Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,978)

Search Parameters:
Keywords = morphological index

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 7951 KB  
Article
The Influence of Traditional Residential Skywell Forms on Building Performance in Hot and Humid Regions of China—Taking Huangshan Area as an Example
by Lingling Wang, Jilong Zhao, Qingtan Deng, Siyu Wang and Ruixia Liu
Sustainability 2025, 17(17), 7792; https://doi.org/10.3390/su17177792 - 29 Aug 2025
Abstract
Skywells are crucial for climate regulation in traditional Chinese dwelling architecture, exhibiting significant variations across climatic regions. This study focuses on humid–hot China, using Huangshan, to explore skywell parameters’ impact on thermal comfort and energy efficiency. Field research on 24 buildings in the [...] Read more.
Skywells are crucial for climate regulation in traditional Chinese dwelling architecture, exhibiting significant variations across climatic regions. This study focuses on humid–hot China, using Huangshan, to explore skywell parameters’ impact on thermal comfort and energy efficiency. Field research on 24 buildings in the World Heritage Site Xidi, Hong Villages, and Chinese Historical Pingshan Village, combined with Grasshopper’s Ladybug tool, established a parametric model. Using orthogonal design, performance simulation, and Python-based machine learning, six morphological parameters were analyzed: width-to-length ratio, height-to-width ratio, orientation, hall depth, wing width, and shading width. After NSGA-II multi-objective optimization, the summer Percentage of Time Comfortable (PTC) increased by 5.3%, 38.14 h; the Universal Thermal Climate Index (UTCI) relatively improved by 2%; energy consumption decreased by 8.6%, 0.14 kWh/m2; and the useful daylight illuminance increased by 28%, 128.4 h. This confirms the climate adaptability of courtyard-style buildings in humid–hot China and identifies optimized skywell parameters within the study scope. Full article
(This article belongs to the Collection Sustainable Built Environment)
Show Figures

Figure 1

13 pages, 1389 KB  
Article
Sella Turcica and Cranial Base Symmetry in Anterior Synostotic Plagiocephaly Patients: A Retrospective Case–Control Study
by Edoardo Staderini, Davide Guerrieri, Michele Tepedino, Gianmarco Saponaro, Alessandro Moro, Giulio Gasparini, Patrizia Gallenzi and Massimo Cordaro
Diagnostics 2025, 15(17), 2199; https://doi.org/10.3390/diagnostics15172199 - 29 Aug 2025
Abstract
Background/Objectives: The present case–control study aims to compare the symmetry of the sella turcica and cranial base of nine patients with anterior unicoronal synostotic plagiocephaly (ASP) and nine healthy patients referred to the maxillofacial unit of the Fondazione Policlinico Universitario Agostino Gemelli. [...] Read more.
Background/Objectives: The present case–control study aims to compare the symmetry of the sella turcica and cranial base of nine patients with anterior unicoronal synostotic plagiocephaly (ASP) and nine healthy patients referred to the maxillofacial unit of the Fondazione Policlinico Universitario Agostino Gemelli. The primary aim of this study is to assess changes in the morphology of the sella turcica and skull base in comparison with a healthy control population using both a 2D and 3D analysis of the sella turcica and skull base. Methods: Computed tomography (CT) scans of nine ASP patients from the Fondazione Policlinico Universitario Agostino Gemelli in Rome were retrieved. A quantitative evaluation of the skull base and the sella turcica was performed through the asymmetry index (A.I.), obtained from the comparison of the point-to-point distances ipsilateral and contralateral to the synostosis. A qualitative three-dimensional (3D) evaluation of the asymmetry of the sella turcica was performed by comparing each sella model with its mirrored counterpart; then, the root mean square (RMS) displacement between the original and mirrored 3D models was calculated. Results: The results showed higher A.I. values in the study group, particularly the length of the anterior cranial fossa, with A.I. values of 7.96 (study) vs. 0.02 (control). Conclusions: The higher values of the asymmetry index observed in the study group supported the presence of statistically significant asymmetries in the sella and cranial fossa measurements compared to the control group. Full article
Show Figures

