Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (38)

Search Parameters:
Keywords = motor fleet

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 11742 KiB  
Article
The Environmental and Grid Impact of Boda Boda Electrification in Nairobi, Kenya
by Halloran Stratford and Marthinus Johannes Booysen
World Electr. Veh. J. 2025, 16(8), 427; https://doi.org/10.3390/wevj16080427 - 31 Jul 2025
Viewed by 219
Abstract
Boda boda motorbike taxis are a primary mode of transport in Nairobi, Kenya, and a major source of urban air pollution. This study investigates the environmental and electrical grid impacts of electrifying Nairobi’s boda boda fleet. Using real-world tracking data from 118 motorbikes, [...] Read more.
Boda boda motorbike taxis are a primary mode of transport in Nairobi, Kenya, and a major source of urban air pollution. This study investigates the environmental and electrical grid impacts of electrifying Nairobi’s boda boda fleet. Using real-world tracking data from 118 motorbikes, we simulated the effects of a full-scale transition from internal combustion engine (ICE) vehicles to electric motorbikes. We analysed various scenarios, including different battery charging strategies (swapping and home charging), motor efficiencies, battery capacities, charging rates, and the potential for solar power offsetting. The results indicate that electrification could reduce daily CO2 emissions by approximately 85% and eliminate tailpipe particulate matter emissions. However, transitioning the entire country’s fleet would increase the national daily energy demand by up to 6.85 GWh and could introduce peak grid loads as high as 2.40 GW, depending on the charging approach and vehicle efficiency. Battery swapping was found to distribute the grid load more evenly and better complement solar power integration compared to home charging, which concentrates demand in the evening. This research provides a scalable, data-driven framework for policymakers to assess the impacts of transport electrification in similar urban contexts, highlighting the critical trade-offs between environmental benefits and grid infrastructure requirements. Full article
Show Figures

Figure 1

25 pages, 3186 KiB  
Article
Emission Inspections of Vehicles in Operation—Case Study for Slovakia
by Miloš Poliak, Michal Loman and Roman Stovička
Vehicles 2025, 7(2), 51; https://doi.org/10.3390/vehicles7020051 - 27 May 2025
Viewed by 712
Abstract
Air pollution poses a serious threat to human health and the environment. Emissions from motor vehicles, especially in large cities, contribute significantly to this problem. This study analyzes the results of emission inspections in the Slovak Republic to identify factors influencing emissions and [...] Read more.
Air pollution poses a serious threat to human health and the environment. Emissions from motor vehicles, especially in large cities, contribute significantly to this problem. This study analyzes the results of emission inspections in the Slovak Republic to identify factors influencing emissions and their impact on air quality. The research analyzed data from emission inspections and their relationship to vehicle age, fuel type, and type of failure. The results show that older vehicles, especially those aged 10 to 20 years, have a higher probability of failing to meet emission standards. Specifically, up to 42.75% of diesel vehicles aged 15 to 20 years were rated as unfit, compared to 33.07% of gasoline vehicles in the same age category. An increased proportion of unfit vehicles was recorded for diesel engines, which indicates their negative impact on air quality. The most common failures were related to direct emission measurements. These findings have implications for environmental policy and the regulation of vehicle imports to improve air quality and reduce pollution. Data on emission inspections were drawn from the national system and show knowledge about the observation of emission inspections carried out during one calendar year. The study recommends the introduction of stricter control mechanisms for older vehicles, supporting the renewal of the vehicle fleet, and the implementation of modern technologies to reduce emissions. Rigorous emission inspections are essential for the protection of public health. Regular inspections and modern technologies reduce emissions of harmful substances, thus contributing to the improvement of air quality and public health. Full article
Show Figures

