Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (25,909)

Search Parameters:
Keywords = morphological effects

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1856 KB  
Article
Multiscale Texture Fractal Analysis of Thermo-Mechanical Coupling in Micro-Asperity Contact Interfaces
by Jiafu Ruan, Xigui Wang, Yongmei Wang and Weiqiang Zou
Symmetry 2025, 17(11), 1799; https://doi.org/10.3390/sym17111799 (registering DOI) - 25 Oct 2025
Abstract
The line contact behavior of multiscale meshing interfaces necessitates synergistic investigation spanning nano-to centimeter-scale ranges. When nominally smooth gear teeth surfaces come into contact, the mechanical–thermal coupling effect at the meshing interface actually occurs over a collection of microscale asperities (roughness peaks) exhibiting [...] Read more.
The line contact behavior of multiscale meshing interfaces necessitates synergistic investigation spanning nano-to centimeter-scale ranges. When nominally smooth gear teeth surfaces come into contact, the mechanical–thermal coupling effect at the meshing interface actually occurs over a collection of microscale asperities (roughness peaks) exhibiting hierarchical distribution characteristics. The emergent deformation phenomena across multiple asperity scales govern the self-organized evolution of interface conformity, thereby regulating both the load transfer efficiency and thermal transport properties within the contact zone. The fractal nature of the roughness topography on actual meshing interfaces calls for the development of a cross-scale theoretical framework that integrates micro-texture optimization with multi-physics coupling contact behavior. Conventional roughness characterization methods based on statistical parameters suffer from inherent limitations: their parameter values are highly dependent on measurement scale, lacking uniqueness under varying sampling intervals and instrument resolutions, and failing to capture the scale-invariant nature of meshing interface topography. A scale-independent parameter system grounded in fractal geometry theory enables essential feature extraction and quantitative characterization of three-dimensional interface morphology. This study establishes a progressive deformation theory for gear line contact interfaces with fractal geometric characteristics, encompassing elastic, elastoplastic transition, and perfectly plastic stages. By systematically investigating the force–thermal coupling mechanisms in textured meshing interfaces under multiscale conditions, the research provides a theoretical foundation and numerical implementation pathways for high-precision multiscale thermo-mechanical analysis of meshing interfaces. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

26 pages, 6422 KB  
Review
Recent Advances Towards Selenium Nanoparticles: Synthetic Methods, Functional Mechanisms, and Biological Applications
by Lulu Geng, Linling Li, Xuening Sun, Shuiyuan Cheng and Jiangling He
Foods 2025, 14(21), 3640; https://doi.org/10.3390/foods14213640 (registering DOI) - 24 Oct 2025
Abstract
The exceptional physicochemical properties of selenium nanoparticles (SeNPs) have led to their widespread development. The function of SeNPs is significantly influenced by their shape and particle size, which are in turn determined by the applied synthesis methods. This work presents a critical and [...] Read more.
The exceptional physicochemical properties of selenium nanoparticles (SeNPs) have led to their widespread development. The function of SeNPs is significantly influenced by their shape and particle size, which are in turn determined by the applied synthesis methods. This work presents a critical and comparative analysis of physical, chemical, and biosynthetic methods. The key point is to elaborate on how different methods precisely regulate the particle size, morphology, and stability that are crucial to their functional efficacy. This work emphasizes the importance of creating standardized protocols for characterizing SeNPs in order to make meaningful comparisons between the effectiveness of various studies. We further elucidate the underlying mechanisms of SeNPs’ anti-tumor, antioxidant, and antibacterial activities. A key novelty of this work lies in its systematic construction of a bridge between the synthesis, properties, functions, applications, and translational potential and its provision of a critical assessment. Finally, the review identifies and summarizes the principal challenges hindering clinical and commercial translation, including the imperative for standardized toxicological evaluation, scalable synthesis, and regulatory alignment. Full article
(This article belongs to the Special Issue Application of Nanotechnology in Food Science)
Show Figures

