A Novel Method for Simulating Micro-Scale Water Droplet Movements
Abstract
:1. Introduction
- (1)
- The paper proposes a new method of downscaling micro-scale fluid simulation, which enables the droplet to be lossless transformed and continuously simulated in the 3D world space and 2D texture space, keeping the physical properties and motion of the droplet unchanged before and after the transformation, with realistic simulation effect and higher simulation efficiency than the existing downscaling simulation methods;
- (2)
- The paper proposes a jump texture, which enables the downscaled fluid simulation method to be carried out between discontinuous UV islands so that the user does not need to ensure the continuity of UV division, which is more convenient to use;
- (3)
- The paper proposes a 2D image processing algorithm-based liquid bridge simulation method between droplets, which is simple, efficient and easy to use, with intuitive parameters for user adjustment.
2. Related Work
3. Method
3.1. Preprocessing
3.2. Droplet Type Conversion
3.3. The Trajectory Equation of Water Droplets
3.4. Boundary Water Droplet Transmission
3.5. Separation and Coalescence of Water Droplets
3.6. Liquid Bridge Simulation
3.7. Water Droplets Rendering
4. Experiment
4.1. Experimental Settings
4.2. Experimental Procedures
4.3. Experimental Result
4.4. Analysis and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pathak, A.; Raessi, M. A 3D, fully Eulerian, VOF-based solver to study the interaction between two fluids and moving rigid bodies using the fictitious domain method. J. Comput. Phys. 2016, 311, 87–113. [Google Scholar] [CrossRef] [Green Version]
- Qinghong, Z.; Shuyan, W.; Huilin, L.; Guodong, L.; Shuai, W.; Guangbo, Z. A coupled Eulerian fluid phase-Eulerian solids phase-Lagrangian discrete particles hybrid model applied to gas-solids bubbling fluidized beds. Powder Technol. 2017, 315, 385–397. [Google Scholar] [CrossRef]
- Tompson, J.; Schlachter, K.; Sprechmann, P.; Perlin, K. Accelerating Eulerian Fluid Simulation With Convolutional Networks. arXiv 2016, arXiv:1607.03597. [Google Scholar]
- Liu, Y.; Dinh, N.; Smith, R. A Validation and Uncertainty Quantification Framework for Eulerian-Eulerian Two-Fluid Model based Multiphase-CFD Solver. Part I: Methodology. arXiv 2018, arXiv:1806.03373. [Google Scholar]
- Adnan, M.; Sun, J.; Ahmad, N.; Wei, J.J. Validation and sensitivity analysis of an Eulerian-Eulerian two-fluid model (TFM) for 3D simulations of a tapered fluidized bed. Powder Technol. 2022, 396, 490–518. [Google Scholar] [CrossRef]
- Samulyak, R.; Wang, X.; Chen, H.-C. Lagrangian particle method for compressible fluid dynamics. J. Comput. Phys. 2018, 362, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Kehl, C.; van Sebille, E.; Gibson, A. Speeding up Python-based Lagrangian Fluid-Flow Particle Simulations via Dynamic Collection Data Structures. arXiv 2021, arXiv:2105.00057. [Google Scholar]
- Grossi, E.; Shabana, A.A. Verification of a Total Lagrangian ANCF Solution Procedure for Fluid–Structure Interaction Problems. J. Verif. Valid. Uncertain. Quantif. 2017, 2, 041001. [Google Scholar] [CrossRef]
- Li, Z.; Farimani, A.B. Graph Neural Network for Lagrangian Fluid Simulation. APS Division of Fluid Dynamics Meeting Abstract. 2020. Available online: https://ui.adsabs.harvard.edu/abs/2020APS..DFDR09002L/abstract (accessed on 10 November 2022). [CrossRef]
- Nadkarni-Ghosh, S.; Bhattacharjee, J. Stability Analysis of Fluid Flows Using Lagrangian Perturbation Theory (LPT): Application to the Plane Couette Flow. Front. Phys. 2018, 6, 37. [Google Scholar] [CrossRef] [Green Version]
- Pfaff, T.; Thuereyb, N.; Gross, M.H. Lagrangian vortex sheets for animating fluids. ACM Trans. Graph. 2012, 31, 1–8. [Google Scholar] [CrossRef]
- Zhu, B.; Yang, X.; Fan, Y. Creating and Preserving Vortical Details in SPH Fluid. Comput. Graph. Forum 2010, 29, 2207–2214. [Google Scholar] [CrossRef]
- Wilczek, M.; Lalescu, C. A novel bridging relation connecting Eulerian and Lagrangian statistics. In Proceedings of the 70th Annual Meeting of the APS Division of Fluid Dynamics, Denver, CO, USA, 19–21 November 2017. [Google Scholar]
- Zwick, D.; Hackl, J.; Balachandar, S. Scalable Methods for Eulerian-Lagrangian Simulation Applied to Compressible Multiphase Flows. APS Division of Fluid Dynamics Meeting Abstract. 2017. Available online: https://ui.adsabs.harvard.edu/abs/2017APS..DFD.L2012Z/abstract (accessed on 10 November 2022).
