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Abstract: By using Moore’s subtraction operator and a total order on the set of closed intervals,
we introduce a new variation of the Banzhaf value for cooperative interval games called the interval
Banzhaf-like value which may accommodate the shortcomings of the interval Banzhaf value. We first
reveal the relation between this introduced value and the interval Banzhaf value. Then, we present
two sets of properties that may be used to determine whether an interval value is median-indifferent
to the interval Banzhaf-like value. Finally, in order to overcome the disadvantages of the interval
Banzhaf-like value, we propose the contracted interval Banzhaf-like value and give an axiomatization
of this proposed value.

Keywords: cooperative interval game; interval Banzhaf value; interval Banzhaf-like value; contracted
interval Banzhaf-like value

1. Introduction

A cooperative game is represented by a pair (N, v), where N is a nonempty and finite set of players,
and v is a characteristic function from 2N to R which assigns each coalition a real number. To cover
a wider range of decision circumstances, the model of cooperative games was generalized either
by changing the structure of the coalitions (See [1–3]), or by altering the nature of the characteristic
function (See [4–6]). In the present paper, we study the model of cooperative interval games where
the values of coalitions are assumed to be bounded and closed intervals of real numbers without any
knowledge of related probability distribution on these obtained intervals.

The model of cooperative interval games was originally introduced by [7] to handle bankruptcy
situations where the estate is known with certainty while claims belong to known bounded intervals of
real numbers. Since then, it has been theoretically developed by a group of researchers around Branzei
and Tijs (See [4,8] for details). This model can be used to approach the situations where the players
wish to cooperate and know with certainty only the lower and upper bounds for the payoff of their
cooperation. Examples are bankruptcy problems in [7], minimum spanning tree networks in [9,10],
sealed bid second price auctions and flow situations in [8], etc.

The main focus of cooperative interval games are solutions that assign each given cooperative
interval game a set of n-dimensional vectors which inform the players about the range of individual
payoffs generated by cooperation. By using the arithmetic of intervals introduced by [11], the interval
Shapley value and the interval Banzhaf value were separately proposed by [12,13] for a class of
cooperative interval games so called the size monotonic interval games. Moreover, these two values were
separately characterized by using a set of properties. One common disadvantage of these two notions
is that both are only well-defined for size monotonic interval games. Therefore, the axiomatization

Mathematics 2020, 8, 372; doi:10.3390/math8030372 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0002-9091-7052
http://dx.doi.org/10.3390/math8030372
http://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/8/3/372?type=check_update&version=3


Mathematics 2020, 8, 372 2 of 14

and properties concerning these values could only be provided for this specific subclass of cooperative
interval games as well. To avoid this disadvantage of the interval Shapley value, the interval
Shapley-like value was proposed in [14] by using Moore’s subtraction operator. It has been shown
that the interval Shapley-like value is definable for every possible cooperative interval games, and be
characterized on the whole class of cooperative interval games.

Here, we introduce the notion of the interval Banzhaf-like value by using the interval subtraction
operator in [11] so as to accommodate the mentioned disadvantage of the interval Banzhaf value
introduced by [13]. It will be showed that the interval Banzhaf-like value is not only well-defined for
every possible interval game, but also is median-indifferent to the interval Banzhaf value on the class
of size monotonic interval games. Moreover, we offer two sets of properties about interval values.
By using these properties, we may obtain the interval values that are median-indifferent to the interval
Banzhaf-like value. Besides, as the interval Banzhaf-like value is provided with neither 2-players
merging equivalence nor the uncertainty-removing property, we improve this value by introducing
the contracted interval Banzhaf-like value, and present an axiomatization for this introduced value.
It will be proved that the contracted interval Banzhaf-like value satisfies more desirable properties.

The rest of this paper is organized as follows. In Section 2, we recall the basic notions and
operations with respect to the intervals of real numbers and the model of cooperative interval games.
Section 3 is devoted to revealing the relation between the interval Banzhaf value and the interval
Banzhaf-like value. In Section 4, we first show the properties of the interval Banzhaf-like value,
and then present two sets of constraints to judge whether an interval value is median-indifferent to the
interval Banzhaf-like value. Section 5 is dedicated to the contracted interval Banzhaf-like value and its
axiomatization. We end this paper with a concluding remark in Section 6.

2. Preliminaries

This section is dedicated to the necessary notations, concepts and results concerning the intervals
of real numbers and the model of cooperative interval games which are mainly from [11,14].

Let R be the real number set. Denote the set of all closed and bounded intervals on R by I(R),
and the length of interval I ∈ I(R) by |I|. For any α ∈ R and I, J ∈ I(R) with I = [I, I] and J = [J, J],
define that

• I ⊕ J = [I + J, I + J];
• I 	 J = [I − J, I − J];

• α I =

{
[αI, αI] if α ≥ 0;
[αI, αI] if α < 0.

These interval operators were originally introduced by [11], and frequently used to process
interval calculations in the literature.

An alternative interval subtraction operator was proposed in [12] to approach the cooperative
interval games as follows. For any I, J ∈ I(R) with I = [I, I] and J = [J, J], I − J = [I − J, I −
J] if I − J ≥ I − J. This operator is only well-defined for an ordered interval pair (I, J) ∈ D where
D = {(I, J) ∈ I(R)× I(R) | I − J ≥ I − J}, while the former subtraction operator is definable for
every pair of closed intervals. Note that for any intervals I, J ∈ I(R), if I − J is well defined, then I − J
is a subset of I 	 J.

Within the model of cooperative interval games, it is usually assumed that the payoffs of coalitions
are bound closed intervals of real numbers without any knowledge of related probability distribution of
these payoffs. That means, if x ∈ [a, b] and y ∈ [c, d], it is possible that x− y ∈ [a− d, b− c] but x− y /∈
[a− c, b− d] (given b− d ≥ a− c). In view of this fact, it is more reasonable to employ the subtraction
operator defined by [11] when dealing with the cooperative interval games in our framework.