Figure 1

18 pages, 6833 KB  
Article
Synthesis of Zirconium Catalysts Supported on Activated Carbon for Catalytic Oxidative Desulfurization of Dibenzothiophene from N-Octane
by Caixia Yang, Lin Zhang, Shaocui Feng, Yan Chen, Jianmei Zou, Huijun He and Qing Zhang
Sustainability 2025, 17(21), 9483; https://doi.org/10.3390/su17219483 (registering DOI) - 24 Oct 2025
Abstract
The growing emphasis on controlling sulfur-containing compounds in fuel oils has driven the development of numerous desulfurization technologies. Among these, catalytic oxidative desulfurization (CODS) has garnered considerable research interest due to its exceptional capability to efficiently remove refractory sulfur compounds, particularly dibenzothiophene (DBT), [...] Read more.
The growing emphasis on controlling sulfur-containing compounds in fuel oils has driven the development of numerous desulfurization technologies. Among these, catalytic oxidative desulfurization (CODS) has garnered considerable research interest due to its exceptional capability to efficiently remove refractory sulfur compounds, particularly dibenzothiophene (DBT), under relatively mild reaction conditions. However, the widespread application of CODS has been hindered by the high cost and complex preparation processes of the catalysts. To enhance the practical potential of CODS, in this study, a novel Zr@AC catalyst was developed by a facile “solution impregnation + high-temperature calcination” strategy, where zirconium species were effectively supported on activated carbon. Experimental results demonstrated that under optimized conditions of 0.1 g catalyst dosage, 2.0 O/S ratio, reaction temperature 100 °C and reaction time 50 min, the Zr@AC-mediated CODS system achieved a remarkable desulfurization efficiency of 97.24% for DBT removal. The removal efficiency of DBT increased by 9.0% compared with non-catalytic systems. The characterization techniques revealed that the Zr@AC catalyst possesses a hierarchically rough surface morphology, high specific surface area, abundant active sites, and distinctive Zr-O functional groups. Kinetic analysis indicated that the oxidation process follows second-order reaction kinetics. Furthermore, the catalyst maintained over 95% desulfurization efficiency after five consecutive regeneration cycles, confirming that the prepared catalyst has the exceptional recyclability and operational stability. Full article
(This article belongs to the Section Pollution Prevention, Mitigation and Sustainability)
20 pages, 2506 KB  
Article
Chlormequat Chloride and Uniconazole Regulate Lodging Resistance and Yield Formation of Wheat Through Different Strategies
by Huimin Li, Tao Li, Wenan Weng, Gege Cui, Haipeng Zhang, Zhipeng Xing, Luping Fu, Bingliang Liu, Haiyan Wei, Hongcheng Zhang and Guangyan Li
Agronomy 2025, 15(11), 2475; https://doi.org/10.3390/agronomy15112475 (registering DOI) - 24 Oct 2025
Abstract
Lodging is one of the key limiting factors in achieving high wheat yield. The application of plant growth retardants (PGRts) is regarded as an effective practice to prevent lodging. For accurate PGRt selection and the establishment of stable, high-yield production plans, it is [...] Read more.
Lodging is one of the key limiting factors in achieving high wheat yield. The application of plant growth retardants (PGRts) is regarded as an effective practice to prevent lodging. For accurate PGRt selection and the establishment of stable, high-yield production plans, it is essential to make clear the regulation strategies for lodging resistance and yield in PGRts. Field experiments were conducted at two test sites. At the initial jointing stage of wheat, Chlormequat Chloride (CCC) or Uniconazole (S3307) was sprayed. Compared with the control (CK), spraying CCC or S3307 significantly reduced the culm lodging index (CLI) and decreased the lodging rate from 7.1% to 15.6%. CCC was more capable of adjusting plant morphology (reducing plant height and second internode length and increasing stem diameter), while S3307 was more effective in enhancing breaking strength. The contents of GA, IAA, and zeatin nucleoside (ZR) and the activities of lignin-related enzymes (TAL and CAD) were significantly correlated with different stem indicators and CLI. Compared with CK, the yield after spraying CCC or S3307 increased by 6.5% and 6.0%, respectively. CCC mainly enhanced the yield by increasing grain weight per spike and the SPAD value of leaves, while S3307 mainly did so by increasing the number of spikes and the effective leaf area. Moreover, carbon metabolism-related enzymes (Rubisco, SS, and SPS) were significantly positively correlated with the yield. The enzyme activity of CCC was higher at the heading stage, while that of S3307 was higher at the filling stage. Hence, spraying CCC or S3307 can significantly enhance lodging resistance and yield. The optimal PGRts should be selected based on the climate and the growth stage of the wheat. Full article
Show Figures

