Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (294)

Search Parameters:
Keywords = motor-cognitive training

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 876 KiB  
Article
Feasibility and Perceptions of Telerehabilitation Using Serious Games for Children with Disabilities in War-Affected Ukraine
by Anna Kushnir, Oleh Kachmar and Bruno Bonnechère
Appl. Sci. 2025, 15(15), 8526; https://doi.org/10.3390/app15158526 (registering DOI) - 31 Jul 2025
Viewed by 8
Abstract
This study aimed to evaluate the feasibility of using serious games for the (tele)rehabilitation of children with disabilities affected by the Ukrainian war. Additionally, it provides requirements for technologies that can be used in war-affected areas. Structured interviews and Likert scale assessments were [...] Read more.
This study aimed to evaluate the feasibility of using serious games for the (tele)rehabilitation of children with disabilities affected by the Ukrainian war. Additionally, it provides requirements for technologies that can be used in war-affected areas. Structured interviews and Likert scale assessments were conducted on-site and remotely with patients of the tertiary care facility in Ukraine. All participants used the telerehabilitation platform for motor and cognitive training. Nine serious games were employed, involving trunk tilts, upper limb movements, and head control. By mid-September 2023, 186 positive user experiences were evident, with 89% expressing interest in continued engagement. The platform’s accessibility, affordability, and therapeutic benefits were highlighted. The recommendations from user feedback informed potential enhancements, showcasing the platform’s potential to provide uninterrupted rehabilitation care amid conflict-related challenges. This study suggests that serious games solutions that suit the sociopolitical and economic context offer a promising solution to rehabilitation challenges in conflict zones. The positive user experiences towards using the platform with serious games indicate its potential in emergency healthcare provision. The findings emphasize the role of technology, particularly serious gaming, in mitigating the impact of armed conflicts on children’s well-being, thereby contributing valuable insights to healthcare strategies in conflict-affected regions. Requirements for technologies tailored to the context of challenging settings were defined. Full article
(This article belongs to the Special Issue Novel Approaches of Physical Therapy-Based Rehabilitation)
Show Figures

Figure 1

27 pages, 1164 KiB  
Review
Physical Literacy as a Pedagogical Model in Physical Education
by Víctor Manuel Valle-Muñoz, María Mendoza-Muñoz and Emilio Villa-González
Children 2025, 12(8), 1008; https://doi.org/10.3390/children12081008 - 31 Jul 2025
Viewed by 76
Abstract
Background/Objectives: Legislative changes in educational systems have influenced how student learning is understood and promoted. In physical education (PE), there has been a shift from behaviorist models to more holistic approaches. In this context, physical literacy (PL) is presented as an emerging [...] Read more.
Background/Objectives: Legislative changes in educational systems have influenced how student learning is understood and promoted. In physical education (PE), there has been a shift from behaviorist models to more holistic approaches. In this context, physical literacy (PL) is presented as an emerging pedagogical model in school PE, aimed at fostering students’ motor competence in a safe, efficient, and meaningful way. The aim of this study is to analyze the origins, foundations, methodological elements, and educational value of PL, highlighting its potential to promote holistic and inclusive learning as the basis for an emerging PL model. Methods: A narrative review was conducted through a literature search in the Web of Science, PubMed, Scopus, and SportDiscus databases up to June 2025, focusing on scientific literature related to PL and PE. The analysis included its historical background, philosophical and theoretical foundations, and the key methodological elements and interventions that support its use as a pedagogical model. Results/Discussion: The findings indicate that the PL model can be grounded in key principles, such as student autonomy, teacher training, connection with the environment, inclusion, and collaboration. Additionally, motivation, enjoyment, creativity, and continuous assessment are identified as essential components for effective implementation. Moreover, this model not only guides and supports teachers in the field of PL but also promotes comprehensive benefits for students at the physical, cognitive, affective, and social levels, while encouraging increased levels of physical activity (PA). Conclusions: PL is understood as a dynamic and lifelong process that should be cultivated from early childhood to encourage sustained and active participation in PA. As a pedagogical model, PL represents an effective tool to enhance student learning and well-being in PE classes. Full article
(This article belongs to the Section Global Pediatric Health)
Show Figures

