Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = morphing aileron

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 11288 KB  
Article
Novel Twist Morphing Aileron and Winglet Design for UAS Control and Performance
by Mir Hossein Negahban, Musavir Bashir, Clovis Priolet and Ruxandra Mihaela Botez
Drones 2024, 8(8), 392; https://doi.org/10.3390/drones8080392 - 13 Aug 2024
Cited by 4 | Viewed by 3908
Abstract
This study introduces a novel “twist morphing aileron and winglet” design for the Unmanned Aircraft System UAS-S45. Improving rolling efficiency through twist morphing ailerons and reducing induced drag through twist morphing winglets are the two main objectives of this study. A novel wing [...] Read more.
This study introduces a novel “twist morphing aileron and winglet” design for the Unmanned Aircraft System UAS-S45. Improving rolling efficiency through twist morphing ailerons and reducing induced drag through twist morphing winglets are the two main objectives of this study. A novel wing design is introduced, and a high-fidelity gradient-based aerodynamic shape optimization is performed for twist morphing ailerons and twist morphing winglets, separately, with specified objective functions. The twist morphing aileron is then compared to the conventional hinged aileron configuration in terms of rolling efficiency and other aerodynamic properties, in particular aircraft maneuverability. The results for twist morphing ailerons show that the novel morphing design increases the aileron efficiency by 34% compared to the conventional design and reduces induced drag by 61%. Next, twist morphing winglets are studied regarding the induced drag in cruise and climb flight conditions. The results for twist morphing winglets indicate that the novel design reduces induced drag by 25.7% in cruise flight and up to 16.51% in climb; it also decreases the total drag by up to 7.5% and increases aerodynamic efficiency by up to 9%. Full article
(This article belongs to the Special Issue Dynamics Modeling and Conceptual Design of UAVs)
Show Figures

Figure 1

13 pages, 1723 KB  
Article
The Coupled Wing Morphing of Ornithopters Improves Attitude Control and Agile Flight
by Yu Cai, Guangfa Su, Jiannan Zhao and Shuang Feng
Machines 2024, 12(7), 486; https://doi.org/10.3390/machines12070486 - 19 Jul 2024
Cited by 2 | Viewed by 2521
Abstract
Bird wings are exquisite mechanisms integrated with multiple morphological deformation joints. The larger avian species are particularly adept at utilizing their wings’ flapping, folding, and twisting motions to control the wing angle and area. These motions mainly involve different types of spanwise folding [...] Read more.
Bird wings are exquisite mechanisms integrated with multiple morphological deformation joints. The larger avian species are particularly adept at utilizing their wings’ flapping, folding, and twisting motions to control the wing angle and area. These motions mainly involve different types of spanwise folding and chordwise twisting. It is wondered whether the agile maneuverability of birds is based on the complex coupling of these wing morphing changes. To investigate this issue, we designed a two-section wing structure ornithopter capable of simultaneously controlling both spanwise folding and chordwise twisting and applied it to research on heading control. The experimental data collected from outdoor flights describe the differing flight capabilities between the conventional and two-section active twist wing states, indicating that incorporating an active twist structure enhances the agility and maneuverability of this novel flapping aircraft. In the experiments on yaw control, we observed some peculiar phenomena: although the twisting motion of the active twist ornithopter wings resembles that of a fixed-wing aileron control, due to the intricate coupling of the wing flapping and folding, the ornithopter, under the control of active twist structures, exhibited a yaw direction opposite to the expected direction (directly applying the logic assumed by the fixed-wing aileron control). Addressing this specific phenomenon, we provide a plausible model explanation. In summary, our study with active twist mechanisms on ornithopters corroborates the positive impact of active deformation on their attitude agility, which is beneficial for the design of similar bio-inspired aircraft in the future. Full article
(This article belongs to the Special Issue Advances and Applications in Unmanned Aerial Vehicles)
Show Figures

