Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (186)

Search Parameters:
Keywords = mouthfeel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
52 pages, 3790 KiB  
Article
The Identification and Analysis of Novel Umami Peptides in Lager Beer and Their Multidimensional Effects on the Sensory Attributes of the Beer Body
by Yashuai Wu, Ruiyang Yin, Liyun Guo, Yumei Song, Xiuli He, Mingtao Huang, Yi Ren, Xian Zhong, Dongrui Zhao, Jinchen Li, Mengyao Liu, Jinyuan Sun, Mingquan Huang and Baoguo Sun
Foods 2025, 14(15), 2743; https://doi.org/10.3390/foods14152743 - 6 Aug 2025
Abstract
This study was designed to systematically identify novel umami peptides in lager beer, clarify their molecular interactions with the T1R1/T1R3 receptor, and determine their specific effects on multidimensional sensory attributes. The peptides were characterized by LC-MS/MS combined with de novo sequencing, and 906 [...] Read more.
This study was designed to systematically identify novel umami peptides in lager beer, clarify their molecular interactions with the T1R1/T1R3 receptor, and determine their specific effects on multidimensional sensory attributes. The peptides were characterized by LC-MS/MS combined with de novo sequencing, and 906 valid sequences were obtained. Machine-learning models (UMPred-FRL, Tastepeptides-Meta, and Umami-MRNN) predicted 76 potential umami peptides. These candidates were docked to T1R1/T1R3 with the CDOCKER protocol, producing 57 successful complexes. Six representative peptides—KSTEL, DELIK, DIGISSK, IEKYSGA, DEVR, and PVPL—were selected for 100 ns molecular-dynamics simulations and MM/GBSA binding-energy calculations. All six peptides stably occupied the narrow cleft at the T1R1/T1R3 interface. Their binding free energies ranked as DEVR (−44.09 ± 5.47 kcal mol−1) < KSTEL (−43.21 ± 3.45) < IEKYSGA (−39.60 ± 4.37) ≈ PVPL (−39.53 ± 2.52) < DELIK (−36.14 ± 3.11) < DIGISSK (−26.45 ± 4.52). Corresponding taste thresholds were 0.121, 0.217, 0.326, 0.406, 0.589, and 0.696 mmol L−1 (DEVR < KSTEL < IEKYSGA < DELIK < PVPL < DIGISSK). TDA-based sensory validation with single-factor additions showed that KSTEL, DELIK, DEVR, and PVPL increased umami scores by ≈21%, ≈22%, ≈17%, and ≈11%, respectively, while DIGISSK and IEKYSGA produced marginal changes (≤2%). The short-chain peptides thus bound with high affinity to T1R1/T1R3 and improved core taste and mouthfeel but tended to amplify certain off-flavors, and the long-chain peptides caused detrimental impacts. Future formulation optimization should balance flavor enhancement and off-flavor suppression, providing a theoretical basis for targeted brewing of umami-oriented lager beer. Full article
(This article belongs to the Topic Advances in Analysis of Food and Beverages, 2nd Edition)
Show Figures

Graphical abstract

21 pages, 2195 KiB  
Article
Physicochemical and Sensory Analysis of Apple Cream Fillings for Use in the Pastry Industry
by Marios Liampotis, Zacharias Ioannou, Kosmas Ellinas and Konstantinos Gkatzionis
Appl. Sci. 2025, 15(15), 8386; https://doi.org/10.3390/app15158386 - 29 Jul 2025
Viewed by 248
Abstract
The sensory and physicochemical properties of three different recipes for apple cream filling were investigated, focusing on their potential to enhance consumer appeal in pastry applications. Two of the recipes incorporate dried apple cubes (AP1, 48% and AP2, 38% w/w, respectively), while [...] Read more.
The sensory and physicochemical properties of three different recipes for apple cream filling were investigated, focusing on their potential to enhance consumer appeal in pastry applications. Two of the recipes incorporate dried apple cubes (AP1, 48% and AP2, 38% w/w, respectively), while the third recipe (PD) features a cube-free formulation with higher quantities of sugar, potato starch, xanthan gum, dextrose, cinnamon and malic acid. The study evaluated the impact of ingredient composition and processing techniques on sensory attributes. The results indicate that AP1 and AP2 resulted in higher moisture, ash and fiber content but lower viscosity, pH values and emulsion stability compared to PD. All samples exhibited pseudoplastic behavior. The AP2 sample exhibited the most hydrophilic behavior. FT-IR spectra have shown three main peaks, i.e., O-H (3300–3320 cm−1), C=O (1640–1730 cm−1) and C-O (1025–1030 cm−1) stretching vibrations. AP1 and AP2 significantly enhanced hardness and cohesion, providing a more engaging sensory experience. PD offers a smoother, creamier texture with lower inhomogeneity compared to AP1 and AP2 samples, making it ideal for consumers who prefer a uniform mouthfeel. This research demonstrates the critical role of formulation choices in tailoring sensory and physicochemical properties of apple cream fillings to meet diverse consumer preferences. Full article
Show Figures