Figure 1

21 pages, 5108 KiB  
Article
tDCS and Cognitive Training for Fatigued and Cognitively Impaired People with Multiple Sclerosis: An SCED Study
by Teresa L’Abbate, Nefeli K. Dimitriou, George Dimakopoulos, Franca Tecchio and Grigorios Nasios
Brain Sci. 2025, 15(8), 807; https://doi.org/10.3390/brainsci15080807 - 28 Jul 2025
Viewed by 233
Abstract
Background/Objectives: Fatigue and cognitive impairment are common issues for People with Multiple Sclerosis (PwMS), affecting over 80% and 40–65%, respectively. The relationship between these two debilitating conditions is complex, with cognitive deficits exacerbating fatigue and vice versa. This study investigates the effects [...] Read more.
Background/Objectives: Fatigue and cognitive impairment are common issues for People with Multiple Sclerosis (PwMS), affecting over 80% and 40–65%, respectively. The relationship between these two debilitating conditions is complex, with cognitive deficits exacerbating fatigue and vice versa. This study investigates the effects of a multimodal intervention combining cognitive rehabilitation and neuromodulation to alleviate fatigue and enhance cognitive performance in PwMS. Methods: The research employed multiple baselines across the subjects in a Single-Case Experimental Design (mbSCED) with a cohort of three PwMS diagnosed with Relapsing–Remitting MS. The intervention protocol consisted of a baseline phase followed by a four-week treatment involving transcranial direct current stimulation (tDCS) and cognitive training using RehaCom® software (version 6.9.0). Fatigue levels were measured using the modified Fatigue Impact Scale (mFIS), while cognitive performance was evaluated through standardized neuropsychological assessments. Results: The multimodal protocol exhibited high feasibility and acceptability, with no dropouts. Individual responsiveness outcomes varied, with two PwMS showing significant decreases in fatigue and improvements in cognitive performance, particularly in the trained domains. Their motor performance and quality of life also improved, suggesting that the treatment had indirect beneficial effects. Conclusions: This study provides preliminary evidence for the potential benefits of integrating neuromodulation and cognitive rehabilitation as a personalized therapeutic strategy for managing fatigue and cognitive impairments in MS. Further research is needed to delineate the specific contributions of each intervention component and establish standardized protocols for clinical implementation. The insights gained may lead to more effective, tailored treatment options for PwMS. Full article
Show Figures

