Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = mooring interval

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 7907 KiB  
Article
Real-Time Fault Diagnosis of Mooring Chain Jack Hydraulic System Based on Multi-Scale Feature Fusion Under Diverse Operating Conditions
by Yujia Liu, Wenhua Li, Haoran Ye, Shanying Lin and Lei Hong
J. Mar. Sci. Eng. 2025, 13(4), 783; https://doi.org/10.3390/jmse13040783 - 15 Apr 2025
Viewed by 498
Abstract
The condition monitoring of mooring equipment is an important engineering reliability issue during the operation of a floating production storage and offloading unit (FPSO). The chain jack (CJ) is the key equipment for powering the mooring chain in a spread mooring system. Under [...] Read more.
The condition monitoring of mooring equipment is an important engineering reliability issue during the operation of a floating production storage and offloading unit (FPSO). The chain jack (CJ) is the key equipment for powering the mooring chain in a spread mooring system. Under complex and dynamic marine operating conditions, different severity faults in the CJ hydraulic system display distinct time-scale characteristics. Hence, this paper proposes a real-time fault diagnosis method of the CJ hydraulic system based on multi-scale feature fusion. Firstly, the model incorporates a convolutional neural network (CNN) layer to extract localized spatial features from multivariate time-series data, effectively identifying fault patterns over the associated short intervals. Subsequently, the bidirectional long short-term memory (BiLSTM) layer is introduced to construct a dynamic temporal model to comprehensively capture the evolution of the fault severity. Finally, a multi-scale global attention mechanism (GAM) emphasizes persistent fault behaviors across time scales, dynamically prioritizing relevant features to improve diagnostic accuracy and model interpretability. The study results indicate that the proposed model’s accuracy improves by 7.36% over the CNN-GAM for 11 failure modes, up to 99.34%. This study contributes to the safe operation of an FPSO by guiding monitoring CJ operations under different load conditions. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

17 pages, 8539 KiB  
Article
Kinematic Stability Analysis of Anchor Cable Structures in Submerged Floating Tunnel under Combined Parametric–Vortex Excitation
by Jiaming Xiong, Song Sang, Youwei Du, Chaojie Gan, Ao Zhang and Fugang Liu
J. Mar. Sci. Eng. 2024, 12(9), 1478; https://doi.org/10.3390/jmse12091478 - 25 Aug 2024
Viewed by 1470
Abstract
The submerged floating tunnel is a marine transportation infrastructure that links two shorelines. The tunnel tube body’s buoyancy exceeds gravity, with anchoring ensuring equilibrium. Anchoring reliability is crucial. This study presents a three-way coupled kinematic model for the mooring structure, formulated on Hamilton’s [...] Read more.
The submerged floating tunnel is a marine transportation infrastructure that links two shorelines. The tunnel tube body’s buoyancy exceeds gravity, with anchoring ensuring equilibrium. Anchoring reliability is crucial. This study presents a three-way coupled kinematic model for the mooring structure, formulated on Hamilton’s principle and Kirchhoff’s assumption. It explores the impact of the tube body’s buoyancy-to-weight ratio and the sea current’s angle of incidence on mooring motion response. By solving the motion analysis model, Hill’s equation system is derived to assess the parameter instability of the anchor cable structure. The coefficient of excitation instability intervals for the submerged floating tunnel is determined and validated. The findings indicate the following: (1) Increasing the float-weight ratio reduces displacement response amplitudes in all directions, bringing downstream and transverse currents closer to their initial positions; (2) Changes in current direction angles result in decreased downstream excitation strength and increased transverse displacement response with the same excitation direction; (3) The instability interval visualization effectively predicts anchor cable structure instability under parametric excitation. Structures within the instability region are deemed unstable, while those outside are considered stable. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