Figure 1

29 pages, 2969 KiB  
Review
Oleogels: Uses, Applications, and Potential in the Food Industry
by Abraham A. Abe, Iolinda Aiello, Cesare Oliviero Rossi and Paolino Caputo
Gels 2025, 11(7), 563; https://doi.org/10.3390/gels11070563 - 21 Jul 2025
Viewed by 384
Abstract
Oleogels are a subclass of organogels that present a healthier alternative to traditional saturated and trans solid fats in food products. The unique structure and composition that oleogels possess make them able to provide desirable sensory and textural features to a range of [...] Read more.
Oleogels are a subclass of organogels that present a healthier alternative to traditional saturated and trans solid fats in food products. The unique structure and composition that oleogels possess make them able to provide desirable sensory and textural features to a range of food products, such as baked goods, processed meats, dairy products, and confectionery, while also improving the nutritional profiles of these food products. The fact that oleogels have the potential to bring about healthier food products, thereby contributing to a better diet, makes interest in the subject ever-increasing, especially due to the global issue of obesity and related health issues. Research studies have demonstrated that oleogels can effectively replace conventional fats without compromising flavor or texture. The use of plant-based gelators brings about a reduction in saturated fat content, as well as aligns with consumer demands for clean-label and sustainable food options. Oleogels minimize oil migration in foods due to their high oil-binding capacity, which in turn enhances food product shelf life and stability. Although oleogels are highly advantageous, their adoption in the food industry presents challenges, such as oil stability, sensory acceptance, and the scalability of production processes. Concerns such as mixed consumer perceptions of taste and mouthfeel and oxidative stability during processing and storage evidence the need for further research to optimize oleogel formulations. Addressing these limitations is fundamental for amplifying the use of oleogels and fulfilling their promise as a sustainable and healthier fat alternative in food products. As the oleogel industry continues to evolve, future research directions will focus on enhancing understanding of their properties, improving sensory evaluations, addressing regulatory challenges, and promoting sustainable production practices. The present report summarizes and updates the state-of-the-art about the structure, the properties, and the applications of oleogels in the food industry to highlight their full potential. Full article
(This article belongs to the Special Issue Functionality of Oleogels and Bigels in Foods)
Show Figures

Figure 1

27 pages, 4366 KiB  
Article
Fuzzy Logic-Based Optimization for Pseudocereal Processing: A Case Study on Buckwheat
by Mariana-Liliana Păcală, Anca Șipoș, Otto Ketney and Alexandrina Sîrbu
Processes 2025, 13(7), 2309; https://doi.org/10.3390/pr13072309 - 20 Jul 2025
Viewed by 485
Abstract
In response to the increasing consumer interest in the health benefits of plant-based foods, in this study, fuzzy logic modeling (FLM) was used to optimize the lactic fermentation process of several buckwheat (Fagopyrum esculentum)-based substrates (B-bSs), which were bio-prospected [...] Read more.
In response to the increasing consumer interest in the health benefits of plant-based foods, in this study, fuzzy logic modeling (FLM) was used to optimize the lactic fermentation process of several buckwheat (Fagopyrum esculentum)-based substrates (B-bSs), which were bio-prospected for the development of pseudocereal-based fermented foodstuffs. The experimental methodology involved obtaining B-bSs, either green or roasted, under various milling conditions and subjecting them to two different types of thermal treatment. This experimental design allowed us to obtain a set of experimental data, based on which a fuzzy system was developed and calibrated. The main physicochemical characteristics (pH, total titratable acidity, dynamic viscosity, and color) and sensory attributes (appearance, color, aroma, taste, texture or mouthfeel, and overall acceptability) of B-bSs were evaluated. The fuzzy logic approach proved useful for monitoring the evolution of lactic fermentation and for the rapid and accurate identification of situations that require technological interventions, acting as a reliable tool for the ongoing optimization of fermentation processes. Our study’s results showed that the optimal technological variants identified using FLM corresponded to green buckwheat milled with a 0.12 mm gap disk and a hammer mill and subjected to ultrasonic water bath treatment. The hedonic descriptive sensory evaluation also validated this conclusion. Full article
Show Figures