Figure 1

14 pages, 285 KiB  
Article
Effects of Stretching and Resistance Training on Psychophysical Awareness: A Pilot Study
by Giovanni Esposito, Rosario Ceruso, Pietro Luigi Invernizzi, Vincenzo Manzi and Gaetano Raiola
Appl. Sci. 2025, 15(15), 8259; https://doi.org/10.3390/app15158259 - 24 Jul 2025
Viewed by 250
Abstract
Muscle–joint flexibility is defined as the ability of a muscle to stretch in a controlled manner, allowing a wide range of movement at the joints. While numerous methodologies exist for improving flexibility, few studies have investigated the role of athletes’ perceptual processes and [...] Read more.
Muscle–joint flexibility is defined as the ability of a muscle to stretch in a controlled manner, allowing a wide range of movement at the joints. While numerous methodologies exist for improving flexibility, few studies have investigated the role of athletes’ perceptual processes and awareness related to their own body and movement control during such training. In this pilot study, we explored how two different training protocols—static and dynamic stretching (control group, CON) and multi-joint resistance training (experimental group, EXP)—influence both flexibility and psychophysical awareness, understood as a multidimensional construct involving perceived flexibility improvements, self-assessed control over exercise execution, and cognitive-emotional responses such as engagement, motivation, and satisfaction during physical effort. The study involved 24 male amateur track-and-field athletes (mean age 23 ± 2.5 years), randomized into two equal groups. Over 12 weeks, both groups trained three times per week. Flexibility was assessed using the Sit and Reach Test at three time points (pre-, mid-, and post-intervention). A 2 × 3 mixed ANOVA revealed a significant group × time interaction (F = 20.17, p < 0.001), with the EXP group showing greater improvements than the CON group. In the EXP group, Sit and Reach scores increased from pre = 28.55 cm (SD = 4.91) to mid = 29.39 cm (SD = 4.67) and post = 29.48 cm (SD = 4.91), with a significant difference between pre and post (p = 0.01; d = 0.35). The CON group showed minimal changes, with scores of pre = 28.66 cm (SD = 4.92), mid = 28.76 cm (SD = 5.03), and post = 28.84 cm (SD = 5.10), and no significant difference between pre and post (p = 0.20; d = 0.04). Psychophysical awareness was assessed using a custom questionnaire structured on a 5-point Likert scale, with items addressing perception of flexibility, motor control, and exercise-related bodily sensations. The questionnaire showed excellent internal consistency (Cronbach’s α = 0.92). Within the EXP group, psychophysical awareness increased significantly (from 3.50 to 4.17; p = 0.01; d = 0.38), while no significant change occurred in the CON group (p = 0.16). Post-hoc power analysis confirmed small to moderate effect sizes within the EXP group, although between-group differences lacked sufficient statistical power. These results suggest that resistance training may improve flexibility and concurrently enhance athletes’ psychophysical self-awareness more effectively than traditional stretching. Such findings offer practical implications for coaches seeking to optimize flexibility training by integrating alternative methods that promote both physical and perceptual adaptations. Full article
(This article belongs to the Section Applied Biosciences and Bioengineering)
22 pages, 780 KiB  
Review
A Standard Operating Procedure for Dual-Task Training to Improve Physical and Cognitive Function in Older Adults: A Scoping Review
by Luca Petrigna, Alessandra Amato, Alessandro Castorina and Giuseppe Musumeci
Brain Sci. 2025, 15(8), 785; https://doi.org/10.3390/brainsci15080785 - 23 Jul 2025
Viewed by 654
Abstract
Background/Objectives: Dual task (DT) training consists of practicing exercises while simultaneously performing a concurrent motor or cognitive task. This training modality seems to have beneficial effects on both domains. Various forms of DT training have been implemented for older adults in recent years, [...] Read more.
Background/Objectives: Dual task (DT) training consists of practicing exercises while simultaneously performing a concurrent motor or cognitive task. This training modality seems to have beneficial effects on both domains. Various forms of DT training have been implemented for older adults in recent years, but no official guidelines currently exist. This review sought to analyze the studies published on this topic in the last ten years and provide a standard operating procedure (SOP) for healthy older adults in this context. Methods: The review collected articles from PubMed, Web of Science, and Scopus, adopting a designated set of keywords. Selected manuscripts and relevant information were selected, extrapolated, including information related to the training frequency, intensity, time, and type, and secondary tasks adopted. The secondary tasks were grouped according to previously published studies, and the SOP was created based on the frequency of the parameters collected from the included articles. Results: A total of 44 studies were included in the review. Based on the results, the SOP recommends postural balance or resistance training as primary tasks, combined with a mental tracking task as a secondary component. Two 60-min sessions per week for at least 12 weeks are required to achieve measurable results. Conclusions: Despite heterogeneity in the literature reviewed, the findings support the proposal of a SOP to guide future research on DT training in healthy older adults. Given its feasibility and positive effects on both motor and cognitive functions, this type of training can also be implemented in everyday settings. Full article
Show Figures