A total order over the intervals was proposed by [14] in order to deal with wider range of interval
comparisons. Let I, J ∈ I(R) with I = [I, I] and J = [J, J]. Suppose that

• I is median-superior to J, denoted by I � J, if I+I
2 >

J+J
2 ;
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• I is weakly median-superior to J, denoted by I % J, if I+I
2 ≥

J+J
2 ;

• I and J are median-indifferent to each other , denoted by I ∼ J, if
J+J

2 = I+I
2 .

As the above total order on the set of closed intervals is based on the medians of intervals (or the
expectation of the uniform distribution), we rename the original terms in ([14] p. 463) so as to reflect
this point.

A cooperative interval game is presented by a pair (N, v) where N is a nonempty finite set
of players and v : 2N → I(R) is the characteristic function with v(∅) = [0, 0]. For any S ∈ 2N ,
v(S) = [v(S), v(S)] is the worth of coalition S in (N, v) where v(S) and v(S) are respectively the
minimal worth and the maximal worth that coalition S could receive when players in coalition S work
together. For simplicity, denote (N, v) by v when N is known from the context. Let |S| be the cardinality
of S where S ∈ 2N and IGN be the family of all interval games with player set N, respectively.

For any (N, v) ∈ IGN with i, j ∈ N, let p = {i, j}, M = N \ {i, j} and Np = M ∪ {p}. A reduced
game of (N, v) is defined as (Np, vp) where vp(S) = v(S) and vp(S ∪ {p}) = v(S ∪ {i, j}) for any S ∈
2M. Note that, vp is the characteristic function of an interval game with |N| − 1 players which are
obtained by merging the players i and j into one player termed as p.

For any v1, v2 ∈ IGN and λ ∈ R, define that

• (v1 + v2)(S) = v1(S)⊕ v2(S) for any S ∈ 2N ;
• (v1 − v2)(S) = v1(S)	 v2(S) for any S ∈ 2N ;
• (λv1)(S) = λv1(S) for any S ∈ 2N .

The following special notions proposed in [14] will play a crucial role in analysing the interval
games in the sequel. For any v ∈ IGN , suppose that

• v is uncertainty-free if |v(S)| = 0 for any S ∈ 2N ;
• v is [0,0]-indifferent if v(S) ∼ [0, 0] for any S ∈ 2N ;

• vm is the median game with respect to v if vm(S) = [
v(S)+v(S)

2 ,
v(S)+v(S)

2 ] for any S ∈ 2N ;
• vu is the uncertainty-spread game with respect to v if vu(S) = [− |v(S)|2 , |v(S)|2 ] for any S ∈ 2N .

Denote the set of all uncertainty-free interval games in IGN by UIGN and the set of all
[0, 0]-indifferent interval games by ZIGN . It can be easily verified that for any v ∈ IGN , v = vm + vu

where vm ∈ UIGN and vu ∈ ZIGN .
Let v ∈ IGN and T ∈ 2N \ {∅}. Define

• (N, u f
T) based on T as

u f
T(S) =

{
[1, 1], if T ⊆ S;
[0, 0], otherwise.

• (N, zvu(T)
T ) based on T as

zvu(T)
T (S) =

{
vu(T), if T = S;
[0, 0], otherwise.

Clearly, u f
T ∈ UIGN and zvu(T)

T ∈ ZIGN for any T ∈ 2N \ {∅}.

Lemma 1. For any v ∈ IGN , there is a sequence of real numbers {βT}T∈2N\{∅} such that v =

∑T∈2N\{∅}{βTu f
T + zvu(T)

T }.

Proof. For any v ∈ IGN , we get v = vm + vu. Since vm ∈ UIGN is equivalent to a classical cooperative
game, we have that {u f

T}T∈2N\{∅} is a basis for UIGN . Accordingly, there is a sequence of real numbers

{βT}T∈2N\{∅} such that vm = ∑T∈2N\{∅} βTu f
T . Moreover, vu = ∑T∈2N\{∅} zvu(T)

T for any vu ∈ ZIGN .

Thus, we have v = ∑T∈2N\{∅}{βTu f
T + zvu(T)

T }.
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Let I(R)N be the set of n-dimensional vectors with each component in I(R) where n is the
cardinality of N. An interval value on IGN is a function Ψ : IGN → I(R)N where n = |N| and the i-th
coordinate of Ψ(v) represents the payoff for player i in N.

Two interval values Ψ and Ψ∗ are said to be median-indifferent to each other, denoted by Ψ ∼ Ψ∗,
if Ψi(v) ∼ Ψ∗i (v) for any v ∈ IGN and any i ∈ N.

Lastly, we present a number of properties (or axioms) that an interval value may satisfy. Generally,
an interval value may satisfy none of the following properties and it could also satisfy several properties
simultaneously. An interval value Ψ : IGN → I(R)N is said to satisfy:

• Indifference efficiency (IEF): ∑
i∈N

Ψi(v)∼ v(N) for any v ∈ IGN (In this text, the summation

operator for closed intervals is according to the addition operator ⊕.
• 2-players merging equivalence (2ME): Ψi(v)⊕Ψj(v) = Ψp(Np, vp) for any v ∈ IGN and i, j ∈ N

with p = {i, j}.
• Indifference 2-players merging equivalence(I2ME): Ψi(v)⊕Ψj(v) ∼ Ψp(Np, vp) for any v ∈ IGN

and i, j ∈ N with p = {i, j}.
• Indifference 2-players Super Additivity (I2SA): Ψi(v)⊕Ψj(v) - Ψp(Np, vp) for any v ∈ IGN and

i, j ∈ N with p = {i, j}.
• Indifference Marginal Contributions (IMC): Let v, w ∈ IGN and i ∈ N. If for any S ⊆ N \ {i},

v(S ∪ {i})	 v(S) ∼ w(S ∪ {i})	 w(S), then Ψi(v) ∼ Ψi(w).
• Indifference Dummy Property (IDP): Ψi(v) ∼ v({i}) for any v ∈ IGN and any I-dummy player i

in v where i is called a I-dummy player in v, if v(S ∪ {i}) ∼ v(S)⊕ v({i}) for any S ⊆ N \ {i}.
• Symmetry (SYM): Ψi(v) = Ψj(v) for any v ∈ IGN and any symmetric players i and j in v where i

and j are called symmetric players in v if v(S ∪ {i}) = v(S ∪ {j}) for any S ⊆ N \ {i, j}.
• Additivity (ADD): Ψ(v1 + v2) = Ψ(v1)⊕Ψ(v2) for any v1, v2 ∈ IGN .
• Uncertainty-removing Property (URP): |Ψi(v)| = 0 for any v ∈ IGN and any

uncertainty-removing player i in v where i is called a uncertainty-removing player in v, if
|v(S ∪ {i})| = 0 for any S ⊆ N.

