Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (23)

Search Parameters:
Keywords = molten metal infiltration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4306 KiB  
Article
The Modulation of the Pore Structure in Porous Carbon by Metal Salts and Its Application for Joining Silicon Carbide Ceramics
by Xishi Wu, Zehua Liu, Bingbing Pei, Haibo Wu and Zhengren Huang
Materials 2025, 18(10), 2336; https://doi.org/10.3390/ma18102336 - 17 May 2025
Viewed by 461
Abstract
In this work, the metal salts were introduced into the resin-solvent gel system to leverage their ortho-substitution effect, thereby accelerating the polymerization-induced phase separation process. Subsequent in-situ carbonization resulted in the preparation of porous carbon materials with three-dimensional interconnected pores. By precisely tuning [...] Read more.
In this work, the metal salts were introduced into the resin-solvent gel system to leverage their ortho-substitution effect, thereby accelerating the polymerization-induced phase separation process. Subsequent in-situ carbonization resulted in the preparation of porous carbon materials with three-dimensional interconnected pores. By precisely tuning the parameters of the resin-solvent-metal ion system, control over the pore structure of the porous carbon was achieved, with a porosity range of 16.5% to 66.5% and a pore diameter range of 8 to 248 nm. The addition of metallic salts can simply and effectively increase the pore structure after carbonization, making the infiltration of molten silicon easier. This is beneficial to the joining process of silicon carbide ceramics. Based on these findings, a high-reliability joining technique for large-sized (135 mm × 205 mm) silicon carbide ceramics was developed. The resulting interlayer was dense and defect-free, exhibiting a joining strength of 309 ± 33 MPa and a Weibull modulus of 10.67. These results highlight the critical role of structured porous media in advancing the field of large-sized ceramic joining. Full article
(This article belongs to the Section Advanced and Functional Ceramics and Glasses)
Show Figures

Figure 1

19 pages, 12194 KiB  
Article
Study on the Corrosion Behavior of Graphite Materials in Molten CuSn Alloy
by Zhifei Cao, Zongbiao Ye, Xiangyang Luo, Hongrui Tian, Hengxin Guo, Jianjun Wei and Fujun Gou
Processes 2025, 13(2), 381; https://doi.org/10.3390/pr13020381 - 30 Jan 2025
Viewed by 1017
Abstract
Graphite, a critical material for furnace walls, is pivotal to the reliability of the carbon-free hydrogen production industry through methane pyrolysis catalyzed by molten metals. This study systematically investigates the corrosion behavior of molten CuSn alloy on three typical commercial graphite materials—low-density graphite [...] Read more.
Graphite, a critical material for furnace walls, is pivotal to the reliability of the carbon-free hydrogen production industry through methane pyrolysis catalyzed by molten metals. This study systematically investigates the corrosion behavior of molten CuSn alloy on three typical commercial graphite materials—low-density graphite (LDG), high-density graphite (HDG), and pyrolytic graphite (PyG)—with a focus on their corrosion resistance and the underlying mechanisms responsible for graphite corrosion over a period of up to 1000 h at 1100 °C. The experimental results show that LDG suffered the most severe corrosion, with a mass loss of up to 60.09% and a hardness decrease from 0.73 GPa to 0.17 GPa, whereas PyG demonstrated the best corrosion resistance, with only a 5.64% mass loss and a hardness drop from 0.52 GPa to 0.35 GPa. SEM and XRD analyses revealed that the porous structures of LDG and HDG suffered significant macroscopic corrosion, caused by the stress from molten metal infiltration and aggregation in the pores, leading to structural collapse. Interestingly, all three types of graphite, including the non-porous PyG, exhibited disordered microstructural degradation as detected by Raman spectroscopy. Molecular dynamics (MD) simulations confirmed that the thermal motion of Cu and Sn atoms primarily drives the microstructural corrosion of graphite, suggesting that the corrosion process involves both micro- and macro-level damage. These findings provide crucial insight into the compatibility of different graphite materials with molten CuSn alloy and valuable guidance for material selection in methane pyrolysis devices. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