Figure 1

18 pages, 1315 KiB  
Article
Construction of Sensory Wheel for Grape Marc Spirits by Integration of UFP, CATA, and RATA Methods
by Evangelia Anastasia Tsapou, Panagiotis Ignatiou, Michaela Zampoura and Elisabeth Koussissi
Beverages 2025, 11(4), 101; https://doi.org/10.3390/beverages11040101 - 3 Jul 2025
Viewed by 658
Abstract
Grape marc spirits represent a significant category within the alcoholic beverage sector, particularly across Mediterranean Europe. This study aimed to construct a sensory flavor wheel—covering aroma, taste, and mouthfeel modalities—specifically for non-flavored and non-wood-aged grape marc distillates. To achieve this, we explored the [...] Read more.
Grape marc spirits represent a significant category within the alcoholic beverage sector, particularly across Mediterranean Europe. This study aimed to construct a sensory flavor wheel—covering aroma, taste, and mouthfeel modalities—specifically for non-flavored and non-wood-aged grape marc distillates. To achieve this, we explored the feasibility of a novel methodological approach combining three rapid sensory techniques: Ultra Flash Profiling (UFP), Check-All-That-Apply (CATA), and Rate-All-That-Apply (RATA). Forty-five (45) samples from Greece, Cyprus, and Italy were evaluated by a trained panel of 12 assessors. UFP generated 205 initial descriptors, which were refined to 59 for CATA. Despite the long attribute list, CATA data helped identify the most relevant terms for the final RATA experiment. The sequential application of these methods, along with intermediate data filtering, led to the selection of 45 key descriptors with occurrence frequencies ranging from 33.3% to 97.7%. These were organized into a comprehensive flavor wheel grouped into 12 general categories. This approach offers a flexible framework for future flavor wheel construction in other under-characterized product categories. Full article
Show Figures