19 pages, 8120 KiB  
Article
Dynamic Response and Mooring Fracture Performance Analysis of a Semi-Submersible Floating Offshore Wind Turbine under Freak Waves
by Baolong Liu and Jianxing Yu
J. Mar. Sci. Eng. 2024, 12(8), 1414; https://doi.org/10.3390/jmse12081414 - 16 Aug 2024
Cited by 2 | Viewed by 2079
Abstract
Among the extreme sea scenarios, freak waves pose a serious threat to offshore structures, potentially leading to structural failure, such as mooring line failure, floater capsizing, or structural damage. In this study, we conducted a numerical investigation on the transient performance of a [...] Read more.
Among the extreme sea scenarios, freak waves pose a serious threat to offshore structures, potentially leading to structural failure, such as mooring line failure, floater capsizing, or structural damage. In this study, we conducted a numerical investigation on the transient performance of a semi-submersible floating offshore wind turbine (FOWT) equipped with a redundant mooring system under the influence of freak waves and mooring failure. Firstly, we analyzed the dynamic responses of an intact-mooring-system FOWT under a freak wave. Next, we examined the effect of mooring failure on the transient responses. The results indicate that floater motions exhibit significant differences in the interval of freak wave crests. The impact of freak waves increases the blade tip deformation and tower root bending moment, while also affecting the tension of the mooring line and the aerodynamic performance of the wind turbine. Consecutive fracture with an interval of 20 s significantly increases surge motion and reduces output power. When mooring lines break separately with an interval of 400 s, the amplification in the responses is noticeably lower compared to consecutive fracture cases. Full article
Show Figures

Figure 1

14 pages, 9108 KiB  
Article
Yoke-Type Elasto-Magnetic Sensor-Based Tension Force Monitoring Method for Enhancement of Field Applicability
by Ho-Jun Lee, Sae-Byeok Kyung and Ju-Won Kim
Sensors 2024, 24(11), 3369; https://doi.org/10.3390/s24113369 - 24 May 2024
Cited by 1 | Viewed by 1767
Abstract
Tension members are key members that maintain stability and improve the strength of structures such as cable-stayed bridges, PSC structures, and slopes. Their application has recently been expanded to new fields such as mooring lines in subsea structures and aerospace fields. However, the [...] Read more.
Tension members are key members that maintain stability and improve the strength of structures such as cable-stayed bridges, PSC structures, and slopes. Their application has recently been expanded to new fields such as mooring lines in subsea structures and aerospace fields. However, the tensile strength of the tension members can be abnormal owing to various risk factors that may lead to the collapse of the entire structure. Therefore, continuous tension monitoring is necessary to ensure structural safety. In this study, an improved elasto-magnetic (E/M) sensor was used to monitor tension force using a nondestructive method. General E/M sensors have limitations that make it difficult to apply them to operating tension members owing to their solenoid structure, which requires field winding. To overcome this problem, the magnetization part of the E/M sensor was improved to a yoke-type sensor, which was used in this study. For the development of the sensors, the numerical design and magnetization performance verification of the sensor were performed through eddy current solution-type simulations using ANSYS Maxwell. Using the manufactured yoke-type E/M sensor, the induced voltage signals according to the tension force of the specimen increasing from 0 to 10 tons at 1-ton intervals were repeatedly measured using DAQ with wireless communication. The measured signals were indexed using peak-to-peak value of induced voltages and used to analyze the signal change patterns as the tension increased. Finally, the analyzed results were compared with those of a solenoid-type E/M sensor to confirm the same pattern. Therefore, it was confirmed that the tension force of a tension member can be estimated using the proposed yoke-type E/M sensor. This is expected to become an effective tension monitoring technology through performance optimization and usability verification studies for each target tension member in the future. Full article
Show Figures