Figure 1

15 pages, 2412 KB  
Article
Preparation of Infrared Anti-Reflection Surfaces Based on Microcone Structures of Silicon Carbide
by Ruirui Li, Xiaozheng Ji, Sijia Chang, Haoyu Tian, Zihong Zhao and Chengqun Chu
Materials 2025, 18(17), 4054; https://doi.org/10.3390/ma18174054 - 29 Aug 2025
Abstract
Silicon carbide (SiC) has become the material of choice for precision optical systems due to its exceptional optical characteristics. However, conventional anti-reflection strategies for SiC components predominantly utilize deposited thin-film coatings, which are frequently compromised by insufficient environmental robustness and long-term stability concerns. [...] Read more.
Silicon carbide (SiC) has become the material of choice for precision optical systems due to its exceptional optical characteristics. However, conventional anti-reflection strategies for SiC components predominantly utilize deposited thin-film coatings, which are frequently compromised by insufficient environmental robustness and long-term stability concerns. To overcome these limitations, direct nanostructuring of SiC substrates has emerged as a promising alternative solution. This work introduces an innovative graded-index microcone array design fabricated on SiC substrates, achieving superior broadband anti-reflection performance. Our two-step fabrication methodology comprises plasma-induced formation of tunable nanofiber etch masks through controlled argon bombardment parameters, followed by precision reactive ion etching (RIE) for microcone array formation. By systematically varying plasma exposure duration, we demonstrate precise control over nanofiber mask morphology, which in turn enables the fabrication of height-optimized SiC microcone arrays. The resulting structures exhibit exceptional optical performance, achieving an ultra-low average reflectivity of 2.25% across the spectral range of 2.5–8 μm. This breakthrough fabrication technique not only extends the available toolbox for SiC micro/nanofabrication but also provides a robust platform for next-generation optical applications. Unlike conventional thin-film approaches, our nanostructuring method preserves the intrinsic mechanical and environmental durability of the SiC substrate while delivering a favorable optical performance. Full article
(This article belongs to the Section Advanced Nanomaterials and Nanotechnology)
Show Figures

Figure 1

14 pages, 1542 KB  
Article
Comparative Analysis of Diagnostic Performance Between Elastography and AI-Based S-Detect for Thyroid Nodule Detection
by Jee-Yeun Park and Sung-Hee Yang
Diagnostics 2025, 15(17), 2191; https://doi.org/10.3390/diagnostics15172191 - 29 Aug 2025
Abstract
Background/Objectives: Elastography is a non-invasive imaging technique that assesses tissue stiffness and elasticity. This study aimed to evaluate the diagnostic performance and clinical utility of elastography and S-detect in distinguishing benign from malignant thyroid nodules. S-detect (RS85) is a deep learning-based computer-aided diagnosis [...] Read more.
Background/Objectives: Elastography is a non-invasive imaging technique that assesses tissue stiffness and elasticity. This study aimed to evaluate the diagnostic performance and clinical utility of elastography and S-detect in distinguishing benign from malignant thyroid nodules. S-detect (RS85) is a deep learning-based computer-aided diagnosis (DL-CAD) software that analyzes grayscale ultrasound 2D images to evaluate the morphological characteristics of thyroid nodules, providing a visual guide to the likelihood of malignancy. Method: This retrospective study included 159 patients (61 male and 98 female) aged 30–83 years (56.14 ± 11.35) who underwent thyroid ultrasonography between January 2023 and June 2024. All the patients underwent elastography, S-detect analysis, and fine needle aspiration cytology (FNAC). Malignancy status was determined based on the FNAC findings, and the diagnostic performance of the elasticity contrast index (ECI), S-detect, and evaluations by a radiologist were assessed. Based on the FNAC results, 101 patients (63.5%) had benign nodules and 58 patients (36.5%) had malignant nodules. Results: Radiologist interpretation demonstrated the highest diagnostic accuracy (area under the curve 89%), with a sensitivity of 98.28%, specificity of 79.21%, positive predictive value (PPV) of 73.1%, and negative predictive value (NPV) of 98.8%. The elasticity contrast index showed an accuracy of 85%, sensitivity of 87.93%, specificity of 81.19%, PPV of 72.9%, and NPV of 92.1%. S-detect yielded the lowest accuracy at 78%, with a sensitivity of 87.93%, specificity of 68.32%, PPV of 61.4%, and NPV of 90.8%. Conclusions: These findings offer valuable insights into the comparative diagnostic utility of elastography and AI-based S-detect for thyroid nodules in clinical practice. Although limited by its single-center design and sample size, which potentially limits the generalization of the results, the controlled environment ensured consistency and minimized confounding variables. Full article
(This article belongs to the Special Issue The Role of AI in Ultrasound)
Show Figures