Figure 1

13 pages, 2256 KiB  
Article
Hybridization of ADM-Type Rail Service Cars for Enhanced Efficiency and Environmental Sustainability
by Ziyoda Mukhamedova, Ergash Asatov, Rustam Kuchkarbaev, Gulamova Madina and Dilbar Mukhamedova
World Electr. Veh. J. 2025, 16(5), 260; https://doi.org/10.3390/wevj16050260 - 6 May 2025
Viewed by 422
Abstract
The hybridization of ADM-Type Rail Service Cars aims to enhance energy efficiency, environmental sustainability, and cost-effectiveness within Uzbekistan’s railway network. Diesel-powered service cars currently contribute to high fuel consumption, elevated emissions, and costly maintenance, necessitating a transition to hybrid technology. This study introduces [...] Read more.
The hybridization of ADM-Type Rail Service Cars aims to enhance energy efficiency, environmental sustainability, and cost-effectiveness within Uzbekistan’s railway network. Diesel-powered service cars currently contribute to high fuel consumption, elevated emissions, and costly maintenance, necessitating a transition to hybrid technology. This study introduces an innovative “sequence of linear sets–torsion electric motor–wheel pairs” design, optimizing torque distribution and power efficiency for improved operational reliability. Through system modeling, performance simulations, and real-world field trials, the hybrid system demonstrates a 15% reduction in energy consumption, a 25% decrease in CO2 emissions, and up to 30% lower maintenance costs compared to conventional diesel models. Additionally, the hybrid technology enhances operational flexibility, allowing seamless functionality on both electrified and non-electrified railway lines. From an economic perspective, retrofitting existing service cars instead of full fleet replacement provides a cost-effective alternative, offering an estimated 10-year return on investment (ROI) through fuel savings and reduced downtime. This initiative directly supports Uzbekistan’s Green Development Strategy and railway modernization plans while holding significant commercialization potential in Central Asia and other regions with aging railway infrastructure. By addressing technical scalability, regulatory compliance, and economic feasibility, this study proposes a practical and timely hybrid retrofit solution for sustainable railway operations, aligning current industry needs with long-term environmental and financial benefits. Full article
Show Figures

Figure 1

28 pages, 5893 KiB  
Article
Sustainable Emission Control in Heavy-Duty Diesel Trucks: Fuzzy-Logic-Based Multi-Source Diagnostic Approach
by Siyue He, Yufan Lin, Zhengxin Wei, Maosong Wan and Yongjun Min
Sustainability 2025, 17(8), 3605; https://doi.org/10.3390/su17083605 - 16 Apr 2025
Viewed by 479
Abstract
Motor vehicles emit a large amount of air pollutants. Inspection and Maintenance (I/M) systems serve as a pivotal strategy for mitigating emissions from operational diesel trucks. However, the prevalent issue of blind repairs persists due to insufficient diagnostic capabilities at maintenance stations (M [...] Read more.
Motor vehicles emit a large amount of air pollutants. Inspection and Maintenance (I/M) systems serve as a pivotal strategy for mitigating emissions from operational diesel trucks. However, the prevalent issue of blind repairs persists due to insufficient diagnostic capabilities at maintenance stations (M stations). To address this challenge, a multi-source information fusion methodology is proposed, integrating load deceleration testing from inspection stations (I stations), on-board diagnostics (OBD) data, and manual measurements at M stations. Critical diagnostic parameters—including nitrogen oxides (NOx) and particulate matter (PM) emissions, the ratio of measured wheel-side power to rated power, intake volume, common rail pressure, and exhaust back pressure—are systematically selected through statistical analysis and expert evaluations. An adaptive membership function is developed to resolve ambiguities in emission thresholds, enabling the construction of a robust fault diagnosis framework. Validation using 800 National V diesel truck maintenance records from a provincial automotive electronic health platform (2022 data) demonstrates a diagnostic accuracy of 92.8% for 153 emission-exceeding vehicles, surpassing traditional machine learning approaches by over 20%. By minimizing unnecessary repairs and optimizing maintenance efficiency, this approach significantly reduces resource waste and the lifecycle environmental footprints of diesel fleets. The proposed fuzzy-logic-based model effectively detects latent faults during routine maintenance, directly contributing to sustainable transportation through reductions in NOx and PM emissions—critical for improving air quality and advancing global climate objectives. This establishes a scalable technical framework for the effective implementation of I/M systems in alignment with sustainable urban mobility policies. Full article
Show Figures