22 pages, 14618 KiB  
Article
Corrosion Behavior of Ni-Cr Alloys with Different Cr Contents in NaCl-KCl-MgCl2
by Peng Lei, Lizhen Zhou, Yu Zhang, Fuli Wang, Qinzhe Li, Jiangyan Liu, Xueyun Xiang, Hang Wu, Wen Wang and Fuhui Wang
Materials 2024, 17(10), 2335; https://doi.org/10.3390/ma17102335 - 14 May 2024
Cited by 5 | Viewed by 1661
Abstract
This study investigates the corrosion behavior of Ni-Cr binary alloys, including Ni-10Cr, Ni-15Cr, Ni-20Cr, Ni-25Cr, and Ni-30Cr, in a NaCl-KCl-MgCl2 molten salt mixture through gravimetric analysis. Corrosion tests were conducted at 700 °C, with the maximum immersion time reaching up to 100 [...] Read more.
This study investigates the corrosion behavior of Ni-Cr binary alloys, including Ni-10Cr, Ni-15Cr, Ni-20Cr, Ni-25Cr, and Ni-30Cr, in a NaCl-KCl-MgCl2 molten salt mixture through gravimetric analysis. Corrosion tests were conducted at 700 °C, with the maximum immersion time reaching up to 100 h. The corrosion rate was determined by measuring the mass loss of the specimens at various time intervals. Verifying corrosion rates by combining mass loss results with the determination of element dissolution in molten salts using Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES). Detailed examinations of the corrosion products and morphology were conducted using X-ray diffraction (XRD) and scanning electron microscopy (SEM). Micro-area elemental analysis on the corroded surfaces was performed using an energy dispersive spectrometer (EDS), and the elemental distribution across the corrosion cross-sections was mapped. The results indicate that alloys with lower Cr content exhibit superior corrosion resistance in the NaCl-KCl-MgCl2 molten salt under an argon atmosphere compared to those with higher Cr content; no corrosion products were retained on the surfaces of the lower Cr alloys (Ni-10Cr, Ni-15Cr). For the higher Cr alloys (Ni-20Cr, Ni-25Cr, Ni-30Cr), after 20 h of corrosion, a protective layer was observed in certain areas. The formation of a stable Cr2O3 layer in the initial stages of corrosion for high-Cr content alloys, which reacts with MgO in the molten salt to form a stable MgCr2O4 spinel structure, provides additional protection for the alloys. However, over time, even under argon protection, the MgCr2O4 protective layer gradually degrades due to chloride ion infiltration and chemical reactions at high temperatures. Further analysis revealed that chloride ions play a pivotal role in the corrosion process, not only facilitating the destruction of the Cr2O3 layer on the alloy surfaces but also possibly accelerating the corrosion of the metallic matrix through electrochemical reactions. In conclusion, the corrosion behavior of Ni-Cr alloys in the NaCl-KCl-MgCl2 molten salt environment is influenced by a combination of factors, including Cr content, chloride ion activity, and the formation and degradation of protective layers. This study not only provides new insights into the corrosion resistance of Ni-Cr alloys in high-temperature molten salt environments but also offers significant theoretical support for the design and optimization of corrosion-resistant alloy materials. Full article
(This article belongs to the Special Issue Corrosion Mechanism and Protection Technology of Metallic Materials)
Show Figures