Figure 1

22 pages, 12695 KB  
Article
Multidimensional Profiling of Senescence in Eastern Honey Bee, Apis cerana (Hymenoptera: Apidae), Workers: Morphology, Microstructure, and Transcriptomics
by Qiang Ma, Zachary Y. Huang, Qianmin Hai, Jun Zhang, Xiangyou Tang, Xiaoqun Dang, Jinshan Xu, Zhengang Ma and Zeyang Zhou
Insects 2025, 16(9), 902; https://doi.org/10.3390/insects16090902 - 28 Aug 2025
Abstract
Worker honey bees are crucial for colony stability and ecosystem pollination. However, the cross-scale aging features and underlying mechanisms in the Eastern honey bee (Apis cerana) remain poorly understood. This study systematically investigated age-related changes in A. cerana workers across youth [...] Read more.
Worker honey bees are crucial for colony stability and ecosystem pollination. However, the cross-scale aging features and underlying mechanisms in the Eastern honey bee (Apis cerana) remain poorly understood. This study systematically investigated age-related changes in A. cerana workers across youth (1~5 days post-emergence, dpe), middle age (29 dpe), and old age (50 dpe) through integrated morphological, ultrastructural, and transcriptomic analyses. With increasing age, the phenotypic deterioration in the old bees (OBs) was significant: the body color brightness decreased by 16.7% compared to the young bees (YBs) (p < 0.001), and the hair density of the head, thorax, and abdomen declined by 63.5%, 97.2%, and 91.5%, respectively (p < 0.0001). The wing wear index (WWI) increased to 96.7% (p < 0.0001). The locomotor performance declined sharply, with only 6.7% of the OBs successfully reaching the feeding platform within 15 s (p < 0.0001). Ultrastructural analysis revealed sensory organ abrasion, flattened thoracic bristles, thickened cuticle, and 90.4% increased mitochondrial damage (p < 0.0001). The autophagosomes showed dynamic changes, with 81.8% reduction versus those of mid-aged bees (MBs) (p < 0.001), which suggests that mitochondrial dysfunction and autophagy dysregulation may be the core driving factors behind aging. Transcriptomics identified 67 differentially expressed genes enriched in lifespan regulation, glutathione metabolism, and lysosomal pathways. Fifteen key aging-related genes were identified, such as major royal jelly protein 3 (MRJP3), synaptic vesicle glycoprotein 2A (SV2A), and apidermin 3 (APD3), whose expression dynamics have been shown to be closely related to nutritional metabolism, behavioral perception, and the decline of epidermal barrier function. This work establishes the first multidimensional aging evaluation system for A. cerana, providing critical insights into bee senescence mechanisms and colony health optimization. Full article
(This article belongs to the Special Issue Current Advances in Pollinator Insects)
Show Figures

