Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (989)

Search Parameters:
Keywords = modulator distortion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 1008 KiB  
Article
Variable Submodule Voltage Control for Enhanced Efficiency in DAB-Integrated Modular Multilevel Converters
by Marzio Barresi, Davide De Simone, Edoardo Ferri and Luigi Piegari
Energies 2025, 18(15), 4096; https://doi.org/10.3390/en18154096 (registering DOI) - 1 Aug 2025
Abstract
Modular multilevel converters (MMCs) are widely used in power-conversion applications, including distributed energy storage integration, because of their scalability, high efficiency, and reduced harmonic distortion. Integrating battery storage systems into MMC submodules using dual active bridge (DAB) converters provides electrical isolation and reduces [...] Read more.
Modular multilevel converters (MMCs) are widely used in power-conversion applications, including distributed energy storage integration, because of their scalability, high efficiency, and reduced harmonic distortion. Integrating battery storage systems into MMC submodules using dual active bridge (DAB) converters provides electrical isolation and reduces voltage stress, harmonics, and common-mode issues. However, voltage fluctuations due to the battery state of charge can compromise the zero-voltage switching (ZVS) operation of a DAB and increase the reactive power circulation, leading to higher losses and reduced system performance. To address these challenges, this study investigated an active control strategy for submodule voltage regulation in an MMC with DAB-based battery integration. Assuming single-phase-shift modulation, two control strategies were evaluated. The first strategy regulated the DAB voltage on one side to match the battery voltage on the other, scaled by the high-frequency transformer turns ratio, which facilitated the ZVS operation and reduced the reactive power. The second strategy optimized this voltage to minimize the total power-conversion losses. The proposed control strategies improved the efficiency, particularly at low power levels, achieving several percentage points of improvement compared to maintaining a constant voltage. Full article
21 pages, 2267 KiB  
Article
Dual-Branch Network for Blind Quality Assessment of Stereoscopic Omnidirectional Images: A Spherical and Perceptual Feature Integration Approach
by Zhe Wang, Yi Liu and Yang Song
Electronics 2025, 14(15), 3035; https://doi.org/10.3390/electronics14153035 - 30 Jul 2025
Viewed by 114
Abstract
Stereoscopic omnidirectional images (SOIs) have gained significant attention for their immersive viewing experience by providing binocular depth with panoramic scenes. However, evaluating their visual quality remains challenging due to its unique spherical geometry, binocular disparity, and viewing conditions. To address these challenges, this [...] Read more.
Stereoscopic omnidirectional images (SOIs) have gained significant attention for their immersive viewing experience by providing binocular depth with panoramic scenes. However, evaluating their visual quality remains challenging due to its unique spherical geometry, binocular disparity, and viewing conditions. To address these challenges, this paper proposes a dual-branch deep learning framework that integrates spherical structural features and perceptual binocular cues to assess the quality of SOIs without reference. Specifically, the global branch leverages spherical convolutions to capture wide-range spatial distortions, while the local branch utilizes a binocular difference module based on discrete wavelet transform to extract depth-aware perceptual information. A feature complementarity module is introduced to fuse global and local representations for final quality prediction. Experimental evaluations on two public SOIQA datasets—NBU-SOID and SOLID—demonstrate that the proposed method achieves state-of-the-art performance, with PLCC/SROCC values of 0.926/0.918 and 0.918/0.891, respectively. These results validate the effectiveness and robustness of our approach in stereoscopic omnidirectional image quality assessment tasks. Full article
(This article belongs to the Special Issue AI in Signal and Image Processing)
Show Figures