Figure 1

20 pages, 5615 KiB  
Article
Parametric Study on Mooring System Design of Submerged Floating Tunnel under Extreme Wave and Seismic Excitation
by Woo Chul Chung, Chungkuk Jin, MooHyun Kim and Sewon Kim
J. Mar. Sci. Eng. 2023, 11(12), 2357; https://doi.org/10.3390/jmse11122357 - 13 Dec 2023
Cited by 3 | Viewed by 1976
Abstract
This study proposes a mooring design strategy for a submerged floating tunnel (SFT) subject to extreme waves and earthquakes. Several critical design parameters, such as submerged depth and mooring station interval, are taken into account. As a target structure, a 700 m long [...] Read more.
This study proposes a mooring design strategy for a submerged floating tunnel (SFT) subject to extreme waves and earthquakes. Several critical design parameters, such as submerged depth and mooring station interval, are taken into account. As a target structure, a 700 m long SFT system with permanent stations at both ends, representing the fixed–fixed-end boundary condition, is established. To consider coupled dynamics between the tunnel and the mooring system with structural elasticity, an efficient time-domain simulation model is established. Three combinations of environmental conditions are considered: extreme wave only, extreme earthquake only, and both extreme earthquake and operating wave. First, to check the submerged-depth effect on the dynamic response of the SFT system, including mooring tension, two different submerged-depth (deep and shallow) types are simulated and analyzed. It is confirmed that the deep submerged-depth model (A-type) has an advantage under extreme wave conditions, whereas the shallow submerged-depth model (B-type) is equipped with better resistance when subject to an earthquake. Thus, the compromise submerged-depth model (C-type) is newly devised to enhance structural integrity under various environmental circumstances. Furthermore, a mooring station interval sensitivity test with the C-type is performed and demonstrates the integrity of the C-type. Full article
(This article belongs to the Special Issue Analysis and Design of Marine Structures)
Show Figures

Figure 1

22 pages, 370 KiB  
Article
Developing Constrained Interval Operators for Fuzzy Logic with Interval Values
by Jocivania Pinheiro, Regivan H. N. Santiago, Benjamin Bedregal and Flaulles Bergamaschi
Axioms 2023, 12(12), 1115; https://doi.org/10.3390/axioms12121115 - 13 Dec 2023
Cited by 1 | Viewed by 1255
Abstract
A well-known problem in the interval analysis literature is the overestimation and loss of information. In this article, we define new interval operators, called constrained interval operators, that preserve information and mitigate overestimation. These operators are investigated in terms of correction, algebraic [...] Read more.
A well-known problem in the interval analysis literature is the overestimation and loss of information. In this article, we define new interval operators, called constrained interval operators, that preserve information and mitigate overestimation. These operators are investigated in terms of correction, algebraic properties, and orders. It is shown that a large part of the properties studied is preserved by this operator, while others remain preserved with the condition of continuity, as is the case of the exchange principle. In addition, a comparative study is carried out between this operator g¨ and the best interval representation: g^. Although g¨g^ and g¨ do not preserve the Moore correction, we do not have a loss of relevant information since everything that is lost is irrelevant, mitigating the overestimation. Full article
24 pages, 3404 KiB  
Article
Measuring Detection Efficiency of High-Residency Acoustic Signals for Estimating Probability of Fish–Turbine Encounter in a Fast-Flowing Tidal Passage
by Brian Gavin Sanderson, Charles William Bangley, Louise Patricia McGarry and Daniel James Hasselman
J. Mar. Sci. Eng. 2023, 11(6), 1172; https://doi.org/10.3390/jmse11061172 - 2 Jun 2023
Cited by 9 | Viewed by 2010
Abstract
Semidiurnal tidal currents can exceed 5 ms1 in Minas Passage, Bay of Fundy, where a tidal energy demonstration area has been designated to generate electricity using marine hydrokinetic turbines. The risk of harmful fish–turbine interaction cannot be dismissed for either migratory [...] Read more.
Semidiurnal tidal currents can exceed 5 ms1 in Minas Passage, Bay of Fundy, where a tidal energy demonstration area has been designated to generate electricity using marine hydrokinetic turbines. The risk of harmful fish–turbine interaction cannot be dismissed for either migratory or local fish populations. Individuals belonging to several fish populations were acoustically tagged and monitored by using acoustic receivers moored within the Minas Passage. Detection efficiency ρ is required as the first step to estimate the probability of fish–turbine encounter. Moored Innovasea HR2 receivers and high-residency (HR) tags were used to obtain detection efficiency ρ as a function of range and current speed, for near-seafloor signal paths within the tidal energy development area. Strong tidal currents moved moorings, so HR tag signals and their reflections from the sea surface were used to measure ranges from tags to receivers. HR2 self-signals that reflected off the sea surface showed which moorings were displaced to lower and higher levels on the seafloor. Some of the range testing paths had anomalously low ρ, which might be attributed to variable bathymetry blocking the line-of-sight signal path. Clear and blocked signal paths accord with mooring levels. The application of ρ is demonstrated for the calculation of abundance, effective detection range, and detection-positive intervals. High-residency signals were better detected than pulse position modulation (PPM) signals. Providing that the presently obtained ρ applies to tagged fish that swim higher in the water column, there is a reasonable prospect that probability of fish–turbine encounter can be estimated by monitoring fish that carry HR tags. Full article
(This article belongs to the Special Issue Interface between Offshore Renewable Energy and the Environment)
Show Figures