Graphical abstract

24 pages, 2105 KiB  
Article
Process Development for GMP-Grade Full Extract Cannabis Oil: Towards Standardized Medicinal Use
by Maria do Céu Costa, Ana Patrícia Gomes, Iva Vinhas, Joana Rosa, Filipe Pereira, Sara Moniz, Elsa M. Gonçalves, Miguel Pestana, Mafalda Silva, Luís Monteiro Rodrigues, Anthony DeMeo, Logan Marynissen, António Marques da Costa, Patrícia Rijo and Michael Sassano
Pharmaceutics 2025, 17(7), 848; https://doi.org/10.3390/pharmaceutics17070848 - 28 Jun 2025
Viewed by 1829
Abstract
Background/Objectives: The industrial extraction and purification processes of Cannabis sativa L. compounds are critical steps in creating formulations with reliable and reproducible therapeutic and sensorial attributes. Methods: For this study, standardized preparations of chemotype I were chemically analyzed, and the sensory attributes were [...] Read more.
Background/Objectives: The industrial extraction and purification processes of Cannabis sativa L. compounds are critical steps in creating formulations with reliable and reproducible therapeutic and sensorial attributes. Methods: For this study, standardized preparations of chemotype I were chemically analyzed, and the sensory attributes were studied to characterize the extraction and purification processes, ensuring the maximum retention of cannabinoids and minimization of other secondary metabolites. The industrial process used deep-cooled ethanol for selective extraction. Results: Taking into consideration that decarboxylation occurs in the process, the cannabinoid profile composition was preserved from the herbal substance to the herbal preparations, with wiped-film distillation under deep vacuum conditions below 0.2 mbar, as a final purification step. The profiles of the terpenes and cannabinoids in crude and purified Full-spectrum Extract Cannabis Oil (FECO) were analyzed at different stages to evaluate compositional changes that occurred throughout processing. Subjective intensity and acceptance ratings were received for taste, color, overall appearance, smell, and mouthfeel of FECO preparations. Conclusions: According to sensory analysis, purified FECO was more accepted than crude FECO, which had a stronger and more polarizing taste, and received higher ratings for color and overall acceptance. In contrast, a full cannabis extract in the market resulted in lower acceptance due to taste imbalance. The purification process effectively removed non-cannabinoids, improving sensory quality while maintaining therapeutic potency. Terpene markers of the flower were remarkably preserved in SOMAÍ’s preparations’ fingerprint, highlighting a major qualitative profile reproducibility and the opportunity for their previous separation and/or controlled reintroduction. The study underscores the importance of monitoring the extraction and purification processes to optimize the cannabinoid content and sensory characteristics in cannabis preparations. Full article
(This article belongs to the Collection Advanced Pharmaceutical Science and Technology in Portugal)
Show Figures

Graphical abstract

19 pages, 1543 KiB  
Article
Physicochemical and Sensory Evaluation of Spreads Derived from Fruit Processing By-Products
by Chrysanthi Nouska, Liliana Ciurla, Antoanela Patras, Costas G. Biliaderis and Athina Lazaridou
Foods 2025, 14(13), 2224; https://doi.org/10.3390/foods14132224 - 24 Jun 2025
Viewed by 341
Abstract
Apple, tomato, and grape pomaces, as well as an apple–grape (1:1) mixed pomace, were employed in the formulation of fruit-based spreads to valorize these underutilized by-products. The influence of pectin addition on the physicochemical and sensory properties of the spreads was also examined. [...] Read more.
Apple, tomato, and grape pomaces, as well as an apple–grape (1:1) mixed pomace, were employed in the formulation of fruit-based spreads to valorize these underutilized by-products. The influence of pectin addition on the physicochemical and sensory properties of the spreads was also examined. All spread preparations carried the ‘high fiber’ nutrition claim. The apple pomace spread demonstrated the highest total and soluble dietary fiber contents (14.13 and 4.28%, respectively). Colorimetry showed higher L* and a* values for the tomato pomace spreads. Rheometry of the spreads revealed pseudoplastic flow and weak gel-like behavior (G′ > G″); the tomato and grape pomace spreads with pectin exhibited the highest η*, G′, and G″ values. A texture analysis (spreadability test) indicated that pectin addition affected only the mixed pomace spread, resulting in the least spreadable product. Regarding bioactive compounds, the apple pomace had the highest total phenolic content, and the grape pomace exhibited the highest antioxidant activity, both of which were also reflected in their corresponding spreads. A principal component analysis indicated a strong correlation among flavor, mouthfeel, and moisture content, which were negatively correlated with color intensity and spreadability. The apple pomace spread with added pectin was the most widely preferred by consumers due to its appealing mouthfeel, spreadability and flavor. Full article
Show Figures