Graphical abstract

19 pages, 7434 KB  
Article
The Study on the Relation Between Rock Indentation Crater Morphology and Rock Mechanical Index Based on Indentation Experiments
by Zhenkun Wu, Hui Gao, Ying Yang, Songcheng Tan, Xiaohong Fang, Yule Hu and Longchen Duan
Appl. Sci. 2025, 15(17), 9410; https://doi.org/10.3390/app15179410 - 27 Aug 2025
Abstract
Understanding rock behavior under cutting tools is critical for enhancing cutting processes and forecasting rock behavior in engineering contexts. This study examines the link between mechanical properties and indentation crater morphology of six rocks using a conical indenter until initial fracture. Through indentation [...] Read more.
Understanding rock behavior under cutting tools is critical for enhancing cutting processes and forecasting rock behavior in engineering contexts. This study examines the link between mechanical properties and indentation crater morphology of six rocks using a conical indenter until initial fracture. Through indentation testing, mechanical properties (indentation stiffness index k and hardness index HI) were assessed, and crater morphology was analyzed using a 3D laser profilometer. The rocks were categorized into three groups based on specific energy: Class I (slate, shale), Class II (sandstone, marble), and Class III (granite, gneiss). The morphological features of their indentation craters were analyzed both quantitatively and qualitatively. The linear model was used to establish the relationship between crater morphology indices and mechanical properties, with model parameters determined by linear regression. Key findings include: (1) Fracture depth, cross-sectional area, and contour roundness are independent morphological indicators, serving as characteristic parameters for crater morphology, with qualitative and quantitative analyses showing consistency; (2) Post-classification linear fitting revealed statistically significant morphological prediction models, though patterns varied across rock categories due to inherent properties like structure and grain homogeneity; (3) Classification by specific energy revealed distinct mechanical and morphological differences, with significant linear relationships established for all three indicators in Classes II and III, but only roundness showing significance in Class I (non-significant for cross-sectional area and depth). However, all significant models exhibited limited explanatory power (R2 = 0.220–0.635), likely due to constrained sample sizes. Future studies should expand sample sizes to refine these findings. Full article
Show Figures

Figure 1

23 pages, 2543 KB  
Article
Potential of Compost-Derived Actinomycetes for Low-Density Polyethylene Degradation
by Elżbieta Szczyrba, Tetiana Pokynbroda, Agnieszka Gąszczak, Nataliia Koretska, Stepan Tistechok, Ivan Roman and Oleksandr Gromyko
Polymers 2025, 17(17), 2318; https://doi.org/10.3390/polym17172318 - 27 Aug 2025
Abstract
The growing concern over the long-term persistence of plastic waste has driven research into biological methods of breaking down polymers. This study investigated a process that combines physicochemical pretreatment and biodegradation of low-density polyethylene (LDPE) using bacterial strains isolated from commercial compost. Four [...] Read more.
The growing concern over the long-term persistence of plastic waste has driven research into biological methods of breaking down polymers. This study investigated a process that combines physicochemical pretreatment and biodegradation of low-density polyethylene (LDPE) using bacterial strains isolated from commercial compost. Four bacterial strains were genetically identified and classified as Actinomycetes. Exposure of LDPE to these selected strains resulted in a measurable reduction in polymer sample weight, accompanied by alterations in surface hydrophobicity. Furthermore, the chemical modifications at the films’ surfaces were confirmed by the spectra obtained by Fourier transform infrared spectroscopy (FTIR). The microbial colonisation of plastic surfaces plays a key role in the overall biodegradation process. The formation of a biofilm and the subsequent morphological changes on the LDPE surface were revealed by scanning electron microscopy (SEM). The modification of the polyethylene surface by nitric acid treatment was found to be a promising strategy for enhancing the LDPE degradation. The acid-treated films exhibited the greatest weight loss, the greatest increase in carbonyl index values, and the greatest change in hydrophobicity following microbial exposure. Moreover, it was found that biodegradation under these conditions resulted in the lowest levels of phytotoxic byproducts. The transformation of polyethylene surface properties—from hydrophobic to hydrophilic—combined with the presence of oxidized functional groups made it easier for microorganisms to degrade LDPE. Full article
(This article belongs to the Special Issue Degradation of Plastics)
Show Figures