Figure 1

26 pages, 2219 KiB  
Article
Predicting Cognitive Decline in Parkinson’s Disease Using Artificial Neural Networks: An Explainable AI Approach
by Laura Colautti, Monica Casella, Matteo Robba, Davide Marocco, Michela Ponticorvo, Paola Iannello, Alessandro Antonietti, Camillo Marra and for the CPP Integrated Parkinson’s Database
Brain Sci. 2025, 15(8), 782; https://doi.org/10.3390/brainsci15080782 - 23 Jul 2025
Viewed by 370
Abstract
Background/Objectives: The study aims to identify key cognitive and non-cognitive variables (e.g., clinical, neuroimaging, and genetic data) predicting cognitive decline in Parkinson’s disease (PD) patients using machine learning applied to a sample (N = 618) from the Parkinson’s Progression Markers Initiative database. [...] Read more.
Background/Objectives: The study aims to identify key cognitive and non-cognitive variables (e.g., clinical, neuroimaging, and genetic data) predicting cognitive decline in Parkinson’s disease (PD) patients using machine learning applied to a sample (N = 618) from the Parkinson’s Progression Markers Initiative database. Traditional research has mainly employed explanatory approaches to explore variable relationships, rather than maximizing predictive accuracy for future cognitive decline. In the present study, we implemented a predictive framework that integrates a broad range of baseline cognitive, clinical, genetic, and imaging data to accurately forecast changes in cognitive functioning in PD patients. Methods: An artificial neural network was trained on baseline data to predict general cognitive status three years later. Model performance was evaluated using 5-fold stratified cross-validation. We investigated model interpretability using explainable artificial intelligence techniques, including Shapley Additive Explanations (SHAP) values, Group-Wise Feature Masking, and Brute-Force Combinatorial Masking, to identify the most influential predictors of cognitive decline. Results: The model achieved a recall of 0.91 for identifying patients who developed cognitive decline, with an overall classification accuracy of 0.79. All applied explainability techniques consistently highlighted baseline MoCA scores, memory performance, the motor examination score (MDS-UPDRS Part III), and anxiety as the most predictive features. Conclusions: From a clinical perspective, the findings can support the early detection of PD patients who are more prone to developing cognitive decline, thereby helping to prevent cognitive impairments by designing specific treatments. This can improve the quality of life for patients and caregivers, supporting patient autonomy. Full article
(This article belongs to the Section Neurodegenerative Diseases)
Show Figures

Figure 1

13 pages, 2968 KiB  
Article
Neurophysiological Effects of Virtual Reality Multitask Training in Cardiac Surgery Patients: A Study with Standardized Low-Resolution Electromagnetic Tomography (sLORETA)
by Irina Tarasova, Olga Trubnikova, Darya Kupriyanova, Irina Kukhareva and Anastasia Sosnina
Biomedicines 2025, 13(7), 1755; https://doi.org/10.3390/biomedicines13071755 - 18 Jul 2025
Viewed by 301
Abstract
Background: Digital technologies offer innovative opportunities for recovering and maintaining intellectual and mental health. The use of a multitask approach that combines motor component with various cognitive tasks in a virtual environment can optimize cognitive and physical functions and improve the quality of [...] Read more.
Background: Digital technologies offer innovative opportunities for recovering and maintaining intellectual and mental health. The use of a multitask approach that combines motor component with various cognitive tasks in a virtual environment can optimize cognitive and physical functions and improve the quality of life of cardiac surgery patients. This study aimed to localize current sources of theta and alpha power in patients who have undergone virtual multitask training (VMT) and a control group in the early postoperative period of coronary artery bypass grafting (CABG). Methods: A total of 100 male CABG patients (mean age, 62.7 ± 7.62 years) were allocated to the VMT group (n = 50) or to the control group (n = 50). EEG was recorded in the eyes-closed resting state at baseline (2–3 days before CABG) and after VMT course or approximately 11–12 days after CABG (the control group). Power EEG analysis was conducted and frequency-domain standardized low-resolution tomography (sLORETA) was used to assess the effect of VMT on brain activity. Results: After VMT, patients demonstrated a significantly higher density of alpha-rhythm (7–9 Hz) current sources (t > −4.18; p < 0.026) in Brodmann area 30, parahippocampal, and limbic system structures compared to preoperative data. In contrast, the control group had a marked elevation in the density of theta-rhythm (3–5 Hz) current sources (t > −3.98; p < 0.017) in parieto-occipital areas in comparison to preoperative values. Conclusions: Virtual reality-based multitask training stimulated brain regions associated with spatial orientation and memory encoding. The findings of this study highlight the importance of neural mechanisms underlying the effectiveness of multitask interventions and will be useful for designing and conducting future studies involving VR multitask training. Full article
(This article belongs to the Section Neurobiology and Clinical Neuroscience)
Show Figures