• Equal Degree of Uncertainty (EDU): |Ψi(v)| = |Ψj(v)| for any v ∈ IGN and any i, j ∈ N.

IEF says that the sum of the players’ payoffs should be median-indifferent to the worth for grand
coalition. This property is an extension of the well-known efficiency proposed by [15]. 2ME expresses
that if we merge two players i and j into one player p, then the payoff for p should agree with the sum
of their respective payoffs, whereas I2ME requires that if we merge two players i and j into one player
p, then the payoff for p should be median-indifferent to the sum of their respective payoffs. Both of
them are extensions of the 2-efficiency proposed in [16] for the values of classical cooperative games.
I2SA claims that if we merge two players i and j into one player p, the payoff for p should be weakly
superior to the sum of their payoffs. This property is an extension of the 2-players super additivity
in [16].

IMC requires that if player i’s marginal contributions to all coalitions in two distinct games
are median-indifferent to each other, then the payoffs for i received in these two games should be
median-indifferent to each other. IDP expresses that if a player i’s marginal contribution to any
coalition is median-indifferent to the worth from i’s individual action, then the payoff distributed for
i should also be median-indifferent to the worth of i’s individual action. These two properties are
generalizations of the marginal contributions and of the dummy property in [17], separately. SYM and
ADD are straightforward extensions of the symmetry and of the additivity in [16], respectively.

As far as we know, none property concerning the division of uncertainty degree among the
players has been proposed within the framework of interval cooperative games. In view of this, we
formulate the properties of EDU and of URP. EDU expresses that the uncertainty degree of each
player’s payoff is identical. URP says that if there exists an uncertainty-removing player who has more
information or the ability to forecast payoffs of any involved coalitions accurately, then the payoff
distributed for this player should be free from uncertainty.
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3. Comparison between the Interval Banzhaf Value and the Interval Banzhaf-like Value

In order to approach the cooperative interval games, the notion of interval Banzhaf value was
proposed in [13].

The interval Banzhaf value for v ∈ IGN is given as B(v) = (B1(v),B2(v), . . . ,Bn(v)) where Bi(v) =
1

2|N|−1 ∑
S⊆N\{i}

{v(S ∪ {i})− v(S)} for any i ∈ N. As the interval subtraction operator employed in

this notion is only well-defined for an ordered interval pair (I, J) with |I| ≥ |J|, B is undefinable for
interval games which are not size monotonic, where a game v ∈ IGN is called a size monotonic game
if |v(S)| ≤ |v(T)| for any S, T ∈ 2N with S ⊆ T. Denote SMIGN the class of size monotonic interval
games in IGN . To clarify this point, see the following example.

Example 1. Consider (N, v) in Table 1. Due to |v({1, 2, 3})| < |v({2, 3})| and |v({1, 3})| < |v({1})|, v is
not a size monotonic interval game. As neither v({1, 2, 3})− v({2, 3}) nor v({1, 3})− v({1}) is definable,
B(v) is undefinable.

Table 1. (N,v).

S {1} {2} {3} {1,2} {1,3} {2,3} {1,2,3}

v(S) [2, 4] [3, 4] [3, 4] [8, 9] [7, 8] [7, 9] [12, 13]

To overcome this mentioned shortcoming of the interval Banzhaf value, we propose an alternative
Banzhaf value for cooperative interval games. We term this proposal as the interval Banzhaf-like value to
distinguish it from the interval Banzhaf value introduced in [13].

Definition 1. The interval Banzhaf-like value for v ∈ IGN is defined as B∗(v) = (B∗1 (v),B∗2 (v), . . . ,B∗n(v))
where B∗i (v) =

1
2|N|−1 ∑

S⊆N\{i}
{v(S ∪ {i})	 v(S)} for any i ∈ N.

As the interval subtraction operator used in this definition is well-defined for any interval pair
(I, J), the interval Banzhaf-like value is definable for every possible interval game in IGN . Reconsider
the interval game v in Table 1. We have that B∗(v) = ([3, 21

4 ], [ 14
4 , 23

4 ], [3, 21
4 ]), but B(v) does not exist.

It is important to point out that given v ∈ IGN , B∗(v) is not necessarily the same as B(v) even through
both B(v) and B∗(v) are definable. To show this statement, we represent the example in [13] as follows.

Example 2. Consider (N, w) in Table 2 which is size monotonic. B(w) = ([ 5
2 , 7

2 ], [
9
2 , 11

2 ], [5, 6])
whereas B∗(w) = ([ 3

2 , 9
2 ], [

7
2 , 13

2 ], [4, 7]).

Table 2. (N,w).

S {1} {2} {3} {1,2} {1,3} {2,3} {1,2,3}

w(S) [2, 3] [3, 4] [4, 5] [6, 8] [6, 8] [9, 11] [12, 15]

The next theorem reveals the relation between the interval Banzhaf-like value and the interval
Banzhaf value.

Theorem 1. B∗(v) ∼ B(v) for any v ∈ SMIGN .

Proof. For any v ∈ SMIGN , i ∈ N and S ⊆ N \ {i}, we have
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v(S ∪ {i})	 v(S) = [v(S ∪ {i})− v(S), v(S ∪ {i})− v(S)]

∼ [
v(S∪{i})+v(S∪{i})

2 − v(S)+v(S)
2 ,

v(S∪{i})+v(S∪{i})
2 − v(S)+v(S)

2 ]

∼ [v(S ∪ {i})− v(S), v(S ∪ {i})− v(S)] = v(S ∪ {i})− v(S).