Figure 1

19 pages, 4385 KB  
Article
Dynamic Analysis and Experiment of Multiple Variable Sweep Wings on a Tandem-Wing MAV
by Liang Gao, Yanhe Zhu, Xizhe Zang, Junming Zhang, Boyang Chen, Liyi Li and Jie Zhao
Drones 2023, 7(9), 552; https://doi.org/10.3390/drones7090552 - 26 Aug 2023
Cited by 3 | Viewed by 4910
Abstract
The current morphing technologies are mostly regarded as auxiliary tools, providing additional control torques to enhance the flight maneuverability of unmanned aerial vehicles (UAVs), and they cannot exist independently of the traditional control surfaces. In this paper, we propose a tandem-wing micro aerial [...] Read more.
The current morphing technologies are mostly regarded as auxiliary tools, providing additional control torques to enhance the flight maneuverability of unmanned aerial vehicles (UAVs), and they cannot exist independently of the traditional control surfaces. In this paper, we propose a tandem-wing micro aerial vehicle (MAV) with multiple variable-sweep wings, which can reduce the additional inertia forces and moments and weaken the dynamic coupling between longitudinal and lateral motion while the MAV morphs symmetrically for pitch control or asymmetrically for roll control, thereby flying without the traditional aileron and elevator. First, load experiments were conducted on the MAV to verify the structural strength of the multiple variable sweep wings, and the control moments caused by the morphing of the MAV were presented through numerical simulations. Then, the effects caused by symmetric and asymmetric morphing were investigated via dynamic response simulations based on the Kane dynamic model of the MAV, and the generated additional inertia forces and moments were also analyzed during morphing. Finally, dynamic response experiments and open-loop flight experiments were conducted. The experimental results demonstrated that the morphing mode in this study could weaken the coupling between the longitudinal and lateral dynamics and that it was feasible for attitude control without the traditional aileron and elevator while flying. Full article
(This article belongs to the Special Issue Optimal Design, Dynamics, and Navigation of Drones)
Show Figures

Figure 1

20 pages, 9777 KB  
Article
A New Type Bionic Foldable Wing Design for High Maneuverable Unmanned Aerial Vehicle
by Xitong Zhang, Gui Cheng and Gang Chen
Appl. Sci. 2023, 13(14), 8345; https://doi.org/10.3390/app13148345 - 19 Jul 2023
Cited by 6 | Viewed by 4669
Abstract
With the improvement of aircraft requirements in civil and military fields, aircraft are developing towards the direction of high efficiency and multi-mission. Foldable wing aircraft with large deformation capability will be able to meet flight requirements and performance under different conditions. Based on [...] Read more.
With the improvement of aircraft requirements in civil and military fields, aircraft are developing towards the direction of high efficiency and multi-mission. Foldable wing aircraft with large deformation capability will be able to meet flight requirements and performance under different conditions. Based on the bionic design concept, a feather-like foldable morphing wing based on a multi-link mechanism from the flight characteristics of birds was designed. In order to validate the feasibility of the proposed morphing wing conception, a UAV with bionic foldable wings was fabricated. The aerodynamic performance of the prototype model was tested under different working conditions by wind tunnel test and flight test. The simulation and wind tunnel experimental test showed that the prototype has excellent longitudinal and transverse directional aerodynamics. When the wing is symmetrically morphing, the optimal lift-to-drag ratio can be maintained under different flow velocities. When the wing is asymmetrically morphing, it can replace the aileron to achieve an efficient roll maneuver. Full article
(This article belongs to the Special Issue Bionic Design and Manufacturing of Innovative Aircraft)
Show Figures