Figure 1

13 pages, 9606 KiB  
Article
A Study on the Interfacial Reactions between Gallium and Cu/Ni/Au(Pd) Multilayer Metallization
by Byungwoo Kim, Chang-Lae Kim and Yoonchul Sohn
Materials 2023, 16(18), 6186; https://doi.org/10.3390/ma16186186 - 13 Sep 2023
Cited by 1 | Viewed by 1962
Abstract
This research introduces low-temperature soldering of Ga with practical metallization structures, namely, Cu/Ni/Pd and Cu/Ni/Au, applied to contemporary microelectronic packages. Through these multilayer configurations, the study investigates the stability of the Ni diffusion barrier by examining changes in the interfacial microstructure as Ni [...] Read more.
This research introduces low-temperature soldering of Ga with practical metallization structures, namely, Cu/Ni/Pd and Cu/Ni/Au, applied to contemporary microelectronic packages. Through these multilayer configurations, the study investigates the stability of the Ni diffusion barrier by examining changes in the interfacial microstructure as Ni is consumed. The interfacial reactions are conducted across a temperature spectrum of 160, 200, 240, and 280 °C, with reaction durations ranging from 30 to 270 min. Valuable insights for low-temperature soldering with Ga are extracted from the data. At lower reaction temperatures, the presence of Ga-rich intermetallic compounds (IMCs), specifically GaxNi (x = 89 to 95 at%), on the Ga7Ni3 layer is notably confirmed. As the reaction temperature and duration increase, the gradual consumption of the Ni layer occurs. This gives rise to the formation of Ga-Cu IMCs, specifically CuGa2 and γ3-Cu9Ga4, beneath the Ga-Ni IMC layer. Concurrently, the gap between the Ga-Ni and Ga-Cu IMC layers widens, allowing molten Ga to infiltrate. The rate of Ga7Ni3 growth follows a time exponent ranging approximately from 1.1 to 1.7. This highlights the significant influence of interface reaction-controlled kinetics on Ga7Ni3 IMC growth. The activation energy for Ga7Ni3 growth is determined to be 61.5 kJ/mol. The growth of Ga7Ni3 is believed to be primarily driven by the diffusion of Ga atoms along grain boundaries, with the porous microstructure inherent in the Ga7Ni3 layer providing additional diffusion pathways. Full article
Show Figures

Figure 1

18 pages, 9275 KiB  
Article
Influence of Melt Infiltration Parameters on Structural and Mechanical Properties of Al-4.3wt.%Cu-EP Syntactic Foam
by Behzad Niroumand and Amir Jazini Dorcheh
Metals 2023, 13(8), 1345; https://doi.org/10.3390/met13081345 - 27 Jul 2023
Viewed by 1440
Abstract
The present research concerns fabrication of Al-4.3wt.%Cu metal syntactic foams using expanded perlite particles (EPPs). A gas pressure infiltration technique was employed to fabricate the aluminium syntactic foams under different infiltration temperatures and pressures. Ambient air pressure and 750 °C were identified as [...] Read more.
The present research concerns fabrication of Al-4.3wt.%Cu metal syntactic foams using expanded perlite particles (EPPs). A gas pressure infiltration technique was employed to fabricate the aluminium syntactic foams under different infiltration temperatures and pressures. Ambient air pressure and 750 °C were identified as the favoured processing conditions for full infiltration of the melt. The average density and EP volume percentage of the fabricated foams were measured to be about 1.55 g/cm3 and 50.3%, respectively. Melt infiltration is believed to be mainly controlled by the breakage of the aluminium oxide layer on the melt surface and melt viscosity. Preferential infiltration of the melt between the mould wall and the EP particles bed complemented by radial melt infiltration toward the centre of the samples was identified. The effects of EP particles on growth of the nucleated primary α-aluminium phase were discussed. XRD and EDS analyses suggested some chemical reactions at the interface of EPPs with the molten aluminium. T6 heat treatment in the ambient atmosphere improved the average compressive tensile strength, plateau stress, and absorption capacity of the syntactic foams by more than 100%. Uniform deformation and similar densification strains (about 40%) of the as-fabricated and heat-treated syntactic foams during the compression test suggested uniform distribution of EP particles and metallic struts in the aluminium alloy matrix. Full article
(This article belongs to the Special Issue Advanced Metallic Foams)
Show Figures