Graphical abstract

23 pages, 368 KiB  
Review
Integration of Dietary Fibre for Health Benefits, Improved Structure, and Nutritional Value of Meat Products and Plant-Based Meat Alternatives
by Nikola Stanišić, Vladimir S. Kurćubić, Slaviša B. Stajić, Ivana D. Tomasevic and Igor Tomasevic
Foods 2025, 14(12), 2090; https://doi.org/10.3390/foods14122090 - 13 Jun 2025
Cited by 1 | Viewed by 764
Abstract
This review highlights the latest research on dietary fibre (DF) applications in meat and meat analogues, providing insights into their role in shaping future food innovations. DFs provide significant long-term health benefits, such as better gut health, lower cholesterol levels, and possible protection [...] Read more.
This review highlights the latest research on dietary fibre (DF) applications in meat and meat analogues, providing insights into their role in shaping future food innovations. DFs provide significant long-term health benefits, such as better gut health, lower cholesterol levels, and possible protection from metabolic diseases. They also enhance the texture, juiciness, and overall quality of plant-based meat alternatives (PMAs) and traditional meat products. Among the most effective fibres, cereal-derived fibres, fruit- and vegetable-derived fibres, and legume-based fibres have been shown to improve water-holding capacity (WHC) and emulsification properties, enhancing mouthfeel and juiciness. New processing methods, such as enzymatic hydrolysis and extrusion, can change how fibres work. By combining various fibre sources with innovative processing methods, the food industry can create meat and PMA products that are not only healthier but also tastier and more sustainable. Full article
16 pages, 2227 KiB  
Article
Cellulose-Based Pickering Emulsion-Templated Edible Oleofoam: A Novel Approach to Healthier Solid-Fat Replacers
by Sang Min Lee, Su Jung Hong, Gye Hwa Shin and Jun Tae Kim
Gels 2025, 11(6), 403; https://doi.org/10.3390/gels11060403 - 28 May 2025
Viewed by 381
Abstract
As health concerns and regulatory pressures over saturated and trans fats grow, there is a growing need for healthier alternatives to traditional solid fats, such as butter and hydrogenated oils, that are still widely used in the food system. In this study, cellulose [...] Read more.
As health concerns and regulatory pressures over saturated and trans fats grow, there is a growing need for healthier alternatives to traditional solid fats, such as butter and hydrogenated oils, that are still widely used in the food system. In this study, cellulose particle-based Pickering emulsions (CP-PEs) were prepared from microcrystalline cellulose and ethylcellulose and then foamed to obtain edible oleofoams (CP-EOs) as a solid-fat replacer. The average size of CP-PE droplets without surfactant was 598 ± 69 nm, as confirmed by confocal and transmission electron microscopy. Foaming with citric acid/NaHCO3 and structuring with ≥6% glyceryl monostearate resulted in CP-EOs with an overrun of 147 ± 4% and volumetric stability for 72 h. Micro-computed tomography showed a uniform microcellular network, while the rheological analysis showed solid-like behavior with a storage modulus higher than butter. Differential scanning calorimetry showed a melting enthalpy similar to unsalted butter (10.1 ± 0.9 J/g). These physicochemical properties demonstrate that CP-EOs can closely mimic the firmness, thermal profile, and mouth-feel of conventional solid fats and may provide a promising solid-fat replacer. Full article
(This article belongs to the Special Issue Food Gels: Gelling Process and Innovative Applications)
Show Figures

Figure 1

22 pages, 2352 KiB  
Article
Procyanidins and Anthocyanins in Young and Aged Prokupac Wines: Evaluation of Their Reactivity Toward Salivary Proteins
by Katarina Delić, Danijel D. Milinčić, Aleksandar V. Petrović, Slađana P. Stanojević, Anne-Laure Gancel, Michael Jourdes, Mirjana B. Pešić and Pierre-Louis Teissedre
Foods 2025, 14(10), 1780; https://doi.org/10.3390/foods14101780 - 17 May 2025
Viewed by 463
Abstract
In this study, the reactivity of procyanidins and anthocyanins in young and aged Prokupac wines toward salivary proteins is investigated via SDS-PAGE and UHPLC-QTOF-MS to determine the differences between the phenolic compounds of red wine in relation to the aging process of wine. [...] Read more.
In this study, the reactivity of procyanidins and anthocyanins in young and aged Prokupac wines toward salivary proteins is investigated via SDS-PAGE and UHPLC-QTOF-MS to determine the differences between the phenolic compounds of red wine in relation to the aging process of wine. SDS-PAGE analysis revealed that procyanidins, flavanol-anthocyanin polymers, and ellagitannins in aged wine have strong affinities for salivary proteins, leading to the formation of insoluble complexes. By contrast, young wine contained predominantly procyanidins with high salivary protein affinity, as well as monomeric flavan-3-ols and anthocyanins, which mainly form soluble aggregates, while polymeric phenolics were less represented. Electrophoretic patterns further showed that seed-derived procyanidins mainly formed insoluble complexes with salivary proteins, whereas skin-derived anthocyanins tended to form soluble ones. The total content of all phenolic compounds quantified by UHPLC-QTOF-MS was 2.5 times higher in young wine than in aged wine, primarily due to the significantly greater abundance of malvidine-3-O-glucoside in young wine (eightfold higher level in young wine). Targeted UHPLC-QTOF-MS analysis of selected phenolics confirmed the electrophoretic results and showed a higher binding affinity of procyanidins in aged wine compared to young wine, as well as a higher percentage of procyanidin binding compared to anthocyanins, independent of the age of the wine. Sensory evaluation showed that aged wine had higher tannin quality scores, whereas young wine exhibited greater acidity and astringency, with bitterness being comparable between them. These results highlight the influence of wine aging on the interaction between phenolic compounds and salivary proteins and emphasize the dominant role of procyanidins in protein binding and the potential synergistic contribution of anthocyanins to mouthfeel perception. Full article
Show Figures