Figure 1

19 pages, 980 KiB  
Article
A Comprehensive Analysis of Energy Consumption in Battery-Electric Buses Using Experimental Data: Impact of Driver Behavior, Route Characteristics, and Environmental Conditions
by Mattia Belloni, Davide Tarsitano and Edoardo Sabbioni
Electronics 2025, 14(4), 735; https://doi.org/10.3390/electronics14040735 - 13 Feb 2025
Cited by 2 | Viewed by 1337
Abstract
With the increasing emphasis on environmental sustainability, the electrification of urban public bus fleets has gained significant attention. Understanding the factors influencing the energy consumption of battery-electric buses (BEBs) is crucial for enhancing their energy efficiency. Therefore, it is crucial to identify the [...] Read more.
With the increasing emphasis on environmental sustainability, the electrification of urban public bus fleets has gained significant attention. Understanding the factors influencing the energy consumption of battery-electric buses (BEBs) is crucial for enhancing their energy efficiency. Therefore, it is crucial to identify the subsystems that contribute most to energy consumption and understand how operational factors influence them. This paper presents a comprehensive analysis of BEB energy consumption based on experimental measurements performed with a 12 m fully electric battery bus. The main limitations of this study stem from the use of a single vehicle over a total period of 18 days, during which 187 routes were completed. Additionally, sandbags were used as ballast in place of actual passengers. Various parameters, including the number of passengers, drivers, route characteristics, environmental conditions, and traffic, were analyzed to assess their impact on BEB energy consumption. Data related to the energy consumed by various bus utilities were collected through the vehicle’s CAN network, with a sampling rate of 1 measurement per second. These data were analyzed both daily and per route, revealing the breakdown of energy consumption among different utilities and highlighting those responsible for the highest energy use. The results correlate the total distance traveled, service duration, average speed, driver’s driving style, route characteristics, internal and external temperatures, and air-conditioning system’s reference temperature with the energy consumption of the traction motors and climate control system. In addition, the correlation between the driver, vehicle acceleration, and throttle pedal use, and the energy consumed by the electric traction motor is presented. Full article
(This article belongs to the Special Issue Vehicle Technologies for Sustainable Smart Cities and Societies)
Show Figures

Figure 1

16 pages, 2067 KiB  
Article
Calculations of Performance Characteristics of Submerged Cargo Pumps with Hydraulic Drive and Constant Torque Controllers, Taking into Account the Energy Efficiency of the Drive Motor
by Andrzej Banaszek
Energies 2024, 17(22), 5592; https://doi.org/10.3390/en17225592 - 8 Nov 2024
Viewed by 1372
Abstract
Submerged cargo pumps installed on board tankers are one of the most important components of their cargo system. As they are installed directly in the cargo tanks, they are usually equipped with a hydraulic drive whose power and capacity are controlled by constant-torque [...] Read more.
Submerged cargo pumps installed on board tankers are one of the most important components of their cargo system. As they are installed directly in the cargo tanks, they are usually equipped with a hydraulic drive whose power and capacity are controlled by constant-torque controllers. These have a significant impact on the technical and performance characteristics of the cargo pumps. This paper presents a methodology for calculating the performance characteristics of submerged cargo pumps, taking into account the energy efficiency of their hydraulic drive motors. Due to their number and power, the cargo pumps are powered from the ship’s hydraulic central loading system. This paper describes the main parts of the hydraulic power system structure and the functions of the constant torque controller of the STC type. A mathematical model has been developed to use the basic characteristics of submerged cargo pumps made for the base cargo (water) sent by the pump manufacturer for the case of handling liquid cargo with different parameters. The model considers the characteristics of the hydraulic drive, including a Bosch Rexroth A2FM type hydraulic drive motor and a constant torque controller. The results of simulation calculations of the performance characteristics of an example cargo pump are presented and compared with measurements of the characteristics of this pump on a product tanker. The mathematical model presented in this paper is of utilitarian value, enabling calculations to be carried out without the need for time-consuming CFD numerical methods, making it useful for port and fuel terminal logistics services, ship crews and services managing the operation of product tanker fleets. Full article
Show Figures