Figure 1

19 pages, 3718 KB  
Article
Evaluation of the Insecticidal Potential of Lysinibacillus fusiformis Against Drosophila suzukii Larvae
by Maristella Mastore, Elisa Broggio, Davide Banfi, Ricardo A. R. Machado, Aashaq Hussain Bhat, Sadreddine Kallel, Marcella Reguzzoni, Silvia Quadroni and Maurizio F. Brivio
Insects 2025, 16(11), 1090; https://doi.org/10.3390/insects16111090 (registering DOI) - 24 Oct 2025
Abstract
The increase in the world population and consequent rise in food demand have led to the extensive use of chemical pesticides, causing environmental and health concerns. In response, biological control methods, particularly those involving microbial agents, have emerged as sustainable alternatives within integrated [...] Read more.
The increase in the world population and consequent rise in food demand have led to the extensive use of chemical pesticides, causing environmental and health concerns. In response, biological control methods, particularly those involving microbial agents, have emerged as sustainable alternatives within integrated pest management. This study highlights the potential of Lysinibacillus fusiformis as a biocontrol agent against the dipteran Drosophila suzukii (Matsumura) (Diptera: Drosophilidae), a pest responsible for damaging soft-skinned fruits. Experimental treatments using vegetative cells, spores, and secondary metabolites of L. fusiformis on D. suzukii larvae demonstrated significant larvicidal effects, accompanied by observable changes in gut morphology under microscopy. Moreover, preliminary immunological assays showed the interference of this bacterium with the host immune system. All the results indicate the suitability of L. fusiformis for its possible integration into sustainable agricultural practices, although additional research is required to understand its applicability in the field. Full article
23 pages, 3747 KB  
Article
Target Tracking with Adaptive Morphological Correlation and Neural Predictive Modeling
by Victor H. Diaz-Ramirez and Leopoldo N. Gaxiola-Sanchez
Appl. Sci. 2025, 15(21), 11406; https://doi.org/10.3390/app152111406 (registering DOI) - 24 Oct 2025
Abstract
A tracking method based on adaptive morphological correlation and neural predictive models is presented. The morphological correlation filters are optimized according to the aggregated binary dissimilarity-to-matching ratio criterion and are adapted online to appearance variations of the target across frames. Morphological correlation filtering [...] Read more.
A tracking method based on adaptive morphological correlation and neural predictive models is presented. The morphological correlation filters are optimized according to the aggregated binary dissimilarity-to-matching ratio criterion and are adapted online to appearance variations of the target across frames. Morphological correlation filtering enables reliable detection and accurate localization of the target in the scene. Furthermore, trained neural models predict the target’s expected location in subsequent frames and estimate its bounding box from the correlation response. Effective stages for drift correction and tracker reinitialization are also proposed. Performance evaluation results for the proposed tracking method on four image datasets are presented and discussed using objective measures of detection rate (DR), location accuracy in terms of normalized location error (NLE), and region-of-support estimation in terms of intersection over union (IoU). The results indicate a maximum average performance of 90.1% in DR, 0.754 in IoU, and 0.004 in NLE on a single dataset, and 83.9%, 0.694, and 0.015, respectively, across all four datasets. In addition, the results obtained with the proposed tracking method are compared with those of five widely used correlation filter-based trackers. The results show that the suggested morphological-correlation filtering, combined with trained neural models, generalizes well across diverse tracking conditions. Full article
(This article belongs to the Special Issue Application of Artificial Intelligence in Image Processing)
22 pages, 5907 KB  
Article
Fe–Ce Bimetallic MOFs for Water Environment Remediation: Efficient Removal of Fluoride and Phosphate
by Jinyun Zhao, Yuhuan Su, Jiangyan Song, Ruilai Liu, Fangfang Wu, Jing Xu, Tao Xu, Jilin Mu, Hao Lin and Jiapeng Hu
Nanomaterials 2025, 15(21), 1623; https://doi.org/10.3390/nano15211623 (registering DOI) - 24 Oct 2025
Abstract
Fe–Ce-MOFs with a rice-grain-like morphology were successfully obtained via hydrothermal synthesis, where ferric chloride (FeCl3) and cerium nitrate [Ce(NO3)3] served as the metal precursors and terephthalic acid (PTA) acted as the organic coordinating ligand. The effects of [...] Read more.
Fe–Ce-MOFs with a rice-grain-like morphology were successfully obtained via hydrothermal synthesis, where ferric chloride (FeCl3) and cerium nitrate [Ce(NO3)3] served as the metal precursors and terephthalic acid (PTA) acted as the organic coordinating ligand. The effects of the Fe:Ce molar ratio, (Fe/Ce):PTA ratio, reaction duration, and synthesis temperature on adsorption performance of the Fe–Ce-MOFs were systematically studied. A comprehensive evaluation was conducted on the removal of fluoride and phosphate ions from aqueous solution. Under optimized conditions, the maximum adsorption capacities of Fe–Ce-MOFs for fluoride and phosphate reached 183.82 mg g−1 and 110.74 mg g−1, respectively. Adsorption data correlated strongly with the Langmuir isotherm, were best represented by the pseudo-second-order kinetic model, and were identified as a spontaneous and endothermic reaction. After three regeneration cycles, the adsorbent still maintained high removal efficiencies for fluoride (85.17%) and phosphate (47.34%) removal. In practical wastewater treatment, removal efficiencies of 92.04% for fluoride and 93.87% for phosphate were achieved. Mechanistic studies revealed that fluoride removal was dominated by electrostatic attraction and hydroxyl–fluoride ion exchange, whereas phosphate removal was attributed to the generation of inner-sphere complexes involving PO43− and Fe/Ce active sites. This study not only elucidates the synergistic mechanism of fluoride and phosphate elimination by Fe–Ce-MOFs but also provides theoretical guidance and application prospects for the development of highly efficient and stable bimetallic MOF-based adsorbents for environmental remediation. Full article
(This article belongs to the Section Inorganic Materials and Metal-Organic Frameworks)
Show Figures