Figure 1

13 pages, 1002 KiB  
Article
Understanding Consumer Acceptability and Sensory Drivers of Liking in Montepulciano Wines from Brazil and Beyond
by Tamara Cristina Melz, Rochele Cassanta Rossi, Valmor Ziegler and Amanda Dupas de Matos
Beverages 2025, 11(3), 72; https://doi.org/10.3390/beverages11030072 - 14 May 2025
Viewed by 817
Abstract
Brazil is an important wine producer in Latin America, with the Santa Catarina (SC) region gaining prominence for producing high-quality wines. Among new red varieties cultivated in SC, Montepulciano has recently gained attention. Despite the growing interest in Montepulciano wines in Brazil, no [...] Read more.
Brazil is an important wine producer in Latin America, with the Santa Catarina (SC) region gaining prominence for producing high-quality wines. Among new red varieties cultivated in SC, Montepulciano has recently gained attention. Despite the growing interest in Montepulciano wines in Brazil, no studies have investigated Brazilian consumer perceptions of this varietal. This gap underscores the need for research to better understand acceptance for this emerging varietal in Brazil. This study aimed (i) to advance consumer insights of Montepulciano wines by evaluating the acceptability of Montepulciano wines from Brazil and those from other countries, and (ii) to identify the key attributes influencing acceptance. Participants (n = 103) evaluated six national and international wines for overall liking and sensory characteristics using the check-all-that-apply technique. The drivers of liking for aroma were floral and red/dark berries, whereas leather and alcohol penalized liking. In-mouth, sweetness, red/dark berries, and soft tannins drove liking, whereas astringent, sour, and bitter impacted liking negatively. Among the Brazilian wines, differences were perceived to be more pronounced for aroma than flavor and mouthfeel. The findings highlight the market potential of Brazilian Montepulciano wines, with liking comparable to some Italian and Chilean counterparts. Understanding consumer sensory responses to these wines is crucial to support production strategies that align with market demands. Full article
(This article belongs to the Section Sensory Analysis of Beverages)
Show Figures