Figure 1

13 pages, 3347 KiB  
Article
Technical Efficiency of the Nile Perch Fishing Fleet on Lake Victoria: A Comparative Perspective on the Three Riparian Countries Kenya, Tanzania and Uganda
by Veronica Mpomwenda, Tumi Tómasson, Jón Geir Pétursson, Anthony Taabu-Munyaho, Chrispine Sangara Nyamweya and Daði Mar Kristófersson
Fishes 2024, 9(10), 414; https://doi.org/10.3390/fishes9100414 - 17 Oct 2024
Viewed by 1887
Abstract
Lake Victoria, which is shared by Kenya, Tanzania, and Uganda, faces escalating concerns over sustainable fisheries amidst expanding fishing efforts. This study aims to investigate how technical efficiency (TE) and labor productivity (LP) of the Nile perch fishing fleet vary across the three [...] Read more.
Lake Victoria, which is shared by Kenya, Tanzania, and Uganda, faces escalating concerns over sustainable fisheries amidst expanding fishing efforts. This study aims to investigate how technical efficiency (TE) and labor productivity (LP) of the Nile perch fishing fleet vary across the three riparian countries. Using a nine-year dataset spanning from 2005 to 2021 and employing Stochastic Frontier Analysis, this study evaluates the TE of the fleet, where LP is determined as catch per crew hour fished in a day for three vessel types: motorized, paddled, and sailed. Motorized fleets had the highest mean technical efficiency (0.60–0.66), compared to paddled (0.29–0.49), and sailed vessel categories (0.24–0.46). Sailed vessels declined in all countries owing to their low TE. In Kenya, TE and LP increased for paddled vessels, especially in the period from 2015 to 2021, and a slight increase was also indicated for motorized vessels. Conversely, Uganda and Tanzania experienced gradual declines in TE and LP, particularly from 2015 to 2021, a period of rigorous law enforcement that led to declines in the number of paddled vessels by 50% and 7%, respectively, and a contrasting increase in motorized vessels. By 2021, the number of Ugandan motorized vessels had increased greatly but TE had declined compared to Kenya and Tanzania, a sign of overcapacity. The findings underscore the need for region-specific policies that address economic differences, policy implementation impacts, and resource health to promote sustainable transboundary fisheries management on Lake Victoria. Full article
(This article belongs to the Special Issue Diagnosis and Management of Small-Scale and Data-Limited Fisheries)
Show Figures

Figure 1

17 pages, 6883 KiB  
Article
Forecasting Motor Vehicle Ownership and Energy Demand Considering Electric Vehicle Penetration
by Ning Mao, Jianbing Ma, Yongzhi Chen, Jinrui Xie, Qi Yu and Jie Liu
Energies 2024, 17(20), 5094; https://doi.org/10.3390/en17205094 - 14 Oct 2024
Cited by 2 | Viewed by 1767
Abstract
Given the increasing environmental concerns and energy consumption, the transformation of the new energy vehicle industry is a key link in the innovation of the energy structure. The shift from traditional fossil fuels to clean energy encompasses various dimensions such as technological innovation, [...] Read more.
Given the increasing environmental concerns and energy consumption, the transformation of the new energy vehicle industry is a key link in the innovation of the energy structure. The shift from traditional fossil fuels to clean energy encompasses various dimensions such as technological innovation, policy support, infrastructure development, and changes in consumer preferences. Predicting the future ownership of electric vehicles (EVs) and then estimating the energy demand for transportation is a pressing issue in the field of new energy. This study starts from dimensions such as cost, technology, environment, and consumer preferences, deeply explores the influencing factors on the ownership of EVs, analyzes the mechanisms of various factors on the development of EVs, establishes a predictive model for the ownership of motor vehicles considering the penetration of electric vehicles based on system dynamics, and then simulates the future annual trends in EV and conventional vehicle (CV) ownership under different scenarios based on the intensity of government funding. Using energy consumption formulas under different power modes, this study quantifies the electrification energy demand for transportation flows as fleet structure changes. The results indicate that under current policy implementation, the domestic ownership of EVs and CVs is projected to grow to 172.437 million and 433.362 million, respectively, by 2035, with the proportion of EV ownership in vehicles and energy consumption per thousand vehicles at 28.46% and 566,781 J·km−1, respectively. By increasing the technical and environmental factors by 40% and extending the preferential policies for purchasing new energy vehicles, domestic EV ownership is expected to increase to 201.276 million by 2035. This study provides data support for the government to formulate promotional policies and can also offer data support for the development of basic charging infrastructure. Full article
(This article belongs to the Section C: Energy Economics and Policy)
Show Figures