Figure 1

15 pages, 4903 KB  
Article
Protective Coating for Zinc Electrodes of Zinc–Air Battery in a Neutral Electrolyte
by Sonia Bagheri, Benedetto Bozzini, Carola Esposito Corcione, Raffaella Striani and Claudio Mele
Energies 2025, 18(21), 5599; https://doi.org/10.3390/en18215599 (registering DOI) - 24 Oct 2025
Abstract
This work introduces a novel approach to enhancing the performance of zinc anodes in zinc–air batteries through a photopolymerizable organic–inorganic hybrid coating. Electrochemical tests were conducted in a neutral NaCl electrolyte, selected to minimize electrolyte carbonation, anode corrosion, and zinc dendrite formation. The [...] Read more.
This work introduces a novel approach to enhancing the performance of zinc anodes in zinc–air batteries through a photopolymerizable organic–inorganic hybrid coating. Electrochemical tests were conducted in a neutral NaCl electrolyte, selected to minimize electrolyte carbonation, anode corrosion, and zinc dendrite formation. The behavior of bare and coated zinc electrodes was investigated using linear sweep voltammetry, electrochemical impedance spectroscopy (EIS), potentiostatic measurements, galvanostatic discharge tests, and charge-discharge tests, while morphological and structural characterizations were carried out by Atomic Force Microscopy (AFM), Raman spectroscopy, and X-ray Diffraction (XRD). The results confirmed that the hybrid coating acts as a corrosion-resistant barrier, enhancing the reversibility and stability of zinc electrodes through a barrier mechanism. Charge–discharge tests further confirmed the improved performance of the coated electrode, obtaining at a current density of 1 mA/cm2, a coulombic efficiency of 92.61% and a capacity retention of 90.18%, respectively, after 16 cycles. These findings highlight the effectiveness of the photopolymerizable hybrid coating in improving the durability and rechargeability of zinc–air batteries. Full article
(This article belongs to the Special Issue Advances in Materials for Electrochemical Energy Applications 2024)
Show Figures