Graphical abstract

20 pages, 3404 KiB  
Article
A Data-Driven Approach to Link GC-MS and LC-MS with Sensory Attributes of Chicken Bouillon with Added Yeast-Derived Flavor Products in a Combined Prediction Model
by Simon Leygeber, Carmen Diez-Simon, Justus L. Großmann, Anne-Charlotte Dubbelman, Amy C. Harms, Johan A. Westerhuis, Doris M. Jacobs, Peter W. Lindenburg, Margriet M. W. B. Hendriks, Brenda C. H. Ammerlaan, Marco A. van den Berg, Rudi van Doorn, Roland Mumm, Age K. Smilde, Robert D. Hall and Thomas Hankemeier
Metabolites 2025, 15(5), 317; https://doi.org/10.3390/metabo15050317 - 8 May 2025
Viewed by 858
Abstract
Background: There is a continuous demand to create new, superior sensory food experiences. In the food industry, yeast-derived flavor products (YPs) are often used as ingredients in foods to create new aromas and taste qualities that are appreciated by consumers. Methods: Chicken bouillon [...] Read more.
Background: There is a continuous demand to create new, superior sensory food experiences. In the food industry, yeast-derived flavor products (YPs) are often used as ingredients in foods to create new aromas and taste qualities that are appreciated by consumers. Methods: Chicken bouillon samples containing diverse YPs were chemically and sensorially characterized using statistical multivariate analyses. The sensory evaluation was performed using quantitative descriptive analysis (QDA) by trained panelists. Thirty-four sensory attributes were scored, including odor, flavor, mouthfeel, aftertaste and afterfeel. Untargeted metabolomic profiles were obtained using stir bar sorptive extraction (SBSE) coupled to GC-MS, RPLC-MS and targeted HILIC-MS. Results: In total, 261 volatiles were detected using GC-MS, from chemical groups of predominantly aldehydes, esters, pyrazines and ketones. Random Forest (RF) modeling revealed volatiles associated with roast odor (2-ethyl-5-methyl pyrazine, 2,3,5-trimethyl-6-isopentyl pyrazine) and chicken odor (2,4-nonadienal, 2,4-decadienal, 2-acetyl furan), which could be predicted by our combined model with R2 > 0.5. In total, 2305 non-volatiles were detected for RPLC-MS and 34 for targeted HILIC-MS, where fructose-isoleucine and cyclo-leucine-proline were found to correlate with roast flavor and odor. Furthermore, a list of metabolites (glutamate, monophosphates, methionyl-leucine) was linked to umami-related flavor. This study describes a straightforward data-driven approach for studying foods with added YPs to identify flavor-impacting correlations between molecular composition and sensory perception. It also highlights limitations and preconditions for good prediction models. Overall, this study emphasizes a matrix-based approach for the prediction of food taste, which can be used to analyze foods for targeted flavor design or quality control. Full article
(This article belongs to the Section Food Metabolomics)
Show Figures

Figure 1

13 pages, 680 KiB  
Article
Consumer Acceptance and Perceived Sensory Characteristics of Commercial Vegan Mayonnaise
by Juyoun Lee and Kyunghee Kim
Foods 2025, 14(9), 1542; https://doi.org/10.3390/foods14091542 - 28 Apr 2025
Viewed by 836
Abstract
This study aims to investigate the sensory characteristics of commercially available vegan mayonnaise using the Check-All-That-Apply (CATA) methodology and to determine the acceptability factors influencing consumer purchase intention. Six mayonnaise samples were evaluated by 112 consumers: one conventional mayonnaise and five commercially available [...] Read more.
This study aims to investigate the sensory characteristics of commercially available vegan mayonnaise using the Check-All-That-Apply (CATA) methodology and to determine the acceptability factors influencing consumer purchase intention. Six mayonnaise samples were evaluated by 112 consumers: one conventional mayonnaise and five commercially available vegan mayonnaises (labeled OGM, VVM, EBM, VM, SM, and OVM). Except for fatty flavor, rancid odor, artificial flavor, mouthcoating, melting, and mouthfeel, 15 characteristics (yellowness, glossiness, slimness, thickness, smoothness, beany odor, lemon aroma, nutty flavor, sourness, saltiness, sweetness, savory flavor, off-flavor, goes well with vegetables, and spreads well on crackers) were significantly different among 6 samples (p < 0.001). Across all evaluation attributes, OGM and VM had the highest acceptance, with no significant differences between the two samples except for overall taste. The VM was the only vegan mayonnaise that produced results similar to those of OGM, which is regular mayonnaise. The results of the study suggest that vegan mayonnaise can be a substitute for regular mayonnaise. We hope that this research will provide data that can be used as a basis for developing vegan mayonnaise products that meet the needs of consumers and food companies. Full article
(This article belongs to the Section Plant Foods)
Show Figures