Figure 1

24 pages, 2934 KiB  
Article
A Multidisciplinary Approach for the Sustainable Technical Design of a Connected, Automated, Shared and Electric Vehicle Fleet for Inner Cities
by Paul Rieger, Paul Heckelmann, Tobias Peichl, Sarah Schwindt-Drews, Nina Theobald, Arturo Crespo, Andreas Oetting, Stephan Rinderknecht and Bettina Abendroth
World Electr. Veh. J. 2024, 15(8), 360; https://doi.org/10.3390/wevj15080360 - 9 Aug 2024
Cited by 1 | Viewed by 1590
Abstract
The increasing volume of personal motorized vehicles (PMVs) in cities has become a serious issue leading to congestion, noise, air pollution and high land consumption. To ensure the sustainability of urban transportation, it is imperative to transition the current transportation paradigm toward a [...] Read more.
The increasing volume of personal motorized vehicles (PMVs) in cities has become a serious issue leading to congestion, noise, air pollution and high land consumption. To ensure the sustainability of urban transportation, it is imperative to transition the current transportation paradigm toward a more sustainable state. Transitions within socio-technical systems often arise from niche innovation. Therefore, this paper pursues the technical optimization of such a niche innovation by applying a technical sustainability perspective on an innovative mobility and logistics concept within a case study. This case study is based on a centrally managed connected, automated, shared and electric (CASE) vehicle fleet which might replace PMV use in urban city centers of the future. The key technical system components of the envisioned mobility and logistics concept are analyzed and optimized with regard to economic, ecological and social sustainability dimensions to maximize the overall sustainability of the ecosystem. Specifically, this paper identifies key challenges and proposes possible solutions across the vehicle components as well as the orchestration of the vehicles’ operations within the envisioned mobility and logistics concept. Thereby, the case study gives an example of how different engineering disciplines can contribute to different sustainability dimensions, highlighting the interdependences. Finally, the discussion concludes that the early integration of sustainability considerations in the technical optimization efforts of innovative transportation systems can provide an important building block for the transition of the current transportation paradigm to a more sustainable state. Full article
(This article belongs to the Special Issue Design Theory, Method and Control of Intelligent and Safe Vehicles)
Show Figures

Figure 1

19 pages, 1666 KiB  
Article
Influence of Vertical Load, Inflation Pressure, and Driving Speed on the Emission of Tire–Road Particulate Matter and Its Size Distribution
by Stefan Schläfle, Meng Zhang, Hans-Joachim Unrau and Frank Gauterin
Atmosphere 2024, 15(4), 502; https://doi.org/10.3390/atmos15040502 - 19 Apr 2024
Cited by 5 | Viewed by 2279
Abstract
As fleet electrification progresses, vehicles are continuously becoming heavier, while the used electric motors, with their high torques, enable longitudinal dynamics to be maintained or even increased. This raises the question of what effect electric vehicles have on the emission of tire–road particulate [...] Read more.
As fleet electrification progresses, vehicles are continuously becoming heavier, while the used electric motors, with their high torques, enable longitudinal dynamics to be maintained or even increased. This raises the question of what effect electric vehicles have on the emission of tire–road particulate matter (PM). To answer this question, investigations were carried out in this study on a tire internal drum test bench with real road surfaces. In addition to the vertical load, the tire inflation pressure and the driving speed were varied. PM emissions were recorded in real time, resulting in emission factors (emission per kilometer driven) for different load conditions. This allows statements to be made about both the effect on the total emission and on the particle size distribution. It was shown that the PM emission increases linearly with the vertical load at constant longitudinal dynamics. If the tire inflation pressure is increased, the emission also increases linearly, and the increases in emission are equally large for both influences. A clear influence of the driving speed on the emission factor could not be determined. With regard to the particle size distribution, the following correlations were found: higher vertical load and higher tire inflation pressure result in a larger mean particle diameter, while a higher driving speed reduces it. Thus, this study contributes to a better understanding of the expected changes in tire-road PM emissions as a result of electrification. Full article
(This article belongs to the Special Issue Traffic Related Emission (2nd Edition))
Show Figures