Figure 1

20 pages, 5604 KB  
Article
Unraveling the Fe-Dependent Phase Evolution and Structure of Ni-Fe/γ-Al2O3 Catalysts: A Combined Experimental and Computational Study
by Semyon A. Gulevich, Mariya P. Shcherbakova-Sandu, Eugene P. Meshcheryakov, Yurij A. Abzaev, Sergey A. Guda, Ritunesh Kumar, Akshay K. Sonwane, Sonali Samal, Ajay K. Kushwaha and Irina A. Kurzina
Inorganics 2025, 13(11), 349; https://doi.org/10.3390/inorganics13110349 (registering DOI) - 24 Oct 2025
Abstract
Nickel–iron (Ni-Fe) catalysts are widely used in industry due to their cost-effectiveness and versatile catalytic properties. This work investigates the structural and morphological characteristics of Ni-Fe catalysts supported on γ-Al2O3, synthesized with varying Ni/Fe atomic ratios (from 1:1 to [...] Read more.
Nickel–iron (Ni-Fe) catalysts are widely used in industry due to their cost-effectiveness and versatile catalytic properties. This work investigates the structural and morphological characteristics of Ni-Fe catalysts supported on γ-Al2O3, synthesized with varying Ni/Fe atomic ratios (from 1:1 to 20:1). The catalysts were characterized using a combination of experimental techniques including X-ray fluorescence (XRF), X-ray diffraction (XRD), scanning and transmission electron microscopy (SEM/TEM), and selected-area electron diffraction (SAED). Theoretical modeling using the USPEX evolutionary algorithm complemented the experimental data by predicting stable Ni-Fe crystal structures. The results revealed uniform metal distribution on the support with particle sizes ranging from 4.1 to 4.5 nm. SAED analysis confirmed the formation of an intermetallic FeNi phase, particularly in samples with higher iron content. This study demonstrates Ni-Fe interaction effects and will be of interest to researchers in catalysis and materials science working on the development of bimetallic systems. Full article
(This article belongs to the Section Inorganic Materials)
27 pages, 66167 KB  
Article
Investigating the Influence of Urban Morphology on Seasonal Thermal Environment Based on Urban Functional Zones
by Meiling Zeng, Chunxia Liu, Yuechen Li, Bo He, Rongxiang Wang, Zihua Qian, Fang Wang, Qiao Huang, Peng Li, Bingrong Leng and Yunjing Huang
Land 2025, 14(11), 2117; https://doi.org/10.3390/land14112117 (registering DOI) - 24 Oct 2025
Abstract
With the rapid advancement of urbanization, urban heat environment issues have become increasingly severe, presenting significant challenges to sustainable urban development. Although previous research has demonstrated the substantial impact of urban morphology on land surface temperature (LST), there is still a lack of [...] Read more.
With the rapid advancement of urbanization, urban heat environment issues have become increasingly severe, presenting significant challenges to sustainable urban development. Although previous research has demonstrated the substantial impact of urban morphology on land surface temperature (LST), there is still a lack of comprehensive research on the non-stationary effects of urban morphology on seasonal LST at the block scale. Therefore, this study establishes a comprehensive research framework, utilizing urban functional zones in the core area of Chongqing as the primary research unit, to investigate the seasonal fluctuations in the spatial distribution of LST across various functional zones. Combining Random Forest (RF) with multiscale geographically weighted regression methods (MGWR), the study systematically analyzes the numerical and spatial distribution characteristics of how urban morphology factors influence LST from global and local perspectives. The results indicate that (1) the LST in central Chongqing exhibits marked seasonal variation and a distinct “mountain-water pattern,” with industrial zones consistently hotter and public service areas cooler; (2) biophysical surface parameters and building morphological indicators make a high relative contribution to LST changes across seasons, particularly in public service and commercial areas; (3) building density (BD) and biophysical surface parameters primarily exert local impacts on LST changes, while floor area ratio (FAR) and building height range (RBH) have a global effect. These findings provide new insights into the driving mechanisms of urban heat environments and offer scientific evidence for regulating and mitigating urban heat environment issues across different seasons and urban types. Full article
(This article belongs to the Special Issue The Impact of Urban Planning on the Urban Heat Island Effect)
Show Figures