Figure 1

8 pages, 3445 KiB  
Article
Effect of Surface Dispersion of Fe Nanoparticles on the Room-Temperature Flash Sintering Behavior of 3YSZ
by Angxuan Wu, Yuchen Zhu, Chen Xu, Nianping Yan, Xuetong Zhao, Xilin Wang and Zhidong Jia
Materials 2023, 16(4), 1544; https://doi.org/10.3390/ma16041544 - 13 Feb 2023
Cited by 2 | Viewed by 2008
Abstract
Arc floating in surface flashover can be controlled by reducing the interfacial charge-transfer resistance of ceramics. However, thus far, only a few studies have been conducted on methods of treating ceramic surfaces directly to reduce the interfacial charge-transfer resistance. Herein, we explore the [...] Read more.
Arc floating in surface flashover can be controlled by reducing the interfacial charge-transfer resistance of ceramics. However, thus far, only a few studies have been conducted on methods of treating ceramic surfaces directly to reduce the interfacial charge-transfer resistance. Herein, we explore the flash sintering behavior of a ceramic surface (3 mol% yttria-stabilized zirconia (3YSZ)) onto which loose metal (iron) powder was spread prior to flash sintering at room temperature (25 °C). The iron powder acts as a conductive phase that accelerates the start of flash sintering while also doping the ceramic phase during the sintering process. Notably, the iron powder substantially reduces the transition time from the arc stage to the flash stage from 13.50 to 8.22 s. The surface temperature (~1600 °C) of the ceramic substrate is sufficiently high to melt the iron powder. The molten metal then reacts with the ceramic surface, causing iron ions to substitute Zr4+ ions and promoting rapid densification. The YSZ grains in the metal-infiltrated area grow exceptionally fast. The results demonstrate that spreading metal powder onto a ceramic surface prior to flash sintering can enable the metal to enter the ceramic pores, which will be of significance in developing and enhancing ceramic–metal powder processing techniques. Full article
Show Figures

Figure 1

11 pages, 5927 KiB  
Article
SiC-Based Composite Material Reinforced with Molybdenum Wire
by Alexei Kaledin, Sergey Shikunov, Kirill Komarov, Boris Straumal and Vladimir Kurlov
Metals 2023, 13(2), 313; https://doi.org/10.3390/met13020313 - 3 Feb 2023
Cited by 8 | Viewed by 2423
Abstract
Silicon carbide (SiC) possesses a unique combination of properties such as high mechanical strength at elevated temperatures, wear resistance, low thermal expansion coefficient, high temperature oxidation resistance, corrosion stability, radiation hardness, high chemical inertness, and thermal conductivity. Unfortunately, SiC is very brittle and [...] Read more.
Silicon carbide (SiC) possesses a unique combination of properties such as high mechanical strength at elevated temperatures, wear resistance, low thermal expansion coefficient, high temperature oxidation resistance, corrosion stability, radiation hardness, high chemical inertness, and thermal conductivity. Unfortunately, SiC is very brittle and cannot, therefore, be used “as is”. SiC’s crack resistance, due to the prevention of crack propagation, can be increased by the reinforcing of SiC. In this paper, a novel method for manufacturing SiC-based composites reinforced with Mo wire is developed. The composites are produced by infiltrating porous carbon blanks with molten silicon. The molten silicon reacts with the molybdenum wire embedded in the carbon blanks. As a result, a complex interfacial silicide layer with a predominant MoSi2 phase is formed on the surface of the Mo wire. In addition, a thin layer of Mo5Si3 is formed between the residual metal in the core of the wire and the disilicide. A stable bond of the interfacial layer with both the residual metal and the SiC-based ceramic matrix is observed. Mechanical tests on the obtained samples for three-point bending at 20 and 1500 °C showed quasi-plastic damage. The reinforcing elements act as stoppers for propagating cracks in the event of a matrix failure. The developed method for producing composites with a ceramic matrix reinforced with metal wire makes it possible to reduce the cost of machining and manufacturing products with complex geometric shapes. It also opens the way for broader applications of SiC-based composites. Full article
(This article belongs to the Special Issue Advanced Manufacturing of Novel Metallic Related Materials)
Show Figures