Figure 1

18 pages, 2335 KiB  
Article
From Co-Operation to Coercion in Fisheries Management: The Effects of Military Intervention on the Nile Perch Fishery on Lake Victoria in Uganda
by Veronica Mpomwenda, Tumi Tómasson, Jón Geir Pétursson and Daði Mar Kristófersson
Fishes 2023, 8(11), 563; https://doi.org/10.3390/fishes8110563 - 20 Nov 2023
Cited by 3 | Viewed by 2625
Abstract
In 2017, Uganda’s small-scale inland fisheries underwent a significant transformation, shifting from local co-management to state military enforcement owing to ineffective enforcement of regulations and declining exports. Employing a mixed-methods approach and blending qualitative and quantitative data, we assessed the impact of military [...] Read more.
In 2017, Uganda’s small-scale inland fisheries underwent a significant transformation, shifting from local co-management to state military enforcement owing to ineffective enforcement of regulations and declining exports. Employing a mixed-methods approach and blending qualitative and quantitative data, we assessed the impact of military intervention on Lake Victoria’s Nile perch fishery, focusing on fishing effort, catch, and exports. Our findings indicate that military operations adhered to regulations, gaining primary support from key stakeholders, specifically motorized fishing operators. Consequently, between 2016 and 2020, legal fishing activities experienced substantial growth. By 2021, approximately 90% of Nile perch catches were made by motorized vessels using longlines and gillnets, despite a declining trend in catch-per-unit effort. Between 2015 and 2021, the Nile perch fishery saw changes: boat seines made up about 5% of motorized fleet catches in 2021, while catches in paddled vessels increased from 20% to over 50%, suggesting a potential role in the growing longline fishery. Therefore, the current management approach does not increase catches or exports compared with the co-management period. The observed decline in catch-per-unit effort among motorized gillnets suggests overcapacity. Further research is needed to comprehend the broader sociological and ecological impacts of the present enforcement strategy for sustainable fishery management. Full article
(This article belongs to the Special Issue Fisheries and Blue Economy)
Show Figures

Figure 1

26 pages, 3177 KiB  
Article
Multi-Type Electric Vehicle Scheduling Optimization Considering Load Capacity, Battery-Allowed Mileage, and Recharging Duration
by Zhichao Cao, Zhimin Mao, Yaoyao Wang and Silin Zhang
Electronics 2023, 12(22), 4655; https://doi.org/10.3390/electronics12224655 - 15 Nov 2023
Cited by 3 | Viewed by 1809
Abstract
Pure electric public transport management optimization can promote the electrification evolution from conventional diesel emission to low/zero carbon transport revolution. However, emerging electric vehicle scheduling (EVS) takes into account battery capacity, battery-allowed mileage, and charging duration, which are a few concerns present at [...] Read more.
Pure electric public transport management optimization can promote the electrification evolution from conventional diesel emission to low/zero carbon transport revolution. However, emerging electric vehicle scheduling (EVS) takes into account battery capacity, battery-allowed mileage, and charging duration, which are a few concerns present at the conventional motor bus planning level. Concentrating on this new challenge, this paper builds a multi-type electric vehicle scheduling model, featuring rigorous load capacity, battery-allowed mileage, and recharging duration constraints. The binary decision variables involving the connection between departure and arrival times, as well as the recharging necessity, are judged simultaneously. The objective is to minimize the fleet size, idle mileage, and charging cost. A preprocessing-based genetic algorithm is used to handle this mixed-integer nonlinear programing model. Numerical examples are tested to validate the effectiveness of the proposed models and the solution algorithm. Compared with a single large-type vehicle scheme, the total cost of multi-type vehicle scheduling in one-trip, two-trip, and three-trip frequency scenarios are reduced by 20.8%, 6.3%, and 9.1%, respectively. Full article
(This article belongs to the Section Electrical and Autonomous Vehicles)
Show Figures