Figure 1

15 pages, 704 KB  
Article
Fetal Sex Modulates Hofbauer Cells’ Response to Diabetes in Human Placenta
by Zdenek Tauber, Max Mrstik, Adela Burianova, Katerina Koubova and Katerina Cizkova
Biomedicines 2025, 13(11), 2606; https://doi.org/10.3390/biomedicines13112606 (registering DOI) - 24 Oct 2025
Abstract
Background: Hofbauer cells (HBCs) are fetal-origin macrophages in the placental villous stroma that contribute to immune tolerance at the feto–maternal interface. They predominantly display an M2 phenotype, characterized by CD206 expression. Methods: Using immunohistochemistry and morphometric analysis, we quantified HBCs, assessed [...] Read more.
Background: Hofbauer cells (HBCs) are fetal-origin macrophages in the placental villous stroma that contribute to immune tolerance at the feto–maternal interface. They predominantly display an M2 phenotype, characterized by CD206 expression. Methods: Using immunohistochemistry and morphometric analysis, we quantified HBCs, assessed CD206 intensity and morphology, and evaluated apoptotic body accumulation in placental villi. Comparisons were made among pregnancies complicated by type 1 diabetes mellitus (T1DM), gestational diabetes mellitus (GDM), and normoglycemic controls, as well as between male and female fetuses. Results: Significant effects of maternal diabetes and fetal sex on CD206 intensity were observed ([diagnosis: F = 2773.00, p < 0.0001; sex: F = 12.19, p = 0.0005]), with a strong interaction (F = 165.40, p < 0.0001). In controls, CD206 intensity was higher in female than male fetuses (p < 0.0001). Across groups, CD206 intensity decreased progressively from controls to GDM and T1DM, with a more pronounced reduction in females. Reduced CD206 was associated with elongation and irregular HBC morphology and increased IL-1β (r = −0.392, p = 0.003; r = −0.609, p < 0.0001) suggesting less tolerogenic phenotype. For apoptotic bodies, significant main effects of maternal diabetes and fetal sex were detected ([diagnosis: F = 97.16, p < 0.0001; sex: F = 15.88, p = 0.0001]). Accumulation increased progressively from controls to GDM and T1DM, with higher counts in males. Conclusions: Maternal diabetes is associated with reduced CD206 intensity, altered HBC morphology, and accumulation of apoptotic bodies in placental villi. Our results suggest greater HBC plasticity, potentially contributing to a tolerogenic placental environment in females. Full article
(This article belongs to the Special Issue New Advances in Insulin—100 Years Since Its Discovery: 2nd Edition)
Show Figures