Figure 1

10 pages, 652 KiB  
Article
Preliminary Effects of Extended Reality-Based Rehabilitation on Gross Motor Function, Balance, and Psychosocial Health in Children with Cerebral Palsy
by Onebin Lim, Yunhwan Kim and Chanhee Park
Bioengineering 2025, 12(7), 779; https://doi.org/10.3390/bioengineering12070779 - 18 Jul 2025
Viewed by 358
Abstract
Extended reality (XR)-based rehabilitation is an emerging therapeutic approach that combines real and virtual environments to enhance patient engagement and promote motor and cognitive recovery. Its clinical utility in children with cerebral palsy (CP), particularly regarding gross motor skills, balance, and psychosocial well-being, [...] Read more.
Extended reality (XR)-based rehabilitation is an emerging therapeutic approach that combines real and virtual environments to enhance patient engagement and promote motor and cognitive recovery. Its clinical utility in children with cerebral palsy (CP), particularly regarding gross motor skills, balance, and psychosocial well-being, remains underexplored. This preliminary study aimed to evaluate the potential effects of XR-based rehabilitation on gross motor function, balance, parental stress, and quality of life in children with cerebral palsy. Thirty children with cerebral palsy were randomly assigned to an extended reality training group (XRT, n = 15) or a conventional physical therapy group (CPT, n = 15). Both groups received 30 min sessions, three times per week for 6 weeks. Outcome measures included the Gross Motor Function Measure-88 (GMFM-88), Pediatric Balance Scale (PBS), Functional Independence Measure (FIM), Parenting Stress Index (PSI), and Pediatric Quality of Life Inventory (PedsQL), assessed pre- and post-intervention. A 2 (group) × 2 (time) mixed ANOVA was conducted. The XR group demonstrated improvements in GMFM-88, PBS, and FIM scores, with decreased PSI and increased PedsQL scores. Although most interaction effects were not statistically significant (GMFM-88: η2 = 0.035, p = 0.329; PBS: η2 = 0.043, p = 0.274), a marginal interaction effect was observed for PSI (p = 0.065, η2 = 0.059), suggesting a potential benefit of XR-based rehabilitation in reducing parental stress. This preliminary study indicates that XR-based rehabilitation may provide beneficial trends in motor function and psychosocial health in children with CP, particularly in reducing parental stress. Further studies with larger sample sizes are needed to confirm these findings. Full article
Show Figures

Figure 1

11 pages, 677 KiB  
Communication
Inefficacy of Repetitive Transcranial Magnetic Stimulation in Parkinson’s Disease Patients with Levodopa-Induced Dyskinesias: Results from a Pilot Study
by Alma Medrano-Hernández, Gabriel Neri-Nani, Mayela Rodríguez-Violante, René Drucker-Colín and Anahí Chavarría
Biomedicines 2025, 13(7), 1663; https://doi.org/10.3390/biomedicines13071663 - 8 Jul 2025
Viewed by 348
Abstract
Background: Parkinson’s disease (PD) presents a significant challenge due to its wide range of motor, non-motor, and treatment-related symptoms. Non-invasive interventions like transcranial magnetic stimulation (TMS) are being explored for potential therapeutic benefits. This study aimed to assess if a high-frequency repetitive TMS [...] Read more.
Background: Parkinson’s disease (PD) presents a significant challenge due to its wide range of motor, non-motor, and treatment-related symptoms. Non-invasive interventions like transcranial magnetic stimulation (TMS) are being explored for potential therapeutic benefits. This study aimed to assess if a high-frequency repetitive TMS protocol (HF-rTMS) consisting of 10 trains of 100 pulses of rTMS at 25 Hz over the motor cortex (M1) at 80% of the resting motor threshold could be effective in treating motor or non-motor symptoms in patients with PD with levodopa-induced dyskinesias. Methods: A randomized, single-blinded, placebo-controlled pilot trial was conducted with eleven PD patients. Nine patients received HF-rTMS, while two received sham stimulation. Patients were exhaustively evaluated using validated clinical scales to assess motor and non-motor symptoms. The study followed a rigorous protocol to avoid bias, with assessments conducted by a neurologist specialized in single-blinded movement disorder. Results: The HF-rTMS group experienced a statistically significant slight worsening in both motor and non-motor symptoms, particularly in the mood/cognition and gastrointestinal domains. However, positive effects were observed in some non-motor symptoms, specifically reduced excessive sweating and weight. No adverse effects were reported. Conclusions: Although HF-rTMS did not produce significant motor improvements, its potential benefit on specific non-motor symptoms, such as autonomic regulation, warrants further investigation. Full article
(This article belongs to the Special Issue Recent Therapeutic Advances in Parkinson’s Disease)
Show Figures