Moreover, for any i ∈ N, we get that ∑
S⊆N\{i}

{v(S ∪ {i})	 v(S)} ∼ ∑
S⊆N\{i}

{v(S ∪ {i})− v(S)}

and 1
2|N|−1 ∑

S⊆N\{i}
{v(S ∪ {i})	 v(S)} ∼ 1

2|N|−1 ∑
S⊆N\{i}

{v(S ∪ {i})− v(S)}. Thus, B∗(v) ∼ B(v).

Note that, both the interval Banzhaf-like value and the interval Banzhaf value coincide with
the Banzhaf value in [16] whenever a cooperative interval game degenerates into a classical
cooperative game.

4. The Properties for the Interval Banzhaf-like Value and its Median-Indifference Values

The next proposition shows the properties that the interval Banzhaf-like value is provided with.

Proposition 1. The interval Banzhaf-like value B∗ satisfies I2ME, IDP, SYM, IMC, ADD and EDU.

Proof. It is easy to prove that B∗ satisfies SYM and ADD.
Take any v ∈ IGN and any i, j ∈ N with p = {i, j}. Then
B∗p(vp) = 1

2|N|−2 ∑
S⊆N\{p}

{vp(S ∪ {p})	 vp(S)} = 1
2|N|−2 ∑

S⊆N\{i,j}
{v(S ∪ {i, j})	 v(S)}.

B∗i (v) =
1

2|N|−1 ∑
S⊆N\{i}

{v(S ∪ {i})	 v(S)}

= 1
2|N|−1 ∑

S⊆N\{i,j}
{v(S ∪ {i, j})	 v(S ∪ {j})⊕ v(S ∪ {i})	 v(S)}.

B∗j (v) =
1

2|N|−1 ∑
S⊆N\{j}

{v(S ∪ {j})	 v(S)}

= 1
2|N|−1 ∑

S⊆N\{i,j}
{v(S ∪ {i, j})	 v(S ∪ {i})⊕ v(S ∪ {j})	 v(S)}.

B∗i (v)⊕B∗j (v) =
1

2|N|−1 ∑
S⊆N\{i,j}

2{v(S ∪ {i, j})	 v(S)}

⊕ 1
2|N|−1 ∑

S⊆N\{i,j}
{v(S ∪ {i})	 v(S ∪ {i})}

⊕ 1
2|N|−1 ∑

S⊆N\{i,j}
{v(S ∪ {j})	 v(S ∪ {j})}

∼ 1
2|N|−1 ∑

S⊆N\{i,j}
2{v(S ∪ {i, j})	 v(S)}

= 1
2|N|−2 ∑

S⊆N\{i,j}
{v(S ∪ {i, j})	 v(S)}

= 1
2|N|−2 ∑

S⊆Np\{p}
{vp(S ∪ {p})	 vp(S)} = B∗p(vp).

Thus, B∗ satisfies I2ME.
Let v ∈ IGN and i be an I-dummy player in v. For any S ⊆ N \ {i}, we get

1
2{v(S ∪ {i})+ v(S ∪ {i})} = 1

2{v(S)+ v(S)+ v({i})+ v({i})} and v(S∪{i})	 v(S) = [v(S ∪ {i})−
v(S), v(S ∪ {i}) − v(S)] ∼ [v({i}), v({i})]. Then, B∗i (v) = 1

2|N|−1 ∑
S⊆N\{i}

{v(S ∪ {i}) 	 v(S)} ∼

[v({i}), v({i})]. Thus, B∗ satisfies IDP.
Let v, w ∈ IGN and i ∈ N. If {v(S ∪ {i})	 v(S)} ∼ {w(S ∪ {i})	 w(S)} for any S ⊆ N \ {i},

then we get B∗ i(v) = 1
2|N|−1 ∑

S⊆N\{i}
(v(S ∪ {i})	 v(S)) ∼ 1

2|N|−1 ∑
S⊆N\{i}

(w(S ∪ {i})	w(S)) = B∗ i(w).

Thus, B∗ satisfies IMC.
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Lastly, we prove that B∗ satisfies EDU. For any v ∈ IGN and i ∈ N, we have
|B∗i (v)| =

1
2|N|−1 ∑

S⊆N\{i}
|v(S ∪ {i})	 v(S)| = 1

2|N|−1 ∑
S⊆N\{i}

|v(S ∪ {i})|+ |v(S)| = 1
2|N|−1 ∑

S⊆N
|v(S)|.

Thus, |B∗i (v)| = |B∗j (v)| for any i, j ∈ N.

Remark 1. B∗ satisfies I2SA, but violates IEF, 2ME and URP.

As I2ME is a stronger property than I2SA, B∗ satisfies I2SA. To verify the second point in Remark 1,
consider the following example.

Example 3. Reconsider (N, v) in Example 1. We have that ∑i∈N B∗i (v) = [ 19
2 , 65

4 ], whereas v(N) = [12, 13].
Clearly, ∑i∈N B∗i (v) ∼ v(N) does not hold. Amalgamating the players 1 and 2 into one player p, a reduced
interval game can be obtained as described in Table 3. We have that B∗p(w) = [8, 9.5], whereas B∗1 (v)⊕B∗2 (v) =
[ 13

2 , 11].
Consider (N, v) in Table 4. We get B∗(v) = ([ 7

2 , 5], [ 9
2 , 6], [ 9

2 , 6]). Player 1 is an uncertainty-removing
player in v. However, |B∗1 (v)| 6= 0.

Table 3. (Np, w).

S {p} {3} {p,3}

w(S) [8, 9] [3, 4] [12, 13]

Table 4. (N,v).

S {1} {2} {3} {1,2} {1,3} {2,3} {1,2,3}

v(S) [3,3] [2,4] [2,4] [7,7] [7,7] [8,10] [15,15]

In contrast, it can be verified that the interval Banzhaf value satisfies 2ME, IDP, SYM, IMC and
ADD, but violates both IEF and EDU over the class of size monotonic interval games.

Generally, for a given interval game, there exist more than one interval values that are
median-indifferent to the Banzhaf-like value. Thus, it is meaningful to find out the conditions for the
determination of these values.

Theorem 2. If an interval value Ψ : IGN → I(R)N satisfies I2ME, IDP, SYM and IMC, then Ψ(v) ∼ B∗(v)
for any v ∈ IGN .