Figure 1

11 pages, 5418 KiB  
Article
Microstructures and Mechanical Properties of V-Modified Ti-Zr-Cu-Ni Filler Metals
by Lu Feng, Quanming Liu, Weimin Long, Guoxiang Jia, Haiying Yang and Yangyang Tang
Materials 2023, 16(1), 199; https://doi.org/10.3390/ma16010199 - 26 Dec 2022
Cited by 1 | Viewed by 2029
Abstract
TA2 titanium alloy was brazed with Ti-Zr-Cu-Ni-V filler metals developed in a laboratory. The melting properties, the microstructures, phase compositions of filler metals and wettability, erosion properties, tensile properties of the brazed joint were studied in detail. The results show that with the [...] Read more.
TA2 titanium alloy was brazed with Ti-Zr-Cu-Ni-V filler metals developed in a laboratory. The melting properties, the microstructures, phase compositions of filler metals and wettability, erosion properties, tensile properties of the brazed joint were studied in detail. The results show that with the increase of V content, the solidus–liquidus temperature of Ti-Zr-Cu-Ni-V filler metals increased, but the temperature difference basically remained unchanged, trace V element had a limited influence on the melting temperature range of Ti-Zr-Cu-Ni filler metals. The microstructure of Ti-Zr-Cu-Ni-1.5V filler metal was composed of Ti, Zr matrix, (Zr, Cu) solid solution and crystal phase. With the addition of V content, these phases containing V such as Ni3VZr2, NiV3, Ni2V in the molten filler metals increased. V was more inclined to combine with Ni to slow down the diffusion of Ni to titanium matrix. The wettability of filler metal with trace (≤0.5 wt.%) V to TA2 titanium alloy became worse, the wettability improved significantly with continuous increase of V content. The thickness of embrittlement layer and intergranular infiltration region decreased significantly by adding V. With the increase of V content, V could regulate the brazing interface reaction, more strengthened phases generated, which resulted the significant increase of the strength (302.72 MPa) and plasticity index (16.3%) of the brazed joint with Ti-Zr-Cu-Ni-1.5V filler metal. Full article
(This article belongs to the Special Issue Advanced Metal Matrix Functional Composites and Applications)
Show Figures

Figure 1

14 pages, 4209 KiB  
Article
Tensile Behavior and Performance of Syntactic Steel Foams Prepared by Infiltration Casting
by Yong Mei, Chao Fu, Ying Fu, Yong Ding, Enge Wang and Quanzhan Yang
Metals 2022, 12(4), 668; https://doi.org/10.3390/met12040668 - 14 Apr 2022
Cited by 1 | Viewed by 2231
Abstract
Syntactic steel foams (SSFs) were prepared by low-pressure infiltration of molten ASTM CF-8 cast austenitic stainless steel into randomly and densely packed Al2O3 hollow spheres. The microstructure of the SSFs was characterized by scanning electron microscopy and energy dispersive spectrometry. [...] Read more.
Syntactic steel foams (SSFs) were prepared by low-pressure infiltration of molten ASTM CF-8 cast austenitic stainless steel into randomly and densely packed Al2O3 hollow spheres. The microstructure of the SSFs was characterized by scanning electron microscopy and energy dispersive spectrometry. Using dumbbell-shaped specimens, the density of the as-cast SSFs is measured in the range from 3.33 to 3.64 g/cm3 and their ultimate tensile strength from 83.1 to 97.6 MPa. No significant chemical reaction was detected between the fillers and matrix. The quasi-static uniaxial tensile deformation of the syntactic foams underwent elastic deformation, plastic deformation, and then a failure stage, showing similar tensile behavior to plastic bulk metals but different behavior to common metal foams. From the good ductility of the metal matrix, a clear macroscopic plastic deformation was observed before the ductile fracture of the syntactic foams. A constitutive relationship of the SSFs under uniaxial tensile loads has been proposed. Full article
(This article belongs to the Special Issue Synthesis and Applications of Metallic Foams)
Show Figures