Figure 1

15 pages, 3174 KiB  
Article
Enhancing Positional Accuracy of the XY-Linear Stage Using Laser Tracker Feedback and IT2FLS
by Mojtaba A. Khanesar, Minrui Yan, Mohammed Isa, Samanta Piano, Mohammad A. Ayoubi and David T. Branson
Machines 2023, 11(4), 497; https://doi.org/10.3390/machines11040497 - 20 Apr 2023
Viewed by 2999
Abstract
This paper proposes a calibration algorithm to improve the positional accuracies of an industrial XY-linear stage. Precision positioning of these linear stages is required to maintain highly accurate object handling and manipulation. However, due to imprecisions in linear motor stages and the gearbox, [...] Read more.
This paper proposes a calibration algorithm to improve the positional accuracies of an industrial XY-linear stage. Precision positioning of these linear stages is required to maintain highly accurate object handling and manipulation. However, due to imprecisions in linear motor stages and the gearbox, static and dynamic errors exist within these manipulators that cannot be adjusted internally. In this paper, to improve the positioning accuracy of these manipulators, measurements from a laser tracker are used within an interval type-2 fuzzy logic system. The laser tracker used in this experiment is an AT960-MR, which is a highly accurate noncontact coordinate metrology equipment capable of performing highly accurate robotic measurements. To perform calibration, we use an IT2FLS to find a nonlinear correcting relationship to compensate for position errors. The IT2FLS acts on the commands given to the move stage to find the accurate position of the move stage. To train the IT2FLS, we use particle swarm optimization (PSO) for the antecedent part parameters and Moore–Penrose generalized inverse to estimate the consequent part parameters. Data are split into train/test data to test the efficacy of the proposed algorithm. It is shown that by using the proposed IT2FLS-based calibration approach, the standard deviation of the position errors can be decreased from 86.1μm to 55.9μm, which is a 35.1% improvement. Comparison results with a multilayer perceptron neural network reveal that the proposed IT2FLS-based calibration algorithm outperforms multilayer perceptron neural network for positional calibration purposes. Full article
(This article belongs to the Special Issue Design and Control of Industrial Robots)
Show Figures

Figure 1

12 pages, 5473 KiB  
Article
Experimental Study on Vortex-Induced Vibration of Tension Leg and Riser for Full Depth Mooring Tension Leg Platform
by Weiwei Zhou, Menglan Duan, Rongqi Chen, Huixian Qiu, Huiming Li, Shisheng Wang and Yi Wang
J. Mar. Sci. Eng. 2023, 11(1), 180; https://doi.org/10.3390/jmse11010180 - 11 Jan 2023
Cited by 2 | Viewed by 1927
Abstract
According to the geometric parameters of the tension leg platform, the test model was made with a scale ratio of 1:61. The model was used to conduct the full-depth simulation test of uniform flow and wave current combination in the test pool. The [...] Read more.
According to the geometric parameters of the tension leg platform, the test model was made with a scale ratio of 1:61. The model was used to conduct the full-depth simulation test of uniform flow and wave current combination in the test pool. The model test results showed that when the reduced speed was between 5.5 and 8.5, and the lateral motion response of the platform was the most significant. In the interval of the reduced speed, the response frequency of transverse vortex-induced motion was close to the natural transverse frequency of the platform, and resonance occurred. The amplitude of surge motion increased with the increase of reduced speed. Due to the pull of the floating body, the tension of tension legs and risers increased with the flow rate but did not increase significantly in the floating body lock zone. The mooring tension had a certain limiting effect on the floating body sway. The displacement modes of tension legs and risers were greatly affected by the flow velocity. With the flow velocity increasing, the mode order increased. In addition, the increase in tension caused by the large displacement of the floating body had a certain impact on the displacement amplitude. The wave could reduce the sway of the floating body and strengthen the surge. Therefore, under the combined action of wave and current, the tension amplitude of the tension leg and riser was increased compared with that under the uniform flow. The conclusions obtained in this paper could be used for reference in the engineering design of tension legs and risers. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