Graphical abstract

18 pages, 1637 KB  
Article
Exploiting the Applicative Potential of Hydroxyethyl Cellulose-Based Composites by Composition-Tailoring of the Optical and Dielectric Features
by Andreea Irina Barzic, Iuliana Stoica, Raluca Marinica Albu, Igori Belotercovschii, Victor Suman, Victor V. Zalamai and Victor Cojocaru
Polymers 2025, 17(17), 2315; https://doi.org/10.3390/polym17172315 - 27 Aug 2025
Abstract
This work deals with the preparation of a novel set of ternary polymer composites, where the matrix is a cellulose ether and the reinforcement agent is a 50:50 mixture of TiO2 nanoparticles with PbCl2 micropowder (0.25–4 wt%). The attained film samples [...] Read more.
This work deals with the preparation of a novel set of ternary polymer composites, where the matrix is a cellulose ether and the reinforcement agent is a 50:50 mixture of TiO2 nanoparticles with PbCl2 micropowder (0.25–4 wt%). The attained film samples are investigated from morphological, optical, and electrical points of view to explore the applicative potential as LED encapsulants or flexible dielectric layers for capacitors. Morphological analyses at micro- and nanoscale evidence the level of distribution of the fillers blended within the matrix. UV-VIS spectroscopy and refractometry emphasize that at 0.5 wt% the samples display the best balance between transparency and high refractive index, which matches the applicative criteria for LED encapsulation. The electrical testing with broadband dielectric spectrometer proves that the dielectric constant at 1 kHz of the composite with 4 wt% fillers is enhanced by about 6.63 times in comparison to the neat polymer. This is beneficial for designing eco-friendly and flexible dielectrics for capacitor devices. Full article
Show Figures

Figure 1

18 pages, 4974 KB  
Article
Morphology-Controlled Single Rock Particle Breakage: A Finite-Discrete Element Method Study with Fractal Dimension Analysis
by Ruidong Li, Shaoheng He, Haoran Jiang, Chengkai Xu and Ningyu Yang
Fractal Fract. 2025, 9(9), 562; https://doi.org/10.3390/fractalfract9090562 - 26 Aug 2025
Viewed by 230
Abstract
This study investigates the influence of particle morphology on two-dimensional (2D) single rock particle breakage using the combined finite-discrete element method (FDEM) coupled with fractal dimension analysis. Three key shape descriptors (elongation index EI, roundness index Rd, and roughness index Rg [...] Read more.
This study investigates the influence of particle morphology on two-dimensional (2D) single rock particle breakage using the combined finite-discrete element method (FDEM) coupled with fractal dimension analysis. Three key shape descriptors (elongation index EI, roundness index Rd, and roughness index Rg) were systematically varied to generate realistic particle geometries using the Fourier transform and inverse Monte Carlo. Numerical uniaxial compression tests revealed distinct morphological influences: EI showed negligible impact on crushing strength or fragmentation, and Rd significantly increased crushing strength and fragmentation due to improved energy absorption and stress distribution. While Rg reduced strength through stress concentration at asperities, suppressing fragmentation and elastic energy storage. Fractal dimension analysis demonstrated an inverse linear correlation with crushing strength, confirming its predictive value for mechanical performance. The validated FDEM framework provides critical insights for optimizing granular materials in engineering applications requiring morphology-controlled fracture behavior. Full article
(This article belongs to the Special Issue Fractal and Fractional in Geotechnical Engineering, Second Edition)
Show Figures

Figure 1

38 pages, 9919 KB  
Article
The Effects of Setback Geometry and Façade Design on the Thermal and Energy Performance of Multi-Story Residential Buildings in Hot Arid Climates
by Asmaa Omar, Mohammed M. Gomaa and Ayman Ragab
Architecture 2025, 5(3), 68; https://doi.org/10.3390/architecture5030068 - 26 Aug 2025
Viewed by 385
Abstract
This study investigates the influence of rear setback geometry and façade design parameters on microclimatic conditions, indoor thermal comfort, and energy performance in multi-story residential buildings in hot arid climates, addressing the growing need for climate-responsive design in regions with extreme temperatures and [...] Read more.
This study investigates the influence of rear setback geometry and façade design parameters on microclimatic conditions, indoor thermal comfort, and energy performance in multi-story residential buildings in hot arid climates, addressing the growing need for climate-responsive design in regions with extreme temperatures and high solar radiation. Despite increasing interest in sustainable strategies, the combined effects of urban geometry and building envelope design remain underexplored in these environments. A coupled simulation framework was developed, integrating ENVI-met for outdoor microclimate modeling with Design Builder and EnergyPlus for dynamic building performance analysis. A total of 270 simulation scenarios were examined, combining three rear setback aspect ratios (1.5, 1.87, and 2.25), three window-to-wall ratios (10%, 20%, and 30%), three glazing types (single-, double-, and triple-pane), and two wall insulation states, using customized weather files derived from microclimate simulations. Global sensitivity analysis using rank regression and multivariate adaptive regression splines identified the glazing type as the most influential parameter (sensitivity index ≈ 0.99), especially for upper floors. At the same time, higher aspect ratios reduced peak Physiological Equivalent Temperature (PET) by up to 5 °C and decreased upper-floor cooling loads by 37%, albeit with a 9.3% increase in ground-floor cooling demand. Larger window-to-wall ratios lowered lighting energy consumption by up to 35% but had minimal impact on cooling loads, whereas wall insulation reduced annual cooling demand by up to 29,441 kWh. The results emphasize that integrating urban morphology with optimized façade components, particularly high-performance glazing and suitable aspect ratios, can significantly improve thermal comfort and reduce cooling energy consumption in hot arid residential contexts. Full article
(This article belongs to the Special Issue Advances in Green Buildings)
Show Figures