Figure 1

23 pages, 5729 KB  
Article
Study on the Actuation Aspects for a Morphing Aileron Using an Energy–Based Design Approach
by Alessandro De Gaspari
Actuators 2022, 11(7), 185; https://doi.org/10.3390/act11070185 - 7 Jul 2022
Cited by 6 | Viewed by 3526
Abstract
Evaluating the impact of morphing devices in terms of actuation energy is a promising approach to quantify, from the earliest stages of wing design, the convenience of active camber morphing compared to the use of conventional control surfaces. A morphing wing device consists [...] Read more.
Evaluating the impact of morphing devices in terms of actuation energy is a promising approach to quantify, from the earliest stages of wing design, the convenience of active camber morphing compared to the use of conventional control surfaces. A morphing wing device consists of an adaptive structure coupled with an actuation system. The starting point for the design of the adaptive structure is a three-dimensional parametric-geometry-representation technique working on the definition of the external morphing shape. The morphing shape is defined to be feasible from the structural point of view and able to meet the aerodynamic design requirements. The new method presented here enables the computation of the actuation energy as a combination of strain energy and external aerodynamic work. The former is the energy required to deform the skin and can be computed in an analytical way, based on the same quantities used by the parameterization technique. The latter is used to compute the energy needed to counteract the external aerodynamic loads during the deformation. This method is applied to the design optimization of a morphing aileron which is installed on a 24 m span wing, starts at 65% of both the chord and the semi-span and extends for one third of the span. A parametric study shows the superiority of the morphing aileron, compared with an equivalent hinged aileron, in terms of energy saving, weight penalty reduction and ease of on-board installation. The morphing aileron is more compact and requires a lower actuation energy combined with a lower deflection, while providing the same roll moment. Full article
(This article belongs to the Special Issue Aerospace Mechanisms and Actuation)
Show Figures

Figure 1

21 pages, 4770 KB  
Article
Transient Dynamic System Behavior of Pressure Actuated Cellular Structures in a Morphing Wing
by Patrick Meyer, Sebastian Lück, Tobias Spuhler, Christoph Bode, Christian Hühne, Jens Friedrichs and Michael Sinapius
Aerospace 2021, 8(3), 89; https://doi.org/10.3390/aerospace8030089 - 20 Mar 2021
Cited by 16 | Viewed by 5438
Abstract
High aspect ratio aircraft have a significantly reduced induced drag, but have only limited installation space for control surfaces near the wingtip. This paper describes a multidisciplinary design methodology for a morphing aileron that is based on pressure-actuated cellular structures (PACS). The focus [...] Read more.
High aspect ratio aircraft have a significantly reduced induced drag, but have only limited installation space for control surfaces near the wingtip. This paper describes a multidisciplinary design methodology for a morphing aileron that is based on pressure-actuated cellular structures (PACS). The focus of this work is on the transient dynamic system behavior of the multi-functional aileron. Decisive design aspects are the actuation speed, the resistance against external loads, and constraints preparing for a future wind tunnel test. The structural stiffness under varying aerodynamic loads is examined while using a reduced-order truss model and a high-fidelity finite element analysis. The simulations of the internal flow investigate the transient pressurization process that limits the dynamic actuator response. The authors present a reduced-order model based on the Pseudo Bond Graph methodology enabling time-efficient flow simulation and compare the results to computational fluid dynamic simulations. The findings of this work demonstrate high structural resistance against external forces and the feasibility of high actuation speeds over the entire operating envelope. Future research will incorporate the fluid–structure interaction and the assessment of load alleviation capability. Full article
(This article belongs to the Special Issue Adaptive/Smart Structures and Multifunctional Materials in Aerospace)
Show Figures

Figure 1

22 pages, 11555 KB  
Article
Design and Validation of a New Morphing Camber System by Testing in the Price—Païdoussis Subsonic Wind Tunnel
by David Communier, Ruxandra Mihaela Botez and Tony Wong
Aerospace 2020, 7(3), 23; https://doi.org/10.3390/aerospace7030023 - 7 Mar 2020
Cited by 31 | Viewed by 6294
Abstract
This paper presents the design and wind tunnel testing of a morphing camber system and an estimation of performances on an unmanned aerial vehicle. The morphing camber system is a combination of two subsystems: the morphing trailing edge and the morphing leading edge. [...] Read more.
This paper presents the design and wind tunnel testing of a morphing camber system and an estimation of performances on an unmanned aerial vehicle. The morphing camber system is a combination of two subsystems: the morphing trailing edge and the morphing leading edge. Results of the present study show that the aerodynamics effects of the two subsystems are combined, without interfering with each other on the wing. The morphing camber system acts only on the lift coefficient at a 0° angle of attack when morphing the trailing edge, and only on the stall angle when morphing the leading edge. The behavior of the aerodynamics performances from the MTE and the MLE should allow individual control of the morphing camber trailing and leading edges. The estimation of the performances of the morphing camber on an unmanned aerial vehicle indicates that the morphing of the camber allows a drag reduction. This result is due to the smaller angle of attack needed for an unmanned aerial vehicle equipped with the morphing camber system than an unmanned aerial vehicle equipped with classical aileron. In the case study, the morphing camber system was found to allow a reduction of the drag when the lift coefficient was higher than 0.48. Full article
(This article belongs to the Special Issue Design and Analysis of Wind-Tunnel Models and Fluidic Measurements)
Show Figures