Proof. As v ∼ vm for any v ∈ IGN , and both Ψ and B∗ satisfy IMC, we get Ψ(v) ∼ Ψ(vm) and
B∗(v) ∼ B∗(vm). Thus, in order to prove Ψ(v) ∼ B∗(v), it is sufficient to prove Ψ(vm) ∼ B∗(vm).

Step 1: Let |T| = t. If t ≤ 2, then by I2ME, SYM and IDP, we have that Ψi(u
f
T) ∼ [ 1

2|T|−1 , 1
2|T|−1 ] if i ∈

T, and that Ψi(u
f
T) ∼ [0, 0] if i /∈ T. Suppose that the above statement holds for |T| = t ≤ m

(where m is an integer and m > 2). Consider the case with |T| = t = m + 1. For any i, j ∈ T,
let p = {i, j}. Take the reduced game (Np, vp) where v = u f

T . By the above induction hypothesis,
we get Ψp(vp) ∼ [ 1

2t−1 , 1
2t−1 ]. Since Ψ satisfies I2ME and SYM, we have that Ψi(v) = Ψj(v) ∼ [ 1

2t , 1
2t ] =

B∗i (u
f
T) = B∗j (u

f
T). As Ψ satisfies IDP and any i ∈ N \ T is an I-dummy player in u f

T , we have that

Ψi(v) ∼ [0, 0] = B∗i (u
f
T). Therefore, Ψ(u f

T) ∼ B∗(u
f
T) for any T ∈ 2N \ {∅}. Similarly, we may obtain

that Ψ(βu f
T) ∼ B∗(βu f

T) for any β ∈ R and T ∈ 2N \ {∅}.
Step 2: Let v ∈ IGN . By Lemma 1, there exists a unique sequence of {β f

T}T∈2N\{∅} (where β
f
T ∈ R)

such that vm = ∑
T∈2N\{∅}

β
f
Tu f

T . Then, take Zc(vm) = {T ∈ 2N \ {∅} | vm = ∑
T∈2N\{∅}

β
f
Tu f

T and β
f
T 6=
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0}. For any v ∈ IGN with |Zc(vm)| = 1, there exists a unique β ∈ R such that vm = βu f
T . Based on the

conclusion in Step 1, we have Ψ(vm) ∼ B∗(vm).
Suppose that Ψ(vm) ∼ B∗(vm) for any (N, v) ∈ IGN with |N| ≤ n, and that Ψ(vm) ∼ B∗(vm) for

(N, v) ∈ IGN with |N| = n + 1 if |Zc(vm)| ≤ k (where k ≥ 1 and k is a positive integer). Consider any
v ∈ IGN with |N| = n + 1 and |Zc(vm)| = k + 1. Then, there exists a sequence of coalitions T1, ..., Tk+1

such that vm =
k+1
∑

r=1
β

f
Tr

u f
Tr

. Let T = T1 ∩ . . . ∩ Tk+1. Due to k + 1 ≥ 2, we get N \ T 6= ∅.

(i) Take i ∈ N \ T and (N, v
′
m) where v′m = ∑

r: i∈Tr ,1≤r≤k+1
β

f
Tr

u f
Tr

. Due to |Zc(v′m)| ≤ k, we get

Ψ(v′m) ∼ B∗(v′m). Moreover, it can be verified that vm(S∪ {i})	 vm(S) = v′m(S∪ {i})	 v′m(S) for any
S ⊆ N \ {i}. As both Ψ and B satisfy IMC, we get Ψi(vm) ∼ Ψi(v′m) and B∗i (vm) ∼ B∗i (v′m). Because
of Ψ(v′m) ∼ B∗(v′m) implying Ψi(v′m) ∼ B∗i (v′m), we have that Ψi(vm) ∼ B∗i (vm) for each i ∈ N \ T.
(ii) Take j ∈ T and amalgamate j with the given i ∈ N \ T. Put p = {i, j} and consider vp

m which is
the median game of vp. According to the former induction hypothesis, we have Ψp(v

p
m) ∼ B∗p(v

p
m).

As both Ψ and B∗ satisfy I2ME, we may conclude that Ψp(v
p
m) ∼ (Ψi(vm)⊕ Ψj(vm)) and B∗p(v

p
m) ∼

(B∗i (vm)⊕ B∗j (vm)), which implies Ψj(vm) ∼ B∗j (vm). Therefore, Ψ(vm) ∼ B∗(vm) for any v ∈ IGN

with |N| = n + 1 and |Zc(vm)| = k + 1.
To sum up, we may conclude that Ψ(v) ∼ B∗(v) for any v ∈ IGN .

Remark 2. Theorem 2 does not hold anymore if I2ME is replaced by I2SA without changing other properties.

To clarify this remark, consider the interval value Ψ : IGN → I(R)N where Ψi(v) ∼ inf
%
{v(S ∪

{i})	 v(S)} for any i ∈ N with S ⊆ N \ {i}. It can be proved that Ψ satisfies I2SA, IDP, SYM, IMC.
However, Ψ ∼ B∗ does not hold.

Since the interval value that satisfies the mentioned properties is not unique, it is interesting
to further narrow down the category of these interval values. The next theorem shows that a more
specific kind of interval values can be identified by replacing I2ME and IMC in Theorem 2 with I2SA,
ADD and EDU.

Theorem 3. If an interval value Ψ : IGN → I(R)N satisfies I2SA, IDP, SYM, ADD and EUC, then
Ψ(v) ∼ B∗(v) for any v ∈ IGN . Moreover, given a v ∈ IGN , there exists a real number α ∈ R such that
|Ψi(v)| = α|B∗i (v)| for any i ∈ N.

Proof. Take any v ∈ IGN . Since v = vm ⊕ vu, and by the fact that Ψ and B∗ satisfy ADD, we have
that Ψ(v) = Ψ(vm)⊕Ψ(vu) and B∗(v) = B∗(vm)⊕B∗(vu). In order to prove that Ψ(v) ∼ B∗(v), it is
sufficient to prove that Ψ(vm) ∼ B∗(vm) and Ψ(vu) ∼ B∗(vu) both hold.