Figure 1

10 pages, 1019 KB  
Article
Morphological and Behavioral Abnormalities Induced by Hydrogen Peroxide in Drosophila melanogaster
by María Llasbeth Hernández-Calderón, Alondra Gallegos-Moreno, Aneet Yamely Miranda-Camacho, Claudia Linette Sánchez-Jiménez, Sandra Díaz-Barriga-Arceo, Jorge Alejandro Aguirre-Joya, Cristian Torres-León and David Ramiro Aguillón-Gutiérrez
Biology 2025, 14(9), 1122; https://doi.org/10.3390/biology14091122 - 25 Aug 2025
Viewed by 266
Abstract
Congenital developmental defects are among the postnatal consequences of early exposure to hydrogen peroxide or other teratogens that induce oxidative stress, highlighting a potential mechanistic link between oxidative stress, redox signaling, and developmental processes. This study evaluated the morphological and behavioral abnormalities induced [...] Read more.
Congenital developmental defects are among the postnatal consequences of early exposure to hydrogen peroxide or other teratogens that induce oxidative stress, highlighting a potential mechanistic link between oxidative stress, redox signaling, and developmental processes. This study evaluated the morphological and behavioral abnormalities induced by hydrogen peroxide in the Drosophila melanogaster model, as well as its teratogenic index. The results demonstrated that hydrogen peroxide induces morphological abnormalities in adult wings, legs, and abdomen, as well as necrosis and developmental disruptions during larval and pupal stages. A median lethal concentration (LC50) of 0.16% and a teratogenic index (TI) of 0.44 were calculated when considering anomalies at any development stage; a TI of 0.21 was obtained when considering only adult abnormalities. Regarding behavioral changes, an increase in locomotor activity was observed in both larvae and adults, with significantly greater activity recorded in adult females than in males. These findings suggest that hydrogen peroxide can induce both morphological and behavioral abnormalities in D. melanogaster, although it presents a low teratogenic index. Full article
(This article belongs to the Special Issue Animal Models in Toxicology)
Show Figures