Figure 1

23 pages, 3453 KiB  
Article
Robust Peak Detection Techniques for Harmonic FMCW Radar Systems: Algorithmic Comparison and FPGA Feasibility Under Phase Noise
by Ahmed El-Awamry, Feng Zheng, Thomas Kaiser and Maher Khaliel
Signals 2025, 6(3), 36; https://doi.org/10.3390/signals6030036 - 30 Jul 2025
Viewed by 160
Abstract
Accurate peak detection in the frequency domain is fundamental to reliable range estimation in Frequency-Modulated Continuous-Wave (FMCW) radar systems, particularly in challenging conditions characterized by a low signal-to-noise ratio (SNR) and phase noise impairments. This paper presents a comprehensive comparative analysis of five [...] Read more.
Accurate peak detection in the frequency domain is fundamental to reliable range estimation in Frequency-Modulated Continuous-Wave (FMCW) radar systems, particularly in challenging conditions characterized by a low signal-to-noise ratio (SNR) and phase noise impairments. This paper presents a comprehensive comparative analysis of five peak detection algorithms: FFT thresholding, Cell-Averaging Constant False Alarm Rate (CA-CFAR), a simplified Matrix Pencil Method (MPM), SVD-based detection, and a novel Learned Thresholded Subspace Projection (LTSP) approach. The proposed LTSP method leverages singular value decomposition (SVD) to extract the dominant signal subspace, followed by signal reconstruction and spectral peak analysis, enabling robust detection in noisy and spectrally distorted environments. Each technique was analytically modeled and extensively evaluated through Monte Carlo simulations across a wide range of SNRs and oscillator phase noise levels, from 100 dBc/Hz to 70 dBc/Hz. Additionally, real-world validation was performed using a custom-built harmonic FMCW radar prototype operating in the 2.4–2.5 GHz transmission band and 4.8–5.0 GHz harmonic reception band. Results show that CA-CFAR offers the highest resilience to phase noise, while the proposed LTSP method delivers competitive detection performance with improved robustness over conventional FFT and MPM techniques. Furthermore, the hardware feasibility of each algorithm is assessed for implementation on a Xilinx FPGA platform, highlighting practical trade-offs between detection performance, computational complexity, and resource utilization. These findings provide valuable guidance for the design of real-time, embedded FMCW radar systems operating under adverse conditions. Full article
Show Figures

Graphical abstract

20 pages, 2399 KiB  
Article
Exploring Novel Optical Soliton Molecule for the Time Fractional Cubic–Quintic Nonlinear Pulse Propagation Model
by Syed T. R. Rizvi, Atef F. Hashem, Azrar Ul Hassan, Sana Shabbir, A. S. Al-Moisheer and Aly R. Seadawy
Fractal Fract. 2025, 9(8), 497; https://doi.org/10.3390/fractalfract9080497 - 29 Jul 2025
Viewed by 200
Abstract
This study focuses on the analysis of soliton solutions within the framework of the time-fractional cubic–quintic nonlinear Schrödinger equation (TFCQ-NLSE), a powerful model with broad applications in complex physical phenomena such as fiber optic communications, nonlinear optics, optical signal processing, and laser–tissue interactions [...] Read more.
This study focuses on the analysis of soliton solutions within the framework of the time-fractional cubic–quintic nonlinear Schrödinger equation (TFCQ-NLSE), a powerful model with broad applications in complex physical phenomena such as fiber optic communications, nonlinear optics, optical signal processing, and laser–tissue interactions in medical science. The nonlinear effects exhibited by the model—such as self-focusing, self-phase modulation, and wave mixing—are influenced by the combined impact of the cubic and quintic nonlinear terms. To explore the dynamics of this model, we apply a robust analytical technique known as the sub-ODE method, which reveals a diverse range of soliton structures and offers deep insight into laser pulse interactions. The investigation yields a rich set of explicit soliton solutions, including hyperbolic, rational, singular, bright, Jacobian elliptic, Weierstrass elliptic, and periodic solutions. These waveforms have significant real-world relevance: bright solitons are employed in fiber optic communications for distortion-free long-distance data transmission, while both bright and dark solitons are used in nonlinear optics to study light behavior in media with intensity-dependent refractive indices. Solitons also contribute to advancements in quantum technologies, precision measurement, and fiber laser systems, where hyperbolic and periodic solitons facilitate stable, high-intensity pulse generation. Additionally, in nonlinear acoustics, solitons describe wave propagation in media where amplitude influences wave speed. Overall, this work highlights the theoretical depth and practical utility of soliton dynamics in fractional nonlinear systems. Full article
Show Figures