Figure 1

22 pages, 8997 KB  
Article
Thermomechanical Processing of Medium-Carbon Boron-Bearing Microalloyed-Steel Forgings Targeting Normalized-like Structure and Properties
by Piotr Skubisz, Piotr Micek and Stanisław Flaga
Materials 2025, 18(21), 4871; https://doi.org/10.3390/ma18214871 (registering DOI) - 24 Oct 2025
Abstract
The paper presents designing thermomechanical processing routes for medium-carbon boron-bearing microalloyed steel and investigates their effect on microstructure–property characteristics obtained through controlled cooling directly from hot forging temperature. Direct cooling was carried out in situ within the industrial process of hot forging, replacing [...] Read more.
The paper presents designing thermomechanical processing routes for medium-carbon boron-bearing microalloyed steel and investigates their effect on microstructure–property characteristics obtained through controlled cooling directly from hot forging temperature. Direct cooling was carried out in situ within the industrial process of hot forging, replacing conventional heat treatment with slow and accelerated air cooling, realized with a fully automated fan-cooling laboratory conveyor which accommodates the desired cooling strategy. Comparative analysis of conventionally normalized and direct-cooled microstructure and mechanical properties obtained under varied thermo-mechanical conditions is presented to investigate the potential of medium-carbon microalloyed steel with boron addition for producing tailored properties comparable to those of the normalized condition. The obtained microstructure composed of grain-boundary ferrite and pearlite which resulted in tensile properties as good as Re ≈ 610 MPa, Rm ≈ 910 MPa, and elongation A5 ≥ 12%. Although the achieved microstructure–property parameters differ from those achieved through conventional normalizing (Rm ≤ 780 MPa, Re ≤ 460 MPa, and A ≥ 14%), they are considerable in terms of selected machinability aspects. The observed effect of the imposed treatment strategies on interlamellar spacing and morphology of ferrite showed possibilities regarding the control of mechanical properties and application of direct cooling as a beneficial alternative to conventional normalizing, where energy consumption is the main concern in manufacturing high-duty parts made of boron-bearing microalloyed steel 35MnTiB4. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

19 pages, 11662 KB  
Article
Soybean Soluble Polysaccharides: Composition, Structure, and Protein Stabilization Mechanism in Acidic Milk Drinks
by Yujian Li, Guijiang Liang, Zhaojun Wang, Maomao Zeng, Zhiyong He, Qiuming Chen, Fang Qin and Jie Chen
Foods 2025, 14(21), 3629; https://doi.org/10.3390/foods14213629 (registering DOI) - 24 Oct 2025
Abstract
Soybean Soluble Polysaccharide (SSPS) is a natural anionic polysaccharide with protein content extracted from soybean residue. However, the impact of molecular weight and degree of esterification (DE) of soybean polysaccharides on protein stabilization remains a topic of debate. This study aimed to clarify [...] Read more.
Soybean Soluble Polysaccharide (SSPS) is a natural anionic polysaccharide with protein content extracted from soybean residue. However, the impact of molecular weight and degree of esterification (DE) of soybean polysaccharides on protein stabilization remains a topic of debate. This study aimed to clarify the composition, macromolecular structure, and protein stabilization mechanism of SSPS and its various fractions with differing DEs and molecular weights (MWs). Nine polysaccharide fractions were isolated from three types of SSPSs with varying DEs and MWs using membrane ultrafiltration treatment. The analysis of monosaccharide composition and protein content reveals that the first component of soybean polysaccharides with high (847 kDa) molecular weight and low DE(SSPS20I) possesses the highest (7.25%) concentration of galacturonic acid (GalA) and a lower (0.83%) protein content compared to high-esterification SSPS. Meanwhile, the analysis of amino acids revealed that glutamic acid and aspartic acid were the primary amino acids across all protein components. It was also evident that alkaline treatment influenced the amino acid composition of SSPS. Atomic Force Microscopy (AFM) further substantiated that the components of SSPS exhibit distinct morphological and structural characteristics. The effects of SSPS fractions on the stability of Acidic Milk Drinks (AMDs) were investigated and evaluated using LUMi-Sizer. The results suggest that SSPS20I provided better stabilization in AMDs. This work establishes critical structure–property correlations, revealing that both DE and MW govern SSPS stabilization efficacy through synergistic effects of electrostatic repulsion, steric hindrance, and interfacial adsorption capacity. Full article
Show Figures