Figure 1

18 pages, 330 KB  
Article
Bacterial Isolates from Avocado Orchards with Different Agronomic Management Systems with Potential for Promoting Plant Growth in Tomate and Phytopathogen Control
by Adilene Velázquez-Medina, Evangelina Esmeralda Quiñones-Aguilar, Ernestina Gutiérrez-Vázquez, Nuria Gómez-Dorantes, Gabriel Rincón-Enríquez and Luis López-Pérez
Microorganisms 2025, 13(9), 1974; https://doi.org/10.3390/microorganisms13091974 - 23 Aug 2025
Viewed by 489
Abstract
The bacterial diversity of soils cultivated with avocado (Persea americana M.) is influenced by different factors, perhaps the most decisive being the type of agronomic management used by farmers. In conventional agronomic management (CM), high doses of agrochemicals are applied, in contrast [...] Read more.
The bacterial diversity of soils cultivated with avocado (Persea americana M.) is influenced by different factors, perhaps the most decisive being the type of agronomic management used by farmers. In conventional agronomic management (CM), high doses of agrochemicals are applied, in contrast to organic agronomic management (OM), where organic fertilizers are used. This alters the diversity and abundance of soil microorganism populations, which in turn affects crop health. This study aimed to isolate and morphologically characterize rhizospheric bacteria from avocado trees under different agronomic management systems (CM and OM). For the bacterial isolates, their ability to promote plant growth in vitro was determined through biochemical tests for phosphorus and calcium solubilization and nitrogen fixation. In addition, their in vivo effect on tomato (S. lycopersicum) growth was evaluated, and their antagonistic capacity against Fusarium sp. was assessed. The results showed differences in the quantity, diversity, and morphologies of bacterial isolates depending on the type of agronomic management. A higher Shannon diversity index was found in OM (2.44) compared to CM (1.75). A total of 35 bacterial isolates were obtained from both management types. A greater number of isolates from OM soils exhibited in vitro PGP activity; notably, eight isolates from OM plots showed phosphate-solubilizing activity, compared to only one from CM plots. Furthermore, although all isolates demonstrated nitrogen fixing capacity, those from OM orchards produced significantly higher nitrate levels than the control (Azospirillum vinelandii). On the other hand, inoculation of tomato plants with bacterial isolates from OM soils increased plant height, root length, and total fresh and dry biomass compared to isolates from CM soils. Likewise, OM isolates exhibited greater antagonistic activity against Fusarium sp. These findings demonstrate the impact of agronomic management on soil bacterial populations and its effect on plant growth and protection against pathogens. Full article
(This article belongs to the Special Issue Advances in Plant–Soil–Microbe Interactions)
22 pages, 4283 KB  
Article
Characterization of Envira Fibers Endemic to the Amazon Rainforest and Their Potential for Reinforcement in Polymer Composites
by Miriane Alexandrino Pinheiro, Leoncio Soares Galvao Neto, Alisson Clay Rios da Silva, Sérgio Neves Monteiro, Felipe Perisse Duarte Lopes, Marcos Allan Leite dos Reis and Verônica Scarpini Candido
Polymers 2025, 17(17), 2284; https://doi.org/10.3390/polym17172284 - 23 Aug 2025
Viewed by 350
Abstract
Natural lignocellulosic fibers (NLFs) replacing synthetic fibers have been used as reinforcement in polymer matrix composites. In this work, a lesser-known NLF endemic to the Amazon region, the envira fiber (Bocageopsis multiflora), was analyzed for its basic physical, thermochemical, morphological, and [...] Read more.
Natural lignocellulosic fibers (NLFs) replacing synthetic fibers have been used as reinforcement in polymer matrix composites. In this work, a lesser-known NLF endemic to the Amazon region, the envira fiber (Bocageopsis multiflora), was analyzed for its basic physical, thermochemical, morphological, and mechanical characteristics. In addition, epoxy matrix composites with 10, 20, 30, and 40 vol% of continuous and aligned envira fibers were evaluated by Fourier transform infrared spectroscopy (FTIR) and tensile tests. The results were statistically compared by ANOVA and Tukey’s test. The density found for the envira fiber was 0.23 g/cm3. The crystallinity index and microfibrilar angle obtained were 69.5% and 7.07°, respectively. Fiber thermal stability was found up to around 210 °C. FTIR confirmed the presence of functional groups characteristic of NLFs. Morphological analysis by SEM revealed that the envira fiber displayed fine bundles of fibrils and a rough surface along its length. The average strength value of the envira fiber was found to be 62 MPa. FTIR analysis of the composites confirmed the presence of the main constituents of the epoxy resin and NLFs. The tensile strength results indicated that the envira fiber addition increased the strength of the composites up to 40 vol%. The analysis of the fracture region revealed brittle aspects. These results indicate that envira fibers present potential reinforcement for polymer matrix composites and can be used in engineering applications, favored by their lightness and cost-effectiveness. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Graphical abstract