Figure 1

18 pages, 747 KiB  
Article
A Multimodal Physical Program Combining Abacus Use and Exercise to Improve Motor Coordination and Flexibility in Primary School Children
by María del Carmen Carcelén-Fraile, Agustín Aibar-Almazán, Alba Rusillo-Magdaleno and Alberto Ruiz-Ariza
J. Funct. Morphol. Kinesiol. 2025, 10(3), 255; https://doi.org/10.3390/jfmk10030255 - 5 Jul 2025
Viewed by 332
Abstract
Background: During early childhood, physical development plays a critical role in overall growth, influencing not only health but also academic and social outcomes. In this context, the present randomized controlled trial aims to analyze the effects of a combined intervention using physical [...] Read more.
Background: During early childhood, physical development plays a critical role in overall growth, influencing not only health but also academic and social outcomes. In this context, the present randomized controlled trial aims to analyze the effects of a combined intervention using physical exercise and abacus training on flexibility and motor coordination in early primary school children. Methods: A total of 82 girls and boys participated in this study, of which 41 belonged to the experimental group that carried out a combined training of physical exercise and the use of an abacus for 12 weeks and 41 to a control group that did not receive any intervention. Flexibility was measured with the Sit and Reach test and motor coordination with the motor coordination test. Results: In this study, statistically significant improvements were observed in flexibility in both the right and left legs and in all domains related to motor coordination in the training group. Conclusions: The results of this study support the effectiveness of a multidimensional approach that integrates physical and cognitive activities, such as the use of the abacus, to improve coordination and flexibility in children, contributing to comprehensive development in early childhood education. Full article
Show Figures

Figure 1

29 pages, 4405 KiB  
Article
Pupil Detection Algorithm Based on ViM
by Yu Zhang, Changyuan Wang, Pengbo Wang and Pengxiang Xue
Sensors 2025, 25(13), 3978; https://doi.org/10.3390/s25133978 - 26 Jun 2025
Viewed by 331
Abstract
Pupil detection is a key technology in fields such as human–computer interaction, fatigue driving detection, and medical diagnosis. Existing pupil detection algorithms still face challenges in maintaining robustness under variable lighting conditions and occlusion scenarios. In this paper, we propose a novel pupil [...] Read more.
Pupil detection is a key technology in fields such as human–computer interaction, fatigue driving detection, and medical diagnosis. Existing pupil detection algorithms still face challenges in maintaining robustness under variable lighting conditions and occlusion scenarios. In this paper, we propose a novel pupil detection algorithm, ViMSA, based on the ViM model. This algorithm introduces weighted feature fusion, aiming to enable the model to adaptively learn the contribution of different feature patches to the pupil detection results; combines ViM with the MSA (multi-head self-attention) mechanism), aiming to integrate global features and improve the accuracy and robustness of pupil detection; and uses FFT (Fast Fourier Transform) to convert the time-domain vector outer product in MSA into a frequency–domain dot product, in order to reduce the computational complexity of the model and improve the detection efficiency of the model. ViMSA was trained and tested on nearly 135,000 pupil images from 30 different datasets, demonstrating exceptional generalization capability. The experimental results demonstrate that the proposed ViMSA achieves 99.6% detection accuracy at five pixels with an RMSE of 1.67 pixels and a processing speed exceeding 100 FPS, meeting real-time monitoring requirements for various applications including operation under variable and uneven lighting conditions, assistive technology (enabling communication with neuro-motor disorder patients through pupil recognition), computer gaming, and automotive industry applications (enhancing traffic safety by monitoring drivers’ cognitive states). Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