Figure 1

20 pages, 8835 KB  
Article
Ergosterol Modulates Physicochemical Properties and Conformational Changes in High-Moisture Soy-Wheat Protein Extrudates
by Yang Gao, Song Yan, Kaixin Chen, Qing Chen, Bo Li and Jialei Li
Foods 2025, 14(21), 3627; https://doi.org/10.3390/foods14213627 (registering DOI) - 24 Oct 2025
Abstract
This work explores the impact of ergosterol (ERG) addition (0%, 0.5%, 1.0%, 1.5%, and 2.0%) on the physicochemical properties, conformational changes, and digestive characteristics of soy protein isolate (SPI) and wheat gluten (WG) processed by high-moisture extrusion. The results demonstrated that the incorporation [...] Read more.
This work explores the impact of ergosterol (ERG) addition (0%, 0.5%, 1.0%, 1.5%, and 2.0%) on the physicochemical properties, conformational changes, and digestive characteristics of soy protein isolate (SPI) and wheat gluten (WG) processed by high-moisture extrusion. The results demonstrated that the incorporation of ERG significantly reduced the apparent viscosity and dynamic moduli of the feedstock system, enhancing melt fluidity and consequently reducing extrusion torque, die pressure, and specific mechanical energy. An appropriate amount of ERG (1.0%) effectively facilitated the development of a distinct fibrous morphology, increased the fibrous degree, lightened the color, and softened the texture. However, excessive addition weakened the fibrous structure due to excessively high fluidity. ERG influenced protein aggregation behavior through hydrophobic interactions, reduced thermal stability, and induced a transition in secondary structure from β-turns to α-helices. The in vitro digestibility initially decreased and then increased, with the lowest value observed at 1.0% ERG. This study indicates that ERG can elevate the performance and value of extruded products by modulating protein structure and rheological behavior, providing a theoretical basis for its application in plant-based meat analogue products. Full article
Show Figures

Figure 1

13 pages, 1352 KB  
Article
Microvillus in LBW Meishan Piglets Preserved Microvillus Integrity Alongside Impaired Intestinal Barrier Function in Low-Birth-Weight Meishan Neonatal Piglets
by Li Dong, You Wu, Zhixuan Sun, Hongrong Wang and Lihuai Yu
Animals 2025, 15(21), 3085; https://doi.org/10.3390/ani15213085 (registering DOI) - 24 Oct 2025
Abstract
Despite lower birth weight, Meishan piglets exhibit a notably higher pre-weaning survival rate compared to Western commercial breeds. This study aimed to evaluate the effect of low birth weight (LBW) on intestinal barrier function in Meishan neonates. Six pairs of neonatal piglets (one [...] Read more.
Despite lower birth weight, Meishan piglets exhibit a notably higher pre-weaning survival rate compared to Western commercial breeds. This study aimed to evaluate the effect of low birth weight (LBW) on intestinal barrier function in Meishan neonates. Six pairs of neonatal piglets (one normal birth weight, NBW: 0.85 ± 0.06 kg; one LBW: 0.65 ± 0.02 kg) from the same sow were euthanized at birth prior to suckling. Morphological parameters, goblet cell density, antioxidant enzyme activities, cytokine gene expression, and tight junction protein levels in the small intestine (SI) were assessed. Results showed that LBW piglets had a significantly higher SI length-to-body weight ratio (p < 0.05), along with reduced villus height, villus height-to-crypt depth ratio, and villus surface area in the jejunum and ileum (p < 0.01). Notably, microvillus structure remained intact despite the presence of mitochondrial swelling. LBW piglets also exhibited decreased goblet cell numbers, lower antioxidant capacity, dysregulated expression of cytokines (CD8, IFNγ, IL4, IL2), and reduced levels of mucin 2, ZO-1, and occludin (p < 0.05). In conclusion, although LBW Meishan piglets showed impairments in multiple aspects of intestinal barrier function, the structural integrity of the microvillus was preserved, which may contribute to their higher survival rate and represents a key adaptive advantage over commercial pig breeds. Full article
(This article belongs to the Section Pigs)
Show Figures

Figure 1

Back to TopTop