As vu(S) ∼ [0, 0] for any S ∈ 2N \ {∅}, we may conclude that any i ∈ N is an I-dummy player
in vu. Since both Ψ and B∗ satisfy IDP, we get Ψ(vu) ∼ B∗(vu). The next step is to prove that
Ψ(vm) ∼ B∗(vm). Let S, T ∈ 2N \ {∅} and k be a nonnegative integer. Define g{k;n}

T ∈ IGN with n is
the cardinality of N and

g{k;n}
T (S) =

{
[1, 1] if k ≤ |T ∩ S|;
[0, 0] otherwise.

Suppose Ψ is an interval value on IGN satisfying I2SA, IDP, SYM, ADD and EDU. Then, for any
u f

T ∈ UIGN , we have

Ψ((|T| − 1)u f
T)⊕Ψ(g{|T|−1;n}

T ) = ∑
T′ :T′⊂T,|T′ |=|T|−1

Ψ(u f
T′). (1)

As both Ψ and B∗ satisfy IDP, it can be verified that Ψ(vm) ∼ B∗(vm) for any v ∈ IGN with |N| =
1; and that Ψ(u f

T) ∼ B∗(u
f
T) for any u f

T ∈ UIGN with |T| = 1.
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Step 1: Suppose that Ψ(u f
T) ∼ B∗(u

f
T) for any u f

T ∈ UIGN with |N| ≤ n, and that Ψ(u f
T) ∼ B∗(u

f
T)

for any u f
T ∈ UIGN with |T| ≤ k (where k ≥ 1) and |N| = n + 1. Then we get{

Ψi(u
f
T) ∼ [ 1

2|T|−1 , 1
2|T|−1 ], if i ∈ T;

Ψi(u
f
T) ∼ [0, 0], otherwise.

As Ψ satisfies ADD, by Lemma 1, we get that Ψ(vm) ∼ B∗(vm) for any v ∈ IGN with |N| ≤ n.
Step 2: Let u f

T ∈ UIGN with |N| = n + 1 and |T| = k + 1. As Ψ satisfies IDP and SYM, there exist
two intervals a = [a, a] and b = [b, b] satisfying the following conclusions:{

Ψi(u
f
T) ∼ [a, a] if i ∈ T;

Ψi(u
f
T) ∼ [0, 0] if i /∈ T.

(2)

{
Ψi(g{k;n+1}

T ) ∼ [b, b] if i ∈ T;

Ψi(g{k;n+1}
T ) ∼ [0, 0] if i /∈ T.

(3)

By combining the (1), (2), (3) and the induction hypothesis, we get that

k[a, a] + [b, b] = [ka + b, ka + b] ∼ [
|T| − 1

2k−1 ,
|T| − 1

2k−1 ] = [
k

2k−1 ,
k

2k−1 ]. (4)

(i) Let i, j ∈ T and p = {i, j}. Amalgamating i to j in u f
T , we derive u f ,n

T′ (as above T′ = T \ {i}).
By I2SA, we have

[2a, 2a] - [
1

2k−1 ,
1

2k−1 ]. (5)

(ii) Let i, j ∈ T and p = {i, j}. By amalgamating i to j in g{k;n+1}
T , we get (N′, g{k;n}

T′ ) in which
N′ = N \ {i, j} ∪ {p}, T′ = T \ {i, j} ∪ {p} and

g{k;n}
T′ =

{
[1, 1], if p ∈ S and k− 2 ≤ |(S \ {p}) ∩ T|;
[0, 0], otherwise.

Due to |N′| = n and |T′| = k, by the induction hypothesis and (3), we have

Ψp(g{k;n}
T′ ) = [

k
2k−1 ,

k
2k−1 ] and [2b, 2b] - [

k
2k−1 ,

k
2k−1 ]. (6)

According to (5) and (6), we have

[ka + b, ka + b] - [
k
2k +

k
2k ,

k
2k +

k
2k ] = [

k
2k−1 ,

k
2k−1 ]. (7)

According to (4) and (7), we have [a, a] ∼ [ 1
2k , 1

2k ]. By means of ADD, we get that for any c ≥ 0,
|N| = n + 1 and T ∈ 2N \ {∅},{

Ψi(c · u
f
T) ∼ [ c

2|T|−1 , c
2|T|−1 ], if i ∈ T;

Ψi(c · u
f
T) ∼ [0, 0], if i /∈ T.

Thus, we have Ψ(vm) ∼ B∗(vm) for any v ∈ IGN with |N| = n + 1.
To sum up, we may conclude that for any v ∈ IGN Ψ(vm) ∼ B∗(vm) and Ψ(vu) ∼ B∗(vu),

which implies Ψ(v) ∼ B∗(v). As Ψ satisfies EDU, we get that |Ψi(v)| = |Ψj(v)| for any i, j ∈ N.
According to Proposition 1, there exists a real number α ∈ R such that |Ψi(v)| = α|B∗i (v)|.
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As showed in Proposition 1, the interval Banzhaf-like value satisfies ADD and EDU. Thus we may
conclude that B∗i = B∗i (vm)⊕ 1

2|N|−1 ∑S⊆N vu(S) for any i ∈ N. Theorem 3 expresses an important fact
that the fundamental differences between B∗ and the other interval values that satisfy the mentioned
properties in Theorem 3 are the sizes of uncertainty distributed among players.

It is important to mention that neither Theorem 2 nor Theorem 3 holds in reverse direction.
To clarify this point, we present two counterexamples as follows.

(1) Take Ψ : IGN → I(R)N where Ψi(v) = B∗i (vm)⊕ [−i, i] for any v ∈ IGN , N = {1, 2, . . . , n} and
i ∈ N. It can be verified that Ψ ∼ B∗, but violates the property of SYM.

(2) Take Ψ′ : IGN → I(R)N where Ψ′i(v) = B∗i (vm)⊕ [− inf
j∈N
{|v(j)|}, inf

j∈N
{|v(j)|}] for any v ∈ IGN

and i, j ∈ N. It can be verified that Ψ′ ∼ B∗. Moreover, there exists α ∈ R such that |Ψ′i(v)| =
α|B∗i (v)| for any i ∈ N. However, Ψ′ fails to satisfy the property of ADD.

In order to compare the properties in Theorem 2 and properties in Theorem 3, we propose the
Remark 3.