15 pages, 2398 KiB  
Article
Seasonal Variability in Present-Day Coccolithophore Fluxes in Deep Eastern Mediterranean Sea: A Multi-Year Study (2015–2017) of Coccolithophore Export in SE Ionian Sea at 4300 m Depth
by Sikandar Hayat, Elisavet Skampa, Alexandra Gogou, Spyros Stavrakakis, Constantine Parinos and Maria Triantaphyllou
J. Mar. Sci. Eng. 2022, 10(11), 1761; https://doi.org/10.3390/jmse10111761 - 16 Nov 2022
Cited by 5 | Viewed by 2117
Abstract
This study is the first attempt to understand the coccolith flux and its seasonal variability at the deepest part of the Mediterranean Sea. Samples were obtained from the deepest Mediterranean time-series sediment trap (4300 m) moored in the SE Ionian Sea (Nestor site) [...] Read more.
This study is the first attempt to understand the coccolith flux and its seasonal variability at the deepest part of the Mediterranean Sea. Samples were obtained from the deepest Mediterranean time-series sediment trap (4300 m) moored in the SE Ionian Sea (Nestor site) from January 2015 to November 2017. Throughout the study period, the coccolith fluxes displayed a seasonality signal with high values during the late winter–early spring convective mixing period (February to April) and low flux values during summer except for some solitary peaks in June. The maximum coccolith flux was observed in March 2015 while the minimum value was recorded in November 2017. Among the nineteen identified species of heterococcoliths, the dominant species in all the samples was Emiliania huxleyi reaching up to 79%, followed by Florisphaera profunda that comprised up to 33% of the total coccolith count. For the annual cycle of 2015, the average coccolith flux for the Nestor Site at a relatively shallower depth (2000 m) was comparable and for some time intervals was lower than the coccolith flux recorded in the present study at 4300 m, while coccolith flux peaks appeared simultaneously in both traps indicating a fast sinking rate. The higher E. huxleyi, F. profunda, Gladiolithus flabellatus, and Calciosolenia brasiliensis coccolith flux at 4300 m compared with their corresponding fluxes at 2000 m can be attributed to lateral advection, resuspension, and/or the influence of Eastern Mediterranean Deep Waters (EMDWs). Full article
(This article belongs to the Special Issue Recent Advances in Geological Oceanography)
Show Figures