21 pages, 4351 KB  
Article
Sustainable PLA Composites Filled with Poaceae Fibers: Thermal, Structural, and Mechanical Properties
by Natalia Kubiak, Bogna Sztorch, Magdalena Kustosz, Miłosz Frydrych, Daria Pakuła, Marek Jałbrzykowski, Tobias Hartmann, Camilo Zopp, Lothar Kroll and Robert E. Przekop
Materials 2025, 18(17), 3952; https://doi.org/10.3390/ma18173952 - 23 Aug 2025
Viewed by 471
Abstract
The present study investigates the manufacturing and characterization of poly(lactic acid) (PLA)-based composites with raw and treated Poaceae, with loadings of 5, 10, and 20% wt. Before composite fabrication, the lignocellulosic fillers were analyzed using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), [...] Read more.
The present study investigates the manufacturing and characterization of poly(lactic acid) (PLA)-based composites with raw and treated Poaceae, with loadings of 5, 10, and 20% wt. Before composite fabrication, the lignocellulosic fillers were analyzed using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and microscopy to assess their chemical composition, thermal stability, and morphological features. Composites were prepared by melting PLA in a molten state with fillers, followed by injection molding. Comprehensive characterization of the obtained composites included microscopic analysis, melt flow index (MFI) testing, and differential scanning calorimetry (DSC), as well as mechanical tests (tensile and bending tests, impact test). The addition of Poaceae fibers to the PLA matrix significantly affected the mechanical and rheological properties of the composites. Incorporating 5% of cooked or alkalized fibers increased the flexural strength by 57% and 54%, respectively, compared to neat PLA. The modulus of elasticity for the composite with 20% alkalized fibers increased by as much as 35%. The fibers acted as nucleating agents, reducing the cold crystallization temperature (Tcc) by up to 15.6 °C, while alkaline residues contributed to an increased melt flow index (MFI). The conducted research provides a valuable basis and insights into the design of sustainable bio-based composites. Full article
(This article belongs to the Special Issue Mechanical Properties and Modeling of Structural Composites)
Show Figures

Figure 1

21 pages, 3874 KB  
Article
Utilizing Sakurajima Volcanic Ash as a Sustainable Partial Replacement for Portland Cement in Cementitious Mortars
by Joanna Julia Sokołowska
Sustainability 2025, 17(17), 7576; https://doi.org/10.3390/su17177576 - 22 Aug 2025
Viewed by 612
Abstract
The present study explores the sustainable potential of volcanic ash sourced from the active Sakurajima volcano (Japan) as an eco-friendly alternative to Portland cement—a binder known for its high carbon emissions—in concrete and mortar production. The abundant pyroclastic material, currently a waste burden [...] Read more.
The present study explores the sustainable potential of volcanic ash sourced from the active Sakurajima volcano (Japan) as an eco-friendly alternative to Portland cement—a binder known for its high carbon emissions—in concrete and mortar production. The abundant pyroclastic material, currently a waste burden for the residents of Sakurajima and the Kagoshima Bay region, presents a unique opportunity for valorization in line with circular economy principles. Rather than treating this ash as a disposal problem, the research investigates its transformation into a valuable supplementary cementitious material (SCM), contributing to more sustainable construction practices. The investigation focused on the material characterization of the ash (including chemical composition, morphology, and PSD) and its pozzolanic activity index, which is a key indicator of its suitability as a cement replacement. Mortars were prepared with 25% of the commercial binder replaced by volcanic ash—both in its raw form and after mechanical activation—and tested for compressive strength after 28 and 90 days of water curing. Additional assessments included workability of the fresh mix (flow table test), apparent density, and flexural strength of the hardened composites. Tests results showed that the applied volcanic ash did not influence the workability of the mix and showed negligible effect on the apparent density (changes of up to 3.3%), although the mechanical strength was deteriorated (decrease by 15–33% after 7 days, and by 25–26% after 28 days). However, further investigation revealed that the simple mechanical grinding significantly enhances the pozzolanic reactivity of Sakurajima ash. The ground ash achieved a 28-day activity index of 81%, surpassing the 75% threshold set by EN 197-1 and EN 450-1 standards for type II mineral additives. These findings underscore the potential for producing low-carbon mortars and concretes using locally sourced volcanic ash, supporting both emissions reduction and sustainable resource management in construction. Full article
(This article belongs to the Section Sustainable Materials)
Show Figures

Graphical abstract

Back to TopTop