Figure 1

20 pages, 8383 KiB  
Article
Spatio-Temporal Assessment of Heavy-Duty Truck Incident and Inspection Data
by Amy Moore, Vivek Sujan, Adam Siekmann, Hyeonsup Lim, Shiqi (Shawn) Ou and Sarah Tennille
Safety 2023, 9(4), 72; https://doi.org/10.3390/safety9040072 - 9 Oct 2023
Cited by 2 | Viewed by 2290
Abstract
Vehicular incidents, especially those involving tractor trailers, are increasing in number every year. These events are extremely costly for fleets, in terms of damage or loss of property, loss of efficiency, and certainly in terms of loss of life. Although the U.S. Department [...] Read more.
Vehicular incidents, especially those involving tractor trailers, are increasing in number every year. These events are extremely costly for fleets, in terms of damage or loss of property, loss of efficiency, and certainly in terms of loss of life. Although the U.S. Department of Transportation (DOT) is responsible for performing inspections, and fleet managers are encouraged to maintain their fleet and participate in regular inspections, it is uncertain whether these inspections are occurring at a frequency that is necessary to prevent incidents. The Federal Motor Carrier Safety Administration (FMCSA) of the DOT manages and maintains the Motor Carrier Management Information System (MCMIS) dataset, which contains all incident and inspection data regarding commercial vehicles in the U.S. The purpose of this preliminary analysis was to explore the MCMIS dataset through spatiotemporal analyses, to uncover findings that may hint at potential improvements in the DOT inspection process and highlight location-specific trends in the dataset. These analyses are novel, as previous research using the MCMIS dataset only examined the data at the state or county level, not at a national scale. The results from the analyses pinpointed specific major metropolitan areas, namely Harris County (Houston), Texas, and three of the New York boroughs (Kings, Queens, and the Bronx), which were found to have increasing incident rates during the study period (2016–2020). An overview of potential causal factors contributing to this increase are provided as well as an overview of the inspection process, and suggestions for improvement relative to the highlighted locations in Texas and New York are also provided. Ultimately, it is suggested that the incorporation of advanced technology and automation may prove beneficial in reducing the occurrence of events that lead to incidents and may also help in the inspection process. Full article
Show Figures

Figure 1

29 pages, 7237 KiB  
Article
Electric Motor and Transmission Integration for Light-Duty Electric Vehicles: A 2023 Benchmarking Perspective and Component Sizing for a Fleet Approach
by Darrell Robinette
Vehicles 2023, 5(3), 1167-1195; https://doi.org/10.3390/vehicles5030065 - 14 Sep 2023
Cited by 4 | Viewed by 5451
Abstract
A review of past, current, and emerging electric vehicle (EV) propulsion system technologies and their integration is the focus of this paper, namely, the matching of electric motor (EM) and transmission (TRM) to meet basic requirements and performance targets. The fundaments of EM [...] Read more.
A review of past, current, and emerging electric vehicle (EV) propulsion system technologies and their integration is the focus of this paper, namely, the matching of electric motor (EM) and transmission (TRM) to meet basic requirements and performance targets. The fundaments of EM and TRM matching from a tractive effort and a vehicle dynamics perspective are provided as an introductory context to available or near-production propulsion system products available from OEM and Tier 1 suppliers. Engineering data and details regarding EM and TRM combinations are detailed with a specific focus on volumetric and mass density. Evolutionary trends in EM and TRM technologies have been highlighted and summarized through current and emerging products. The paper includes an overview of the initial EV propulsion system’s sizing and selection for a set of simple requirements that are provided through an examination of three light-duty EV applications. An enterprise approach to developing electrified propulsion modules with suitable applicability to a range of light-duty EVs from compact cars to full-size trucks concludes the paper. Full article
Show Figures

Figure 1

16 pages, 2810 KiB  
Article
Life Cycle Analysis of an On-the-Road Modular Vehicle Concept
by Christian Ulrich, Mario Feinauer, Katharina Bieber, Stephan A. Schmid and Horst E. Friedrich
Sustainability 2023, 15(13), 10303; https://doi.org/10.3390/su151310303 - 29 Jun 2023
Cited by 4 | Viewed by 2044
Abstract
In order to reduce the environmental impacts caused by the transport sector, autonomous and electrified on-the-road modular vehicles (otrm) could be a solution. By separating the drive unit from the transport unit, they enable use cases for various transport tasks and reduce individual [...] Read more.
In order to reduce the environmental impacts caused by the transport sector, autonomous and electrified on-the-road modular vehicles (otrm) could be a solution. By separating the drive unit from the transport unit, they enable use cases for various transport tasks and reduce individual and motorized transport and its generated emissions. Therefore, the goal of this study is to assess the environmental impacts from cradle to grave by applying the LCA methodology for a defined otrm—the U-Shift—vehicle fleet considering a specific use case relative to a reference vehicle fleet. The results indicate that the U-Shift fleet reduces the life cycle environmental impacts in a range of 3–28% for all of the seven impact categories, which are analyzed in detail. While emissions from the use phase are similar, U-Shift has an environmental benefit in the production phase due to a low amount of resource-intensive driveboards. Considering the early development stage of U-Shift, several measures are discussed, addressing the material and configuration aspects of the vehicles as well as optimized use case applications, which promise further impact-reduction potential. Full article
Show Figures

Figure 1

Back to TopTop