Figure 1

24 pages, 3762 KiB  
Review
Stir Casting Routes for Processing Metal Matrix Syntactic Foams: A Scoping Review
by Alejandro Miguel Sánchez de la Muela, Joana Duarte, João Santos Baptista, Luis Enrique García Cambronero, José Manuel Ruiz-Román and Francisco Javier Elorza
Processes 2022, 10(3), 478; https://doi.org/10.3390/pr10030478 - 27 Feb 2022
Cited by 13 | Viewed by 4425
Abstract
Metal matrix syntactic foams (MMSFs) are advanced lightweight materials constituted by a metallic matrix and a dispersion of hollow/porous fillers. Physical and mechanical properties can be fitted regarding matrix and filler properties and processing parameters. Their properties make them potential materials for sectors [...] Read more.
Metal matrix syntactic foams (MMSFs) are advanced lightweight materials constituted by a metallic matrix and a dispersion of hollow/porous fillers. Physical and mechanical properties can be fitted regarding matrix and filler properties and processing parameters. Their properties make them potential materials for sectors where density is a limiting parameter, such as transport, marine, defense, aerospace, and engineering applications. MMSFs are mainly manufactured by powder metallurgy, infiltration, and stir casting techniques. This study focuses on the current stir casting approaches and on the advances and deficiencies, providing processing parameters and comparative analyses on porosity and mechanical properties. PRISMA approaches were followed to favor traceability and reproducibility of the study. Stir casting techniques are low-cost, industrially scalable approaches, but they exhibit critical limitations: buoyancy of fillers, corrosion of processing equipment, premature solidification of molten metal during mixing, cracking of fillers, heterogeneous distribution, and limited incorporation of fillers. Six different approaches were identified; four focus on limiting buoyancy, cracking, heterogeneous distribution of fillers, and excessive oxidation of sensitive matrix alloys to oxygen. These improvements favor reaching the maximum porosity of 54%, increasing the fillers’ size from a few microns to 4–5 mm, reducing residual porosity by ±4%, synthesizing bimodal MMSFs, and reaching maximum incorporation of 74 vol%. Full article
Show Figures

Figure 1

14 pages, 3507 KiB  
Article
Impact of Al2O3 Particle Size on the Open Porosity of Ni/Al2O3 Composites Prepared by the Thermal Oxidation at Moderate Temperatures
by Andrej Opálek, Marta Gaburjáková, Peter Švec, Stanislav Kúdela, Matej Štĕpánek, Pavol Štefánik and Karol Iždinský
Metals 2021, 11(10), 1582; https://doi.org/10.3390/met11101582 - 4 Oct 2021
Cited by 2 | Viewed by 2127
Abstract
The performance of attractive Ni-based composites can be affected by changing their microstructures, e.g., introducing pores. Here, we report a novel, relatively low-cost process to fabricate Ni/Al2O3 composites with open porosity modified by the size of Al2O3 [...] Read more.
The performance of attractive Ni-based composites can be affected by changing their microstructures, e.g., introducing pores. Here, we report a novel, relatively low-cost process to fabricate Ni/Al2O3 composites with open porosity modified by the size of Al2O3 particles. The mixture of powders was subjected to thermal oxidation twice in air after a maximal temperature of 800 °C was reached in a stepwise manner and maintained for 120 min. The oxidation kinetics were determined thermogravimetrically. The open porosity was evaluated by an Archimedes’ principle-based method. Localization and quantification of NiO, newly formed on the Ni particle surface and acting as a mechanical bonding agent, were explored by scanning electron microscopy with energy dispersive X-ray spectroscopy and X-ray diffractometry. Larger ceramic particles prevented merging of NiO layers on adjacent Ni particles more efficiently; therefore, the open porosity increased from 21% to 24.2% when the Al2O3 particle diameter was increased from 5–20 µm to 32–45 µm. Because both Ni/Al2O3 composites exhibited similar flexural strength, the composite with larger Al2O3 particles and the higher open porosity could be a better candidate for infiltration by molten metal, or it can be directly used in a variety of filtration applications. Full article
Show Figures