Figure 1

17 pages, 2454 KiB  
Article
Cacao Mucilage Valorisation to Produce Craft Beers: A Case Study Towards the Sustainability of the Cocoa Industry in Los Ríos Province
by José Villarroel-Bastidas, Jonathan Steven Párraga-Maquilón, Cinthya Elizabeth Zapata-Zambrano, María de Guide Córdoba, Alicia Rodríguez, Alejandro Hernández and Josué Briones-Bitar
Beverages 2025, 11(3), 57; https://doi.org/10.3390/beverages11030057 - 22 Apr 2025
Cited by 1 | Viewed by 895
Abstract
Cacao mucilage is a rich medium for microbial development due to the presence of various sugars, water, pectin, mineral salts, and yeasts of the Saccharomyces cerevisiae type. This study aims to provide added value to this commonly discarded residue, thereby contributing to the [...] Read more.
Cacao mucilage is a rich medium for microbial development due to the presence of various sugars, water, pectin, mineral salts, and yeasts of the Saccharomyces cerevisiae type. This study aims to provide added value to this commonly discarded residue, thereby contributing to the economic growth of the Rio Chila area in the Valencia Canton of Los Ríos Province. The methods applied for developing beer consist of malting, grinding, mashing, filtering, boiling, cooling, fermentation (during which cacao mucilage is added), and maturation, followed by physical–chemical analyses. The Fine aroma cacao mucilage presented values of 0.66% acidity, 7.63 °Brix, pH 4.43, absorbance 1.13, transmittance 23.67%, suspended solids 0.04 g: 2.66%, density 1.07 g/mL, turbidity 6.94 NTU, °GL 8.47% vol., foam quantity 1.70 cm, colorimetry L* 50.77, colorimetry a* 18.08, colorimetry b* 50.53, and bitterness degree 39.00. The analyses presented values within the normal parameters applied to beers at the national level (INEN standards). Escherichia coli, Salmonella, and total microorganisms showed no contamination in the microbiological analyses. In the sensory analyses, appearance, aroma, flavour, and mouthfeel were evaluated, with the best experiment being the combination of Fine aroma cacao with a concentration of 30% mucilage and added Cascade hops. This study took into account the concentrations of cacao mucilage (20% and 30%) from the varieties (Fine aroma and CCN-51), as well as the addition of the brewing hops Cascade and Northern Brewer. Regarding the physicochemical characteristics, adding this cacao derivative did not affect craft beer and conformed to the ranges of the NTE INEN 2262 standard. Thus, this research proposes an alternative use for cocoa mucilage, contributing to waste reduction and broadening its potential applications. Full article
Show Figures

Figure 1

17 pages, 4292 KiB  
Article
Plant-Based Burgers with Reduced Texture Additives: A Comparative Study of Methylcellulose and Sodium Alginate
by Irene Peñaranda, María Belén López Morales, María Dolores Garrido and Macarena Egea
Foods 2025, 14(8), 1373; https://doi.org/10.3390/foods14081373 - 16 Apr 2025
Viewed by 922
Abstract
The limited number of additives in plant-based burgers is related to clean label consumer perception, which influences purchase intention. Starch is typically combined with other texturing agents to replicate the texture and mouthfeel of meat burgers. It is necessary to reformulate these products [...] Read more.
The limited number of additives in plant-based burgers is related to clean label consumer perception, which influences purchase intention. Starch is typically combined with other texturing agents to replicate the texture and mouthfeel of meat burgers. It is necessary to reformulate these products following consumers’ trends, who prefer healthier products with fewer additives. Two hydrocolloids with significant commercial application and different functionality were evaluated: methylcellulose (M) or sodium alginate (SA). Four formulations were developed, two containing starch (M+S and SA+S) and two without starch (M and SA). The alginate burgers provided samples with high water retention capacity and a cohesive and adhesive texture, superior to the samples with methylcellulose, without the need to add starch, due to their stabilizing, thickening, and gelling properties derived from their “egg-crate” structure when gelled. Furthermore, sensory analysis indicated that the sodium alginate burgers had a softer and creamier texture. In contrast, starch removal in the methylcellulose burgers enhanced their appearance due to gel transparency and desirable textural properties, akin to those of meat. These results promote using a 3 g/100 g methylcellulose solution as the sole binding agent in soybean burgers to achieve a product with reduced additives. Full article
(This article belongs to the Section Plant Foods)
Show Figures

Graphical abstract

Back to TopTop