Figure 1

13 pages, 2541 KiB  
Article
Multiantenna Synthetic Interference Technology Using Phase Comparison Method
by Xin Zhou, Mengxia Yu and Maoyan Wang
Aerospace 2025, 12(8), 671; https://doi.org/10.3390/aerospace12080671 - 27 Jul 2025
Viewed by 298
Abstract
Based on the theoretical framework of the phase comparison method and the computational analysis of the interference model calculation analysis, this paper designs, implements, establishes, calibrates, and verifies an interference experimental platform. The proposed methodology validates the effectiveness and practical feasibility of multiantenna [...] Read more.
Based on the theoretical framework of the phase comparison method and the computational analysis of the interference model calculation analysis, this paper designs, implements, establishes, calibrates, and verifies an interference experimental platform. The proposed methodology validates the effectiveness and practical feasibility of multiantenna synthetic interference technology in real-world applications. Experimental results demonstrate that the developed system can achieve flexible and arbitrary interference angles with desired distortion characteristics through precise amplitude–phase modulation, enabling dynamic manipulation of phase plane angles. Furthermore, the system successfully synthesizes false target positions at distances exceeding five times the baseline length from the jamming platform center. Both mathematical computations and experimental validations confirm that this multiantenna synthetic interference technology represents an advanced electromagnetic countermeasure characterized by two-dimensional planar interference coverage and robust phase parameter tolerance, while also enabling artificial angular glint generation. This technology exhibits significant potential for practical engineering applications. Full article
Show Figures

Figure 1

27 pages, 6143 KiB  
Article
Optical Character Recognition Method Based on YOLO Positioning and Intersection Ratio Filtering
by Kai Cui, Qingpo Xu, Yabin Ding, Jiangping Mei, Ying He and Haitao Liu
Symmetry 2025, 17(8), 1198; https://doi.org/10.3390/sym17081198 - 27 Jul 2025
Viewed by 191
Abstract
Driven by the rapid development of e-commerce and intelligent logistics, the volume of express delivery services has surged, making the efficient and accurate identification of shipping information a core requirement for automatic sorting systems. However, traditional Optical Character Recognition (OCR) technology struggles to [...] Read more.
Driven by the rapid development of e-commerce and intelligent logistics, the volume of express delivery services has surged, making the efficient and accurate identification of shipping information a core requirement for automatic sorting systems. However, traditional Optical Character Recognition (OCR) technology struggles to meet the accuracy and real-time demands of complex logistics scenarios due to challenges such as image distortion, uneven illumination, and field overlap. This paper proposes a three-level collaborative recognition method based on deep learning that facilitates structured information extraction through regional normalization, dual-path parallel extraction, and a dynamic matching mechanism. First, the geometric distortion associated with contour detection and the lightweight direction classification model has been improved. Second, by integrating the enhanced YOLOv5s for key area localization with the upgraded PaddleOCR for full-text character extraction, a dual-path parallel architecture for positioning and recognition has been constructed. Finally, a dynamic space–semantic joint matching module has been designed that incorporates anti-offset IoU metrics and hierarchical semantic regularization constraints, thereby enhancing matching robustness through density-adaptive weight adjustment. Experimental results indicate that the accuracy of this method on a self-constructed dataset is 89.5%, with an F1 score of 90.1%, representing a 24.2% improvement over traditional OCR methods. The dynamic matching mechanism elevates the average accuracy of YOLOv5s from 78.5% to 89.7%, surpassing the Faster R-CNN benchmark model while maintaining a real-time processing efficiency of 76 FPS. This study offers a lightweight and highly robust solution for the efficient extraction of order information in complex logistics scenarios, significantly advancing the intelligent upgrading of sorting systems. Full article
(This article belongs to the Section Physics)
Show Figures