Figure 1

23 pages, 14191 KiB  
Article
AVHRR GAC Sea Surface Temperature Reanalysis Version 2
by Boris Petrenko, Victor Pryamitsyn, Alexander Ignatov, Olafur Jonasson and Yury Kihai
Remote Sens. 2022, 14(13), 3165; https://doi.org/10.3390/rs14133165 - 1 Jul 2022
Cited by 5 | Viewed by 2468
Abstract
The 40+ years-long sea surface temperature (SST) dataset from 4 km Global Area Coverage (GAC) data of the Advanced Very High-Resolution Radiometers (AVHRR/2s and/3s) flown onboard ten NOAA satellites (N07/09/11/12/14/15/16/17/18/19) has been created under the NOAA AVHRR GAC SST Reanalysis 2 (RAN2) Project. [...] Read more.
The 40+ years-long sea surface temperature (SST) dataset from 4 km Global Area Coverage (GAC) data of the Advanced Very High-Resolution Radiometers (AVHRR/2s and/3s) flown onboard ten NOAA satellites (N07/09/11/12/14/15/16/17/18/19) has been created under the NOAA AVHRR GAC SST Reanalysis 2 (RAN2) Project. The data were reprocessed with the NOAA Advanced Clear Sky Processor for Ocean (ACSPO) enterprise SST system. Two SST products are reported in the full ~3000 km AVHRR swath: ‘subskin’ (highly sensitive to true skin SST, but debiased with respect to in situ SST) and ‘depth’ (a closer proxy for in situ data, but with reduced sensitivity). The reprocessing methodology aims at close consistency of satellite SSTs with in situ SSTs, in an optimal retrieval domain. Long-term orbital and calibration trends were compensated by daily recalculation of regression coefficients using matchups with drifters and tropical moored buoys (supplemented by ships for N07/09), collected within limited time windows centered at the processed day. The nighttime Sun impingements on the sensor black body were mitigated by correcting the L1b calibration coefficients. The Earth view pixels contaminated with a stray light were excluded. Massive cold SST outliers caused by volcanic aerosols following three major eruptions were filtered out by a modified, more conservative ACSPO clear-sky mask. The RAN2 SSTs are available in three formats: swath L2P (144 10-min granules per 24 h interval) and two 0.02° gridded (uncollated L3U, also 144 granules/24 h; and collated L3C, two global maps per 24 h, one for day and one for the night). This paper evaluates the RAN2 SST dataset, with a focus on the L3C product and compares it with two other available AVHRR GAC L3C SST datasets, NOAA Pathfinder v5.3 and ESA Climate Change Initiative v2.1. Among the three datasets, the RAN2 covers the global ocean more completely and shows reduced regional and temporal biases, improved stability and consistency between different satellites, and in situ SSTs. Full article
(This article belongs to the Special Issue VIIRS 2011–2021: Ten Years of Success in Earth Observations)
Show Figures

Graphical abstract

15 pages, 372 KiB  
Article
Interval State Estimation in Active Distribution Systems Considering Multiple Uncertainties
by Tengpeng Chen, He Ren and Gehan A. J. Amaratunga
Sensors 2021, 21(14), 4644; https://doi.org/10.3390/s21144644 - 6 Jul 2021
Cited by 5 | Viewed by 2568
Abstract
Distribution system state estimation (DSSE) plays a significant role for the system operation management and control. Due to the multiple uncertainties caused by the non-Gaussian measurement noise, inaccurate line parameters, stochastic power outputs of distributed generations (DG), and plug-in electric vehicles (EV) in [...] Read more.
Distribution system state estimation (DSSE) plays a significant role for the system operation management and control. Due to the multiple uncertainties caused by the non-Gaussian measurement noise, inaccurate line parameters, stochastic power outputs of distributed generations (DG), and plug-in electric vehicles (EV) in distribution systems, the existing interval state estimation (ISE) approaches for DSSE provide fairly conservative estimation results. In this paper, a new ISE model is proposed for distribution systems where the multiple uncertainties mentioned above are well considered and accurately established. Moreover, a modified Krawczyk-operator (MKO) in conjunction with interval constraint-propagation (ICP) algorithm is proposed to solve the ISE problem and efficiently provides better estimation results with less conservativeness. Simulation results carried out on the IEEE 33-bus, 69-bus, and 123-bus distribution systems show that the our proposed algorithm can provide tighter upper and lower bounds of state estimation results than the existing approaches such as the ICP, Krawczyk-Moore ICP(KM-ICP), Hansen, and MKO. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