Remark 3. If an interval value Ψ : IGN → I(R)N satisfies I2SA, IDP, SYM, ADD and EDU, then Ψ satisfies
I2ME, IDP, SYM, and IMC, but not vice versa.

Proof. Assume that Ψ : IGN → I(R)N satisfies I2SA, IDP, SYM and ADD.
By Theorem 3, we get that Ψi(v) ∼ B∗i (v) for any v ∈ IGN and i ∈ N. Let v ∈ IGN and i, j ∈ N.

By amalgamating i, j ∈ N into p = {i, j}, we obtain (Np, vp). Then Ψp(vp) ∼ B∗p(vp). Since B∗ satisfies
I2ME, we have Ψp(vp) ∼ B∗p(vp) ∼ (B∗i (v)⊕B∗j (v)) ∼ (Ψi(v)⊕Ψj(v)). Thus, Ψ satisfies I2ME.

Let v, w ∈ IGN . Let i, j ∈ N with that (v(S ∪ {i})	 v(S)) ∼ (w(S ∪ {i})	 w(S)) for any S ∈ 2N .
As B∗ satisfies IMC, we have B∗i (v) ∼ B∗i (w) for any i ∈ N. As Ψ(v) ∼ B∗(v) for any v ∈ IGN ,
we have Ψ(v) ∼ Ψ(w).

Let v ∈ IGN and D(N, v) = {i ∈ N| there exists a j ∈ N \
{i} such that i and j are symmetric in v}. Define Ψ : IGN → I(R)N as that for any v ∈ IGN ,
Ψi(v) = B∗i (vm)⊕ I◦i where I◦i = [−1, 1] if i ∈ D(N, v) and I◦i = [0, 0] if i ∈ N \ D(N, v). Then, we get
that Ψ satisfies I2ME, IDP, SYM and IMC, but violates EDU.

In view of this fact, we may conclude that the properties used in Theorem 3 are more demanding
than the ones used in Theorem 2. Besides, it is necessary to point out that the interval value that
satisfies the mentioned properties in Theorem 3 is not unique. Hence, it is still meaningful to further
narrow down the category of these indifference values.

5. The Contracted Interval Banzhaf-like Value and Its Axiomatization

Since the interval Banzhaf-like value satisfies neither 2ME nor URP, it is still desirable to search
for an interval value that is not only median-indifferent to the interval Banzhaf-like value, but also
able to accommodate the disadvantages of the interval Banzhaf-like value. With this aim, inspired
from Proposition 1 and Theorem 3, we formulate the contracted interval Banzhaf-like value as follows.

Definition 2. The contracted interval Banzhaf-like value is defined as CB∗ : IGN → I(R)N where CB∗i (v) =
B∗i (vm)⊕ 1

2|N|−1 vu(N) for any v ∈ IGN and i ∈ N.

The above notion says that the contracted interval Banzhaf-like value distributes equally payoff
uncertainty to players in accordance with the uncertainty of worth for the grand coalition rather than
the sum of coalitions’ payoff uncertainties.

Reconsider the interval games v in Table 1 and w in Table 2. We have that CB∗(v) =

([4, 17
4 ], [ 9

2 , 19
4 ], [4, 17

4 ]) and CB∗(w) = ([ 21
8 , 27

8 ], [ 37
8 , 43

8 ], [ 41
8 , 47

8 ]). It can be verified that CB∗(v) ∼ B∗(v)
and CB∗(w) ∼ B∗(w).
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The next result shows that the contracted interval Banzhaf-like value possesses all the properties
mentioned in Theorem 3.

Proposition 2. The contracted interval Banzhaf-like value satisfies I2SA, IDP, SYM, ADD and EDU.

Proof. As B∗ satisfies both I2SA and IDP, and CB∗(v) ∼ B∗(vm) for any v ∈ IGN , it can be inferred
that CB∗ satisfies I2SA and IDP.

Since |CB∗i (v)| = 1
2|N|−1 |v(N)| for any v ∈ IGN and i ∈ N, we obtain that CB∗ satisfies EDU.

Let i, j ∈ N be symmetric players in v ∈ IGN . As B∗ satisfies SYM, we get B∗i (vm) = B∗j (vm).
By EDU, we have CB∗i (v) = CB∗j (v). Thus, CB∗ satisfies SYM.

For any v, w ∈ IGN and i ∈ N, we have CB∗i (v) = B∗i (vm) ⊕ 1
2|N|−1 vu(N) and CB∗i (w) =

B∗i (wm)⊕ 1
2|N|−1 wu(N). Then we get

CB∗i (v)⊕ CB∗i (w) = B∗i (vm)⊕B∗i (wm)⊕ 1
2|N|−1 (vu(N)⊕ wu(N))

= B∗i (vm + wm)⊕ 1
2|N|−1 (vu + wu)(N) = CB∗i (v + w).

Thus, CB∗ satisfies ADD.

It can be obtained from Definition 2 that the contracted interval Banzhaf-like value satisfies URP.
In contrast, the interval Banzhaf-like value does not possess this property. Moreover, it can be inferred
that CB∗ satisfies the properties of I2ME and of IMC according to Proposition 2 and Remark 3.

Theorem 4. The contracted interval Banzhaf-like value is the unique interval value satisfying 2ME, IDP, SYM,
ADD and URP.

Proof. It can be not difficult verified that CB∗ : IGN → I(R)N satisfies 2ME, IDP, SYM, ADD and URP.
Let v ∈ IGN and Ψ be an interval value that satisfies 2ME, IDP, SYM, ADD and URP. It can be

verified that Ψ(v) ∼ CB∗(v) ∼ B∗(vm). As v = vm + vu, it is sufficient to prove that Ψ(vm) = CB∗(vm)

and Ψ(vu) = CB∗(vu).
For any i ∈ N, i is an uncertainty removing player in vm. By URP, we have |Ψi(vm)| =

|CB∗i (vm)| = 0. Since Ψ(vm) ∼ CB∗(vm), it can be inferred that Ψi(vm) = CB∗i (vm) for any i ∈ N.
As vu(S) ∼ [0, 0] for any S ∈ 2N , we can conclude that i is an I-dummy player in vu for any i ∈ N.
Thus, Ψi(vu) ∼ B∗i (vu) ∼ CB∗i (vu) ∼ [0, 0].