Figure 1

27 pages, 4682 KiB  
Article
DERIENet: A Deep Ensemble Learning Approach for High-Performance Detection of Jute Leaf Diseases
by Mst. Tanbin Yasmin Tanny, Tangina Sultana, Md. Emran Biswas, Chanchol Kumar Modok, Arjina Akter, Mohammad Shorif Uddin and Md. Delowar Hossain
Information 2025, 16(8), 638; https://doi.org/10.3390/info16080638 - 27 Jul 2025
Viewed by 160
Abstract
Jute, a vital lignocellulosic fiber crop with substantial industrial and ecological relevance, continues to suffer considerable yield and quality degradation due to pervasive foliar pathologies. Traditional diagnostic modalities reliant on manual field inspections are inherently constrained by subjectivity, diagnostic latency, and inadequate scalability [...] Read more.
Jute, a vital lignocellulosic fiber crop with substantial industrial and ecological relevance, continues to suffer considerable yield and quality degradation due to pervasive foliar pathologies. Traditional diagnostic modalities reliant on manual field inspections are inherently constrained by subjectivity, diagnostic latency, and inadequate scalability across geographically distributed agrarian systems. To transcend these limitations, we propose DERIENet, a robust and scalable classification approach within a deep ensemble learning framework. It is meticulously engineered by integrating three high-performing convolutional neural networks—ResNet50, InceptionV3, and EfficientNetB0—along with regularization, batch normalization, and dropout strategies, to accurately classify jute leaf diseases such as Cercospora Leaf Spot, Golden Mosaic Virus, and healthy leaves. A key methodological contribution is the design of a novel augmentation pipeline, termed Geometric Localized Occlusion and Adaptive Rescaling (GLOAR), which dynamically modulates photometric and geometric distortions based on image entropy and luminance to synthetically upscale a limited dataset (920 images) into a significantly enriched and diverse dataset of 7800 samples, thereby mitigating overfitting and enhancing domain generalizability. Empirical evaluation, utilizing a comprehensive set of performance metrics—accuracy, precision, recall, F1-score, confusion matrices, and ROC curves—demonstrates that DERIENet achieves a state-of-the-art classification accuracy of 99.89%, with macro-averaged and weighted average precision, recall, and F1-score uniformly at 99.89%, and an AUC of 1.0 across all disease categories. The reliability of the model is validated by the confusion matrix, which shows that 899 out of 900 test images were correctly identified and that there was only one misclassification. Comparative evaluations of the various ensemble baselines, such as DenseNet201, MobileNetV2, and VGG16, and individual base learners demonstrate that DERIENet performs noticeably superior to all baseline models. It provides a highly interpretable, deployment-ready, and computationally efficient architecture that is ideal for integrating into edge or mobile platforms to facilitate in situ, real-time disease diagnostics in precision agriculture. Full article
Show Figures

