be applied to determine the room-temperature structure of target molecules while minimizing radiation damage and visualizing molecular dynamics. In SFX, a sample delivery system is required to deliver microcrystals to the XFEL beam path in a serial manner. We recently developed a sample delivery method, the combined inject-and-transfer system (BITS), which is a hybrid method based on the injector and fixed-target scanning approach. In this study, we introduced recently upgraded hardware to move the injection needle in the direction of the XYZ-axis and a graphic user interface for user motion control. Furthermore, we report that the viscous solution containing 10% (w/v) PEG 3350 or PEG 6000 that is widely used for protein crystallization can be stably deposited on polyimide film with a hydrophobic surface without any special treatment. Moreover, the development of an inject-and-diffuse method for time-resolved studies with liquid applications in the BITS and its preliminary results are reported. This study provides up-to-date instrument information to SFX users using BITS and provides insights to instrument developers for SFX. Full article
(This article belongs to the Section Optics and Lasers)
Show Figures

Figure 1

16 pages, 1980 KiB  
Article
Numerical Simulation of Single Droplet Impingement upon Dynamic Liquid Film Obliquely
by Shanshan Yang, Quanyuan Zeng, Xiaohua Zhang, Chunzhu Dong and Ling Guan
Mathematics 2022, 10(17), 3193; https://doi.org/10.3390/math10173193 - 4 Sep 2022
Cited by 5 | Viewed by 2149
Abstract
To better understand the application of droplet impingement in industry and agriculture, in this paper, the coupled level set and volume of fluid (CLSVOF) method is applied to study droplet oblique impact on a dynamic liquid [...] Read more.
To better understand the application of droplet impingement in industry and agriculture, in this paper, the coupled level set and volume of fluid (CLSVOF) method is applied to study droplet oblique impact on a dynamic liquid film. The conclusions are the following: the downstream crown height increases and then decreases as the impact angle increases, whereas upstream crown height and spreading length decrease significantly; moreover, the spreading length and upstream crown height increase with the increase of film velocity, while the downstream crown height decreases instead. The increase of gas density inhibits both upstream and downstream crowns. When the fluid viscosity decreases or the impact velocity increases, the crown height increases significantly, which easily leads to crown rupture or droplet splash. The increase in impact velocity leads to an increase in spreading length; however, viscosity has almost no effect on the spreading length. Full article
(This article belongs to the Special Issue Numerical Methods for Computational Fluid Dynamics)
Show Figures

Figure 1

Back to TopTop