Figure 1

21 pages, 9887 KB  
Article
Fuzzy Logic-Based Control for a Morphing Wing Tip Actuation System: Design, Numerical Simulation, and Wind Tunnel Experimental Testing
by Shehryar Khan, Teodor Lucian Grigorie, Ruxandra Mihaela Botez, Mahmoud Mamou and Youssef Mébarki
Biomimetics 2019, 4(4), 65; https://doi.org/10.3390/biomimetics4040065 - 21 Sep 2019
Cited by 11 | Viewed by 4702
Abstract
The paper presents the design, numerical simulation, and wind tunnel experimental testing of a fuzzy logic-based control system for a new morphing wing actuation system equipped with Brushless DC (BLDC) motors, under the framework of an international project between Canada and Italy. Morphing [...] Read more.
The paper presents the design, numerical simulation, and wind tunnel experimental testing of a fuzzy logic-based control system for a new morphing wing actuation system equipped with Brushless DC (BLDC) motors, under the framework of an international project between Canada and Italy. Morphing wing is a prime concern of the aviation industry and, due to the promising results, it can improve fuel optimization. In this idea, a major international morphing wing project has been carried out by our university team from Canada, in collaboration with industrial, research, and university entities from our country, but also from Italy, by using a full-scaled portion of a real aircraft wing equipped with an aileron. The target was to conceive, manufacture, and test an experimental wing model able to be morphed in a controlled manner and to provide in this way an extension of the laminar airflow region over its upper surface, producing a drag reduction with direct impact on the fuel consumption economy. The work presented in the paper aims to describe how the experimental model has been developed, controlled, and tested, to prove the feasibility of the morphing wing technology for the next generation of aircraft. Full article
(This article belongs to the Special Issue Morphing Aircraft Systems)
Show Figures

Figure 1

24 pages, 4846 KB  
Article
Flight Dynamics and Control Using Folding Wingtips: An Experimental Study
by Josh Mills and Rafic Ajaj
Aerospace 2017, 4(2), 19; https://doi.org/10.3390/aerospace4020019 - 26 Mar 2017
Cited by 33 | Viewed by 12012
Abstract
This paper presents an experimental investigation on using FOLDing wingtips sERving as cONtrol effectorS (FOLDERONS) for a mini Unmanned Aerial Vehicle (UAV). A representative off-the-shelf mini-UAV with a conventional configuration was selected. The main theme of this paper is to utilise FOLDERONS as [...] Read more.
This paper presents an experimental investigation on using FOLDing wingtips sERving as cONtrol effectorS (FOLDERONS) for a mini Unmanned Aerial Vehicle (UAV). A representative off-the-shelf mini-UAV with a conventional configuration was selected. The main theme of this paper is to utilise FOLDERONS as a control effector (mainly in roll) to augment the control authority of conventional control surfaces. Furthermore, the impact of actuation rate on the effectiveness of FOLDERONS is assessed. The paper describes the preliminary and detailed design and sizing of the morphing wing. In addition, the manufacturing of the wing system and its integration with the UAV are addressed. Wind-tunnel testing in the RJ Mitchell wind-tunnel at the University of Southampton was performed. Both static (straight and sideslip) and dynamic (straight flight) tests are conducted at a range of airspeeds and Angles Of Attack (AOAs). The impact of folding wingtips on the lateral and directional stability is analysed. The main finding of this paper is that FOLDERONS are effective (especially at large dynamic pressure and AOAs) in controlling the lateral and directional stability. Finally, this study shows that FOLDERONS cannot fully replace conventional ailerons especially at low dynamic pressures, and their strong dependence on the AOA makes them prone to a roll reversal phenomena when the wing (and FOLDERONS) is operating at negative AOAs. Full article
(This article belongs to the Special Issue Adaptive/Smart Structures and Multifunctional Materials 2016)
Show Figures

Figure 1

Back to TopTop