Figure 1

22 pages, 2420 KiB  
Article
BiEHFFNet: A Water Body Detection Network for SAR Images Based on Bi-Encoder and Hybrid Feature Fusion
by Bin Han, Xin Huang and Feng Xue
Mathematics 2025, 13(15), 2347; https://doi.org/10.3390/math13152347 - 23 Jul 2025
Viewed by 179
Abstract
Water body detection in synthetic aperture radar (SAR) imagery plays a critical role in applications such as disaster response, water resource management, and environmental monitoring. However, it remains challenging due to complex background interference in SAR images. To address this issue, a bi-encoder [...] Read more.
Water body detection in synthetic aperture radar (SAR) imagery plays a critical role in applications such as disaster response, water resource management, and environmental monitoring. However, it remains challenging due to complex background interference in SAR images. To address this issue, a bi-encoder and hybrid feature fuse network (BiEHFFNet) is proposed for achieving accurate water body detection. First, a bi-encoder structure based on ResNet and Swin Transformer is used to jointly extract local spatial details and global contextual information, enhancing feature representation in complex scenarios. Additionally, the convolutional block attention module (CBAM) is employed to suppress irrelevant information of the output features of each ResNet stage. Second, a cross-attention-based hybrid feature fusion (CABHFF) module is designed to interactively integrate local and global features through cross-attention, followed by channel attention to achieve effective hybrid feature fusion, thus improving the model’s ability to capture water structures. Third, a multi-scale content-aware upsampling (MSCAU) module is designed by integrating atrous spatial pyramid pooling (ASPP) with the Content-Aware ReAssembly of FEatures (CARAFE), aiming to enhance multi-scale contextual learning while alleviating feature distortion caused by upsampling. Finally, a composite loss function combining Dice loss and Active Contour loss is used to provide stronger boundary supervision. Experiments conducted on the ALOS PALSAR dataset demonstrate that the proposed BiEHFFNet outperforms existing methods across multiple evaluation metrics, achieving more accurate water body detection. Full article
(This article belongs to the Special Issue Advanced Mathematical Methods in Remote Sensing)
Show Figures

Figure 1

14 pages, 2512 KiB  
Article
Research on Two-Stage Data Compression at the Acquisition Node in Remote-Detection Acoustic Logging
by Xiaolong Hao, Yangtao Hu, Bingnan Yan, Hang Hui, Yunxia Chen and Bingqi Zhang
Sensors 2025, 25(14), 4512; https://doi.org/10.3390/s25144512 - 21 Jul 2025
Viewed by 228
Abstract
The substantial volume of data acquired through remote-detection acoustic logging poses a remarkable challenge because of the limited real-time upload speed of the cable, which severely impedes its further application. To address this issue, a two-stage data compression method that was implemented at [...] Read more.
The substantial volume of data acquired through remote-detection acoustic logging poses a remarkable challenge because of the limited real-time upload speed of the cable, which severely impedes its further application. To address this issue, a two-stage data compression method that was implemented at the acquisition node was proposed in this study. This approach includes a field programmable gate array (FPGA)-based hardware system and a two-stage downhole data compression algorithm combining wavelet transform and adaptive differential pulse-code modulation paired with ground decompression software. Finally, the proposed compression method was evaluated using actual logging data. The test results revealed that the overall compression rate of the two-stage compression method was 25.1%. The reconstructed waveforms highly retained the overall shape of the original waveforms, and the severe relative distortion of individual data points did not affect the extraction of the sliding longitudinal, sliding transverse and reflected waveforms. The FPGA compressed 2048 16-bit waveforms in approximately 100 μs with low resource utilization and workload. It considerably outperformed DSP-based pre-transmission compression. Herein, the data compression method at the acquisition node helped in reducing the workload on the master control node and increasing the effective speed of the cable transmission up to 400%, thereby enhancing the remote-detection acoustic logging. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