For any T ( N and i ∈ N \ T, i is an uncertainty removing player in zvu(T)
T . By URP, we get

Ψi(z
vu(T)
T ) = [0, 0]. Take i ∈ T and j ∈ N \ T. By amalgamating i and j , and denoting p = {i, j},

we obtain (Np, η
p
T) where ηT = zvu(T)

T . We conclude that η
p
T(S) = [0, 0] for any S ⊆ Np. As p is not

only an I-dummy player but also an uncertainty nullifying player in η
p
T , we have that Ψp(η

p
T) = [0, 0].

Since Ψ satisfies 2ME, it can be concluded that Ψi(ηT)⊕Ψj(ηT) = Ψp(η
p
T). Thus, Ψi(ηT) = [0, 0] for

any i ∈ T.
Take T = N. Since Ψ satisfies 2ME and SYM, by the method of induction, it can be inferred that

Ψi(z
vu(T)
T ) = 1

2|N|−1 zvu(T)
T (N) = 1

2|N|−1 vu(N) for any i ∈ N. As vu = ∑
T∈2N\{∅}

zvu(T)
T , by ADD, we get

that
Ψi(vu) = Ψi( ∑

T∈2N\{∅}
zvu(T)

T (T)) = ∑
T∈2N\{∅}

Ψi(z
vu(T)
T (T)) = Ψi(z

vu(N)
N (N)) = 1

2|N|−1 vu(N).

In order to show the independence between the properties mentioned in Theorem 4, we present
the following counterexamples.



Mathematics 2020, 8, 372 12 of 14

Example 4.

• Take Ψ : IGN → I(R)N where

Ψi(v) = ∑
S⊆N\{i}

|S|!(|N| − |S| − 1)!
|N|! {vm(S ∪ {i})	vm(S)}

for any v ∈ IGN and i ∈ N. It can be verified that Ψ satisfies IDP, SYM, ADD and URP, but violates
2ME.

• Take Ψ : IGN → I(R)N where Ψi(v) = v(N)

2|N|−1 for any v ∈ IGN and i ∈ N. It can be verified that Ψ
satisfies 2ME, SYM, ADD and URP, but violates IDP.

• Let {λi}i∈N be a set of positive real numbers with ∑
i∈N

λi = 1 and λi 6= λj for any i, j ∈ N. Assume that

λp = λi + λj for any i, j ∈ N with p = {i, j}. Take Ψ : IGN → I(R)N as Ψi(v) = B∗i (vm)⊕ λivu(N)

for any v ∈ IGN and i ∈ N. It can be verified that Ψ satisfies 2ME, IDP, ADD and URP, but violates SYM.
• Define Ψ : IGN → I(R)N as Ψi(v) = B∗i (vm)⊕ 1

2|N|−1 I◦ for any v ∈ IGN and i ∈ N where

I◦ =

{
[−1, 1], if |vu(N)| > 0;
[0, 0], if |vu(N)| = 0.

It can be verified that Ψ satisfies 2ME, IDP, SYM and URP, but violates ADD.
• Define Ψ : IGN → I(R)N as Ψi(v) = B∗i (vm) ⊕ 1

2|N|−1 I◦ for any v ∈ IGN and i ∈ N where I◦ =

[− v(N)+v(N)

2 ,
v(N)+v(N)

2 ]. It can be verified that Ψ satisfies 2ME, IDP, SYM and ADD, but violates URP.

In view of the above facts, we may conclude that the properties used in Theorem 4
are independent.

6. Concluding Remarks

In this paper, we firstly proposed the interval Banzhaf-like value for cooperative interval games to
overcome the shortcomings of the interval Banzhaf value introduced in [13]. The interval Banzhaf-like
value is well-defined for every possible interval game, whereas the interval Banzhaf value is only
definable for size monotonic interval games. As we have shown in Theorem 1, the interval Banzhaf-like
value is median-indifferent to the interval Banzhaf value whenever the latter interval value exists.
Based on these facts, we conclude that the interval Banzhaf-like value outperforms the interval Banzhaf
value in dealing with cooperative games with interval payoffs.

We also introduced two sets of properties about interval values which can be treated as the
sufficient conditions for judging whether an interval value is median-indifferent to the interval
Banzhaf-like value. In view of the shortcomings of the interval Banzhaf-like value, we came up
with the contracted interval Banzhaf-like value by reducing the uncertainty degree of the interval
Banzhaf-like value. It has been shown that the contracted interval Banzhaf-like value not just overcomes
the mentioned deficiencies of the interval Banzhaf-like value, but also may be characterized by using a
set of properties. For these reasons, the theory of the contracted interval Banzhaf-like value may be
treated as an improvement of the interval Banzhaf-like value theory.

Recall the definition of interval Shapley-like value in ([14] p. 466), it can be proved that the
interval Shapley-like value satisfies the properties of IDP, of SYM, of IMC and of ADD. Besides, it can
be verified that the interval Shapley-like value violates 2ME, I2ME, I2SA, EDU and URP (see the
counterexample (N, v) in Table 1). Since the interval Shapley-like value, the interval Banzhaf-like
value and the contracted interval Banzhaf-like value all can be used as the measures of power in
decision making, it is necessary to make a comparison between these interval values. We summarize
the commonalities and differences between them in Table 5 and Table 6, respectively.
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Table 5. The commonalities between Φ, B∗ and CB∗.

IDP SYM IMC ADD

Φ Y Y Y Y

B∗ Y Y Y Y

CB∗ Y Y Y Y

Table 6. The differences between Φ, B∗ and CB∗.

IEF 2ME I2ME I2SA EDU URP

Φ Y N N N N N

B∗ N N Y Y Y N

CB∗ N Y Y Y Y Y

Based on the results in Tables 5 and 6, we may conclude that the interval Banzhaf-like value
and the contracted interval Banzhaf-like value both have more aspects of rationality than the interval
Shapley-like value. Moreover, in view of the fairness about the uncertainty distribution among players,
the contracted interval Banzhaf-like value performs better than the interval Banzhaf-like value in
measuring the power of players.
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