Figure 1

14 pages, 9339 KiB  
Article
Investigation of Molten Metal Infiltration into Micropore Carbon Refractory Materials Using X-ray Computed Tomography
by Jakub Stec, Jacek Tarasiuk, Sebastian Wroński, Piotr Kubica, Janusz Tomala and Robert Filipek
Materials 2021, 14(12), 3148; https://doi.org/10.3390/ma14123148 - 8 Jun 2021
Cited by 6 | Viewed by 3038
Abstract
The lifetime of a blast furnace (BF), and, consequently, the price of steel, strongly depends on the degradation of micropore carbon refractory materials used as lining materials in the BF hearth. One of the major degradation mechanisms in the BF hearth is related [...] Read more.
The lifetime of a blast furnace (BF), and, consequently, the price of steel, strongly depends on the degradation of micropore carbon refractory materials used as lining materials in the BF hearth. One of the major degradation mechanisms in the BF hearth is related to the infiltration and dissolution of refractory materials in molten metal. To design new and more resilient materials, we need to know more about degradation mechanisms, which can be achieved using laboratory tests. In this work, we present a new investigation method of refractory materials infiltration resistance. The designed method combines a standard degradation test (hot metal penetration test) with X-ray computed tomography (XCT) measurements. Application of XCT measurements before and after molten metal infiltration allows observing changes in the micropore carbon refractory material’s microstructure and identifying the elements of the open pore structure that are crucial in molten metal infiltration. Full article
(This article belongs to the Special Issue Design, Manufacturing and Properties of Refractory Materials)
Show Figures

Figure 1

4 pages, 3143 KiB  
Proceeding Paper
Aluminum Foams as Permanent Cores in Casting
by Sara Ferraris, Graziano Ubertalli, Antonio Santostefano and Antonio Barbato
Mater. Proc. 2021, 3(1), 3; https://doi.org/10.3390/IEC2M-09253 - 20 Feb 2021
Cited by 1 | Viewed by 1534
Abstract
Their low density and high specific stiffness and impact energy/vibration absorption ability make Al-based metal foams promising materials in applications for which a light weight and energy/vibration absorption abilities are crucial. In view of these properties, Al-based foams can be extremely interesting as [...] Read more.
Their low density and high specific stiffness and impact energy/vibration absorption ability make Al-based metal foams promising materials in applications for which a light weight and energy/vibration absorption abilities are crucial. In view of these properties, Al-based foams can be extremely interesting as cores in cast components in order to improve their performances and simplify their whole technological process. However, both in the scientific literature and in technological application, this topic is still poorly explored. In the present work, Al-based metal foams (Cymat foams and Havel metal foams in the form of rectangular bars) are used in a gravity casting experiment of an Al-Si-Cu-Mg alloy (EN AB-46400). The foams were fully characterized before and after insertion in casting. Porosity, cell wall and external skin thickness, microstructure, infiltration degree, and the quality of the interface between the foam core and the dense cast shell, have been investigated by means of optical microscopy and scanning electron microscopy equipped with energy dispersive spectroscopy (SEM-EDS). The analyses evidenced that a continuous and thick external skin protect the foam from infiltration by molten metal, preserving the initial porosity and insert shape. A detailed analysis of the foam’s external skin highlights that the composition of this external skin is crucial for the obtaining of a good joining between the molten metal and the Al foam core. In fact, the presence of Mg oxides on the foam surface prevents bonding, and maintains a gap between the core and the shell. This point opens up the opportunity to design innovative surface modifications for this external skin as promising strategies for the optimization of cast components with a foam core. Full article
(This article belongs to the Proceedings of The 1st International Electronic Conference on Metallurgy and Metals)
Show Figures