19 pages, 369 KiB  
Review
The Impact of Open-Skill Exercises and E-Sports on Cognitive Function: A Narrative Review of Their Role in Preventing Cognitive Decline and Dementia
by Shuzo Kumagai, Hyuntae Park, Si Chen and Takao Yamasaki
Brain Sci. 2025, 15(7), 682; https://doi.org/10.3390/brainsci15070682 - 25 Jun 2025
Viewed by 630
Abstract
Background/Objectives: There is still no clear consensus regarding the efficacy of exercise interventions in maintaining or improving cognitive function among independent older adults, as well as individuals with mild cognitive impairment (MCI) or dementia. This review explores the potential mechanisms underlying cognitive decline [...] Read more.
Background/Objectives: There is still no clear consensus regarding the efficacy of exercise interventions in maintaining or improving cognitive function among independent older adults, as well as individuals with mild cognitive impairment (MCI) or dementia. This review explores the potential mechanisms underlying cognitive decline prevention and dementia mitigation from the perspective of motor learning theory, with a particular focus on aerobic-oriented open-skill exercise (OSE) and electronic sports (e-sports). Methods: Comprehensive literature searches were conducted using databases such as PubMed, Scopus, Web of Science, CiNii, and J-Stage (all available years) to identify studies examining the relationship between OSE, e-sports, and cognitive function. Results: Although various intervention studies have investigated aerobic exercise, resistance training, and other multifactorial exercise programs, a unified conclusion has not been reached regarding their effectiveness in enhancing cognitive function in the general elderly population or in patients with MCI or dementia. However, sports involving dynamic interaction with opponents (OSE) have shown a positive association with the maintenance and enhancement of cognitive abilities. Furthermore, e-sports present an accessible exercise modality, unrestricted by age, gender, time, or location, and are expected to support cognitive health in older adults. Conclusions: Aerobic-oriented OSE appears more effective than closed-skill exercise in preventing age-related cognitive decline and dementia. Additionally, e-sports may offer a comprehensive approach to brain health by integrating cognitive stimulation, physical engagement, social interaction, and stress reduction, though caution is advised regarding potential mental health concerns stemming from excessive use. Full article
13 pages, 1930 KiB  
Article
Light-Based Reaction Speed Does Not Predict Field-Based Reactive Agility in Soccer Players
by Adele Broodryk, Filip Skala and Retief Broodryk
J. Funct. Morphol. Kinesiol. 2025, 10(3), 239; https://doi.org/10.3390/jfmk10030239 - 24 Jun 2025
Viewed by 456
Abstract
Background: The motor response to human visual stimuli is unique and differs from the reaction to light-based visual stimuli. While laboratory-based tests offer valuable insights into athletes’ basic perceptual–motor abilities, their translation to actual sports-specific tests is limited. Methods: Following a thorough warm-up, [...] Read more.
Background: The motor response to human visual stimuli is unique and differs from the reaction to light-based visual stimuli. While laboratory-based tests offer valuable insights into athletes’ basic perceptual–motor abilities, their translation to actual sports-specific tests is limited. Methods: Following a thorough warm-up, 44 collegiate-level male soccer players (age: 24.4 ± 2.5 y, mass: 63.01 ± 7.3 kg, stature: 167.62 ± 6.3 cm) from a tertiary institution completed the following tests: Sports Vision Test (20-light proactive speed test), 40 m sprint test (split times over 5, 10, 20 and 40 m), and a live Reactive Agility Test (RAT) entailing them to sprint, change direction either towards their dominant limb or non-dominant limb in response to a live tester, and sprint again. Results: Numerous moderate correlations were seen between the RAT and various sprint distances (r > 0.3, ES > 0.3, p < 0.05). The reaction speed relationship between the light-based (SVT) and live stimuli (RAT) test yielded a weak relationship (r > 0.4, ES > 0.5, p < 0.05). Furthermore, the light-based hand–eye coordination speed did not predict acceleration or top speed, while the total RAT time did explain 10.5% of top speed (40 m). No significant differences in the SVT average and total time were found among playing positions. Conclusions: The limited correlations observed indicate that light-based reaction training alone may not be sufficient to translate to field-based reactive agility; therefore, training should integrate perceptual–cognitive and motor demands. Future research should refine laboratory-based tests by incorporating contextual elements to enhance ecological validity and further investigate the transferability of these skills from controlled settings to real-world game scenarios. Full article
(This article belongs to the Special Issue Sports-Specific Conditioning: Techniques and Applications)
Show Figures