15 pages, 3200 KiB  
Article
Stress Compensation in TiO2/SiO2 Optical Coatings by Manipulating the Thickness Modulation Ratio
by Bo Wang, Taiqi Wu, Weidong Gao, Gang Hu and Changjun Wang
Coatings 2025, 15(7), 848; https://doi.org/10.3390/coatings15070848 - 19 Jul 2025
Viewed by 303
Abstract
With the rapid advancement of high-precision optical systems, increasingly stringent demands are imposed on the surface figure accuracy of optical components. The magnitude of residual stress in multilayer films directly influences the post-coating surface figure stability of these components, making the control of [...] Read more.
With the rapid advancement of high-precision optical systems, increasingly stringent demands are imposed on the surface figure accuracy of optical components. The magnitude of residual stress in multilayer films directly influences the post-coating surface figure stability of these components, making the control of multilayer film stress a critical factor in enhancing optical surface figure accuracy. In this study, which addresses the process constraints and substrate damage risks associated with conventional annealing-based stress compensation for large-aperture optical components, we introduce an active stress engineering strategy rooted in in situ deposition process optimization. By systematically tailoring film deposition parameters and adjusting the thickness modulation ratio of TiO2 and SiO2, we achieve dynamic compensation of residual stress in multilayer structures. This approach demonstrates broad applicability across diverse optical coatings, where it effectively mitigates stress-induced surface distortions. Unlike annealing methods, this intrinsic stress polarity manipulation strategy obviates the need for high-temperature post-processing, eliminating risks of material decomposition or substrate degradation. By enabling precise nanoscale stress regulation in large-aperture films through controlled process parameters, it provides essential technical support for manufacturing ultra-precision optical devices, such as next-generation laser systems and space-based stress wave detection instruments, where minimal stress-induced deformation is paramount to functional performance. Full article
(This article belongs to the Section Thin Films)
Show Figures

Figure 1

26 pages, 6798 KiB  
Article
Robust Optical and SAR Image Matching via Attention-Guided Structural Encoding and Confidence-Aware Filtering
by Qi Kang, Jixian Zhang, Guoman Huang and Fei Liu
Remote Sens. 2025, 17(14), 2501; https://doi.org/10.3390/rs17142501 - 18 Jul 2025
Viewed by 371
Abstract
Accurate feature matching between optical and synthetic aperture radar (SAR) images remains a significant challenge in remote sensing due to substantial modality discrepancies in texture, intensity, and geometric structure. In this study, we proposed an attention-context-aware deep learning framework (ACAMatch) for robust and [...] Read more.
Accurate feature matching between optical and synthetic aperture radar (SAR) images remains a significant challenge in remote sensing due to substantial modality discrepancies in texture, intensity, and geometric structure. In this study, we proposed an attention-context-aware deep learning framework (ACAMatch) for robust and efficient optical–SAR image registration. The proposed method integrates a structure-enhanced feature extractor, RS2FNet, which combines dual-stage Res2Net modules with a bi-level routing attention mechanism to capture multi-scale local textures and global structural semantics. A context-aware matching module refines correspondences through self- and cross-attention, coupled with a confidence-driven early-exit pruning strategy to reduce computational cost while maintaining accuracy. Additionally, a match-aware multi-task loss function jointly enforces spatial consistency, affine invariance, and structural coherence for end-to-end optimization. Experiments on public datasets (SEN1-2 and WHU-OPT-SAR) and a self-collected Gaofen (GF) dataset demonstrated that ACAMatch significantly outperformed existing state-of-the-art methods in terms of the number of correct matches, matching accuracy, and inference speed, especially under challenging conditions such as resolution differences and severe structural distortions. These results indicate the effectiveness and generalizability of the proposed approach for multimodal image registration, making ACAMatch a promising solution for remote sensing applications such as change detection and multi-sensor data fusion. Full article
(This article belongs to the Special Issue Advancements of Vision-Language Models (VLMs) in Remote Sensing)
Show Figures