Figure 1

5 pages, 3147 KiB  
Proceeding Paper
Aluminum Foams as Permanent Cores in Casting
by Sara Ferraris, Graziano Ubertalli, Antonio Santostefano and Antonio Barbato
Mater. Proc. 2021, 4(1), 76; https://doi.org/10.3390/IOCN2020-07840 - 11 Nov 2020
Viewed by 1089
Abstract
Their low density and high specific stiffness and impact energy/vibration absorption ability make Al-based metal foams promising materials in applications for which a light weight and energy/vibration absorption abilities are crucial. In view of these properties, Al-based foams can be extremely interesting as [...] Read more.
Their low density and high specific stiffness and impact energy/vibration absorption ability make Al-based metal foams promising materials in applications for which a light weight and energy/vibration absorption abilities are crucial. In view of these properties, Al-based foams can be extremely interesting as cores in cast components in order to improve their performances and simplify their whole technological process. However, both in the scientific literature and in technological application, this topic is still poorly explored. In the present work, Al-based metal foams (Cymat foams and Havel metal foams in the form of rectangular bars) are used in a gravity casting experiment of an Al-Si-Cu-Mg alloy (EN AB-46400). The foams were fully characterized before and after insertion in casting. Porosity, cell wall and external skin thickness, microstructure, infiltration degree, and the quality of the interface between the foam core and the dense cast shell, have been investigated by means of optical microscopy and scanning electron microscopy equipped with energy dispersive spectroscopy (SEM-EDS). The analyses evidenced that a continuous and thick external skin protect the foam from infiltration by molten metal, preserving the initial porosity and insert shape. A detailed analysis of the foam’s external skin highlights that the composition of this external skin is crucial for the obtaining of a good joining between the molten metal and the Al foam core. In fact, the presence of Mg oxides on the foam surface prevents bonding, and maintains a gap between the core and the shell. This point opens up the opportunity to design innovative surface modifications for this external skin as promising strategies for the optimization of cast components with a foam core. Full article
(This article belongs to the Proceedings of The 2nd International Online-Conference on Nanomaterials)
Show Figures

Figure 1

11 pages, 3420 KiB  
Article
Fabrication of TiB2–Al1050 Composites with Improved Microstructural and Mechanical Properties by a Liquid Pressing Infiltration Process
by Seongmin Ko, Hyeonjae Park, Yeong-Hwan Lee, Sangmin Shin, Ilguk Jo, Junghwan Kim, Sang-Bok Lee, Yangdo Kim, Sang-Kwan Lee and Seungchan Cho
Materials 2020, 13(7), 1588; https://doi.org/10.3390/ma13071588 - 30 Mar 2020
Cited by 11 | Viewed by 2889
Abstract
This study was conducted on titanium diboride (TiB2) reinforced Al metal matrix composites (MMCs) with improved properties using a TiB2 and aluminum (Al) 1050 alloy. Al composites reinforced with fine TiB2 at volume ratios of more than 60% were [...] Read more.
This study was conducted on titanium diboride (TiB2) reinforced Al metal matrix composites (MMCs) with improved properties using a TiB2 and aluminum (Al) 1050 alloy. Al composites reinforced with fine TiB2 at volume ratios of more than 60% were successfully fabricated via the liquid pressing infiltration (LPI) process, which can be used to apply gas pressure at a high temperature. The microstructure of the TiB2–Al composite fabricated at 1000 °C with pressurization of 10 bar for 1 h showed that molten Al effectively infiltrated into the high volume-fraction TiB2 preform due to the improved wettability and external gas pressurization. In addition, the interface of TiB2 and Al not only had no cracks or pores but also had no brittle intermetallic compounds. In conclusion, TiB2–Al composite, which has a sound microstructure without defects, has improved mechanical properties, such as hardness and strength, due to effective load transfer from the Al matrix to the fine TiB2 reinforcement. Full article
(This article belongs to the Special Issue Advances in Materials Processing)
Show Figures

Figure 1

Back to TopTop