Figure 1

16 pages, 3367 KiB  
Article
Sound Localization Training and Induced Brain Plasticity: An fMRI Investigation
by Ranjita Kumari, Sukhan Lee, Pradeep Kumar Anand and Jitae Shin
Diagnostics 2025, 15(12), 1558; https://doi.org/10.3390/diagnostics15121558 - 18 Jun 2025
Viewed by 477
Abstract
Background/Objectives: Neuroimaging techniques have been increasingly utilized to explore neuroplasticity induced by various training regimens. Magnetic resonance imaging (MRI) enables to study these changes non-invasively. While visual and motor training have been widely studied, less is known about how auditory training affects brain [...] Read more.
Background/Objectives: Neuroimaging techniques have been increasingly utilized to explore neuroplasticity induced by various training regimens. Magnetic resonance imaging (MRI) enables to study these changes non-invasively. While visual and motor training have been widely studied, less is known about how auditory training affects brain activity. Our objective was to investigate the effects of sound localization training on brain activity and identify brain regions exhibiting significant changes in activation pre- and post-training to understand how sound localization training induces plasticity in the brain. Method: Six blindfolded participants each underwent 30-minute sound localization training sessions twice a week for three weeks. All participants completed functional MRI (fMRI) testing before and after the training. Results: fMRI scans revealed that sound localization training led to increased activation in several cortical areas, including the superior frontal gyrus, superior temporal gyrus, middle temporal gyrus, parietal lobule, precentral gyrus, and postcentral gyrus. These regions are associated with cognitive processes such as auditory processing, spatial working memory, planning, decision-making, error detection, and motor control. Conversely, a decrease in activation was observed in the left middle temporal gyrus, a region linked to language comprehension and semantic memory. Conclusions: These findings suggest that sound localization training enhances neural activity in areas involved in higher-order cognitive functions, spatial attention, and motor execution, while potentially reducing reliance on regions involved in basic sensory processing. This study provides evidence of training-induced neuroplasticity, highlighting the brain’s capacity to adapt through targeted auditory training intervention. Full article
(This article belongs to the Special Issue Brain MRI: Current Development and Applications)
Show Figures

Figure 1

18 pages, 1981 KiB  
Article
Overcoming Challenges in Learning Prerequisites for Adaptive Functioning: Tele-Rehabilitation for Young Girls with Rett Syndrome
by Rosa Angela Fabio, Samantha Giannatiempo and Michela Perina
J. Pers. Med. 2025, 15(6), 250; https://doi.org/10.3390/jpm15060250 - 14 Jun 2025
Cited by 1 | Viewed by 491
Abstract
Background/Objectives: Rett Syndrome (RTT) is a rare neurodevelopmental disorder that affects girls and is characterized by severe motor and cognitive impairments, the loss of purposeful hand use, and communication difficulties. Children with RTT, especially those aged 5 to 9 years, often struggle [...] Read more.
Background/Objectives: Rett Syndrome (RTT) is a rare neurodevelopmental disorder that affects girls and is characterized by severe motor and cognitive impairments, the loss of purposeful hand use, and communication difficulties. Children with RTT, especially those aged 5 to 9 years, often struggle to develop the foundational skills necessary for adaptive functioning, such as eye contact, object tracking, functional gestures, turn-taking, and basic communication. These abilities are essential for cognitive, social, and motor development and contribute to greater autonomy in daily life. This study aimed to explore the feasibility of a structured telerehabilitation program and to provide preliminary observations of its potential utility for young girls with RTT, addressing the presumed challenge of engaging this population in video-based interactive training. Methods: The intervention consisted of 30 remotely delivered sessions (each lasting 90 min), with assessments at baseline (A), after 5 weeks (B1), and after 10 weeks (B2). Quantitative outcome measures focused on changes in eye contact, object tracking, functional gestures, social engagement, and responsiveness to visual stimulus. Results: The findings indicate that the program was feasible and well-tolerated. Improvements were observed across all measured domains, and participants showed high levels of engagement and participation throughout the intervention. While these results are preliminary, they suggest that interactive digital formats may be promising for supporting foundational learning processes in children with RTT. Conclusions: This study provides initial evidence that telerehabilitation is a feasible approach for engaging young girls with RTT and supporting adaptive skill development. These findings may inform future research and the design of controlled studies to evaluate the efficacy of technology-assisted interventions in this population. Full article
(This article belongs to the Special Issue Ehealth, Telemedicine, and AI in the Precision Medicine Era)
Show Figures

Graphical abstract

Back to TopTop