12 pages, 1932 KiB  
Article
Re-Visiting the Incidence of Environmental Factors on a Pre-Imaginal Population of the Red Gum Lerp Psyllid, Glycaspis brimblecombei Moore
by Jürgen Junk, Michael Eickermann, Milan Milenovic, Pompeo Suma and Carmelo Rapisarda
Insects 2020, 11(12), 860; https://doi.org/10.3390/insects11120860 - 3 Dec 2020
Cited by 4 | Viewed by 2179
Abstract
The red gum lerp psyllid, Glycaspis brimblecombei Moore (Hemiptera: Aphalaridae), is an invasive pest of Eucalyptus trees worldwide, responsible for serious damage, including the death of plants. Knowledge about the incidence of climatic factors on the insect development are essential to define useful [...] Read more.
The red gum lerp psyllid, Glycaspis brimblecombei Moore (Hemiptera: Aphalaridae), is an invasive pest of Eucalyptus trees worldwide, responsible for serious damage, including the death of plants. Knowledge about the incidence of climatic factors on the insect development are essential to define useful strategies for controlling this pest. To this aim, G. brimblecombei has been sampled by two different methods from April 2012 to February 2013 in eastern Sicily on Eucalyptus camaldulensis in nine different sites, where the main climatic data (air temperature, relative humidity, and precipitation) have been also registered. The Glycaspis brimblecombei population showed a similar trend in all nine sites, positively correlated only with air temperature, but a negative correlation has emerged with precipitation and relative humidity. The results show the need for a deeper understanding of the role played by other abiotic (such as different concentrations of CO2) and biotic (e.g., the antagonistic action of natural enemies, competition with other pests, etc.) factors. The greater sensitivity, even at low densities of psyllid, of sampling methods based on the random collection of a fixed number of leaves compared to methods based on the collection of infested leaves in a fixed time interval has been also outlined. Full article
(This article belongs to the Section Insect Ecology, Diversity and Conservation)
Show Figures

Figure 1

14 pages, 336 KiB  
Article
On the Banzhaf-like Value for Cooperative Games with Interval Payoffs
by Chunqiao Tan, Wenrui Feng and Weibin Han
Mathematics 2020, 8(3), 372; https://doi.org/10.3390/math8030372 - 7 Mar 2020
Cited by 4 | Viewed by 1969
Abstract
By using Moore’s subtraction operator and a total order on the set of closed intervals, we introduce a new variation of the Banzhaf value for cooperative interval games called the interval Banzhaf-like value which may accommodate the shortcomings of the interval Banzhaf value. [...] Read more.
By using Moore’s subtraction operator and a total order on the set of closed intervals, we introduce a new variation of the Banzhaf value for cooperative interval games called the interval Banzhaf-like value which may accommodate the shortcomings of the interval Banzhaf value. We first reveal the relation between this introduced value and the interval Banzhaf value. Then, we present two sets of properties that may be used to determine whether an interval value is median-indifferent to the interval Banzhaf-like value. Finally, in order to overcome the disadvantages of the interval Banzhaf-like value, we propose the contracted interval Banzhaf-like value and give an axiomatization of this proposed value. Full article
(This article belongs to the Section D2: Operations Research and Fuzzy Decision Making)
16 pages, 2932 KiB  
Article
A Mixed Uncertainty Power Flow Algorithm-Based Centralized Photovoltaic (PV) Cluster
by Hao Wu, Lin Zhou, Yihao Wan, Qiang Liu and Siyu Zhou
Energies 2019, 12(20), 4008; https://doi.org/10.3390/en12204008 - 22 Oct 2019
Cited by 5 | Viewed by 3007
Abstract
With the large-scale centralized PV clusters connected to grid, the grid power flow has certain randomness. Considering the fluctuation of PV output, an improved Krawczyk-Moore algorithm in a mixed coordinate system is proposed to solve the uncertain power flow problem. Firstly, aiming at [...] Read more.
With the large-scale centralized PV clusters connected to grid, the grid power flow has certain randomness. Considering the fluctuation of PV output, an improved Krawczyk-Moore algorithm in a mixed coordinate system is proposed to solve the uncertain power flow problem. Firstly, aiming at the special structure of a centralized PV cluster with only load node and no generator node, this paper proposes a power flow calculation in the mixed power flow coordinate, and then the Krawczyk-Moore operator is used to combine interval and affine arithmetic to overcome the shortcoming of over-conservative interval algorithm. Finally, the voltage operating condition under different volatility and different partial shading conditions is studied through the simulation of a practical example, and the out-of-limit voltage problem inside the centralized PV cluster is analyzed. Meanwhile, the effectiveness of the proposed algorithm is verified. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

Back to TopTop