- Weber, Y.; Jolivet, V.; Gilet, G.; Ghazanfarpour, D. A multiscale model for rain rendering in real-time. Comput. Graph. 2015, 50, 61–70. [Google Scholar] [CrossRef]
- Ding, W.; Zhu, Z.; Chen, X.; Zhang, C.; Liang, Y.; Li, S.; Fan, H.; Feng, H. Real-time rain and snow rendering. In Proceedings of the 2013 Second International Conference on Agro-Geoinformatics (Agro-Geoinformatics), Fairfax, VA, USA, 12–16 August 2013. [Google Scholar]
- Chen, K.C.; Chen, P.S.; Wong, S.-K. A heuristic approach to the simulation of water drops and flows on glass panes. Comput. Graph. 2013, 37, 963–973. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, H.; Wang, S.; Tong, Y.; Zhou, K. A deformable surface model for real-time water drop animation. IEEE Trans. Vis. Comput. Graph. 2012, 18, 1281–1289. [Google Scholar] [CrossRef]
- Xu, S.; Zhang, X.; Chen, Y.; Yu, H.; Wu, E. Interactive simulation for water drop effects. J. Comput.-Aided Des. Comput. Graph. 2013, 25, 1159–1168. [Google Scholar]
- Yang, M.; Li, X.; Liu, Y.; Yang, G.; Wu, E. A novel surface tension formulation for SPH fluid simulation. Vis. Comput. 2017, 33, 597–606. [Google Scholar] [CrossRef]
- Lin, A.J.; Cheng, F. Modelling Three Dimensional Animated, Detailed, and Emotional Facial Expressions. Int. J. Model. Simul. 2013, 33, 47–53. [Google Scholar] [CrossRef] [Green Version]
- Alkawaz, M.H.; Basori, A.H.; Mohamad, D.; Mohamed, F. Realistic Facial Expression of Virtual Human Based on Color, Sweat, and Tears Effects. Sci. World J. 2014, 2014, 367013. [Google Scholar] [CrossRef] [Green Version]
- Xiao, M.; Liu, Z.; Shi, J.; Jin, W.; Liu, T.; Liu, C.; Liu, B. Simulation method of agents’ tears flowing. J. Comput. Aided Des. Graph. 2015, 27, 1669–1674. [Google Scholar]
- Djado, K.; Egli, R.; Granger, F. Particle-based drop animation on meshes in real time. Comput. Animat. Virtual Worlds 2012, 23, 301–309. [Google Scholar] [CrossRef]
- Adrien, B.; Nate, C.; Manu, P. Dancing droplets: Contact angle, drag, and confinement. APS Division of Fluid Dynamics (Fall), Boston, MA, USA; 2015; A32.009; Available online: https://absimage.aps.org/image/DFD15/MWS_DFD15-2015-002394.pdf (accessed on 10 November 2022).
- Gehrke, S.; Wirth, K.-E. Interaction phenomena between liquid droplets and hot particles—Captured via high-speed camera. Particuology 2009, 7, 260–263. [Google Scholar] [CrossRef]
- Hao, P.; Lv, C.; He, F. Evaporating behaviors of water droplet on superhydrophobic surface. Sci. China Phys. Mech. Astron. 2012, 55, 2463–2468. [Google Scholar] [CrossRef]
- Sprittles, J.E.; Shikhmurzaev, Y.D. Coalescence of liquid drops: Different models versus experiment. Phys. Fluids 2012, 24, 2198–2207. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Zhao, Y.; Gao, H.; Zheng, J. Liquid bridge force between two unequal-sized spheres or a sphere and a plane. Particuology 2011, 9, 374–380. [Google Scholar] [CrossRef]
- Wei, Z.; He, M.; Zhao, W.; Li, Y. Thermodynamic analysis of liquid bridge for fixed volume in atomic force microscope. Sci. China Phys. Mech. Astron. 2013, 56, 1962–1969. [Google Scholar] [CrossRef]
- Hirata, A.; Nishizawa, S.; Sakurai, M. Experimental Results of Oscillatory Marangoni Convection in a Liquid Bridge under Normal Gravity. J. Jpn. Soc. Microgravity Appl. 1997, 14, 122–129. [Google Scholar]
- Ding, Y.; Liao, Y. Optimization and Implementation of Gaussian Blur Algorithm. Mod. Comput. 2010, 8, 77–100. [Google Scholar]
Negative Bit | Alpha Value | ||
---|---|---|---|
X | Y | Z | |
+ | + | + | [0.1, 0.19] |
+ | + | − | [0.2, 0.29] |
+ | − | + | [0.3, 0.39] |
+ | − | − | [0.4, 0.49] |
− | + | + | [0.5, 0.59] |
− | + | − | [0.6, 0.69] |
− | − | + | [0.7, 0.79] |
− | − | − | [0.8, 0.90] |
Method | 500 Particles | 1000 Particles | 5000 Particles | 10,000 Particles |
---|---|---|---|---|
3D SPH | 35 | 24 | 15 | 8 |
Dimensional reduction SPH | 80 | 35 | 15 | 8 |
The proposed method | 200 | 143 | 85 | 65 |
Method | 200 Triangles | 1000 Triangles | 12,000 Triangles | 23,000 Triangles |
---|---|---|---|---|
3D SPH | 15 | 10 | 3 | 1 |
Dimensional reduction SPH | 20 | 18 | 15 | 14 |
The proposed method | 85 | 85 | 81 | 79 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Z.; Hu, Z.; Lou, S.; Guo, L.; Chen, J. A Novel Method for Simulating Micro-Scale Water Droplet Movements. Separations 2022, 9, 451. https://doi.org/10.3390/separations9120451
Lin Z, Hu Z, Lou S, Guo L, Chen J. A Novel Method for Simulating Micro-Scale Water Droplet Movements. Separations. 2022; 9(12):451. https://doi.org/10.3390/separations9120451
Chicago/Turabian StyleLin, Zhijie, Zhongtian Hu, Senyu Lou, Lingling Guo, and Jingjing Chen. 2022. "A Novel Method for Simulating Micro-Scale Water Droplet Movements" Separations 9, no. 12: 451. https://doi.org/10.3390/separations9120451
APA StyleLin, Z., Hu, Z., Lou, S., Guo, L., & Chen, J. (2022). A Novel Method for Simulating Micro-Scale Water Droplet Movements. Separations, 9(12), 451. https://doi.org/10.3390/separations9120451