Figure 1

32 pages, 6201 KiB  
Article
Operation of Electronic Security Systems in an Environment Exposed to Conducted and Radiated Electromagnetic Interference
by Michał Wiśnios, Michał Mazur, Jacek Paś, Jarosław Mateusz Łukasiak, Sylwester Gladys, Patryk Wetoszka and Kamil Białek
Electronics 2025, 14(14), 2851; https://doi.org/10.3390/electronics14142851 - 16 Jul 2025
Viewed by 230
Abstract
This paper presents an analysis of the impact of conducted and radiated electromagnetic interference affecting the electrical circuits of electronic security systems (ESS) operating over wide areas. The Earth’s electromagnetic environment is heavily distorted by intended and unintended (stationary or non-stationary) sources of [...] Read more.
This paper presents an analysis of the impact of conducted and radiated electromagnetic interference affecting the electrical circuits of electronic security systems (ESS) operating over wide areas. The Earth’s electromagnetic environment is heavily distorted by intended and unintended (stationary or non-stationary) sources of radiation. The occurrence of electromagnetic interference in a given environment where an ESS is in use is the cause of damage or malfunction of the entire system or its individual components, e.g., detectors, modules, control panels, etc. In this article, the authors conducted an assessment of the electromagnetic environment where ESS are operated and conducted studies of selected sources of interference. For selected ESS structures, they developed models of the impact of conducted and radiated interference on the process of using these systems in a given environment. For selected technical structures of ESS, the authors of this article developed models of the operation process. They also carried out a computer simulation to determine the impact of natural and artificial electromagnetic interference occurring on the process of using these systems in a given environment over a wide area. The considerations carried out in this article are summarized in the conclusions chapter about the process of using ESS in a distorted electromagnetic environment. Full article
Show Figures

Figure 1

21 pages, 5889 KiB  
Article
Mobile-YOLO: A Lightweight Object Detection Algorithm for Four Categories of Aquatic Organisms
by Hanyu Jiang, Jing Zhao, Fuyu Ma, Yan Yang and Ruiwen Yi
Fishes 2025, 10(7), 348; https://doi.org/10.3390/fishes10070348 - 14 Jul 2025
Viewed by 231
Abstract
Accurate and rapid aquatic organism recognition is a core technology for fisheries automation and aquatic organism statistical research. However, due to absorption and scattering effects, images of aquatic organisms often suffer from poor contrast and color distortion. Additionally, the clustering behavior of aquatic [...] Read more.
Accurate and rapid aquatic organism recognition is a core technology for fisheries automation and aquatic organism statistical research. However, due to absorption and scattering effects, images of aquatic organisms often suffer from poor contrast and color distortion. Additionally, the clustering behavior of aquatic organisms often leads to occlusion, further complicating the identification task. This study proposes a lightweight object detection model, Mobile-YOLO, for the recognition of four representative aquatic organisms, namely holothurian, echinus, scallop, and starfish. Our model first utilizes the Mobile-Nano backbone network we proposed, which enhances feature perception while maintaining a lightweight design. Then, we propose a lightweight detection head, LDtect, which achieves a balance between lightweight structure and high accuracy. Additionally, we introduce Dysample (dynamic sampling) and HWD (Haar wavelet downsampling) modules, aiming to optimize the feature fusion structure and achieve lightweight goals by improving the processes of upsampling and downsampling. These modules also help compensate for the accuracy loss caused by the lightweight design of LDtect. Compared to the baseline model, our model reduces Params (parameters) by 32.2%, FLOPs (floating point operations) by 28.4%, and weights (model storage size) by 30.8%, while improving FPS (frames per second) by 95.2%. The improvement in mAP (mean average precision) can also lead to better accuracy in practical applications, such as marine species monitoring, conservation efforts, and biodiversity assessment. Furthermore, the model’s accuracy is enhanced, with the mAP increased by 1.6%, demonstrating the advanced nature of our approach. Compared with YOLO (You Only Look Once) series (YOLOv5-12), SSD (Single Shot MultiBox Detector), EfficientDet (Efficient Detection), RetinaNet, and RT-DETR (Real-Time Detection Transformer), our model achieves leading comprehensive performance in terms of both accuracy and lightweight design. The results indicate that our research provides technological support for precise and rapid aquatic organism recognition. Full article
(This article belongs to the Special Issue Technology for Fish and Fishery Monitoring)
Show Figures

Figure 1

24 pages, 19550 KiB  
Article
TMTS: A Physics-Based Turbulence Mitigation Network Guided by Turbulence Signatures for Satellite Video
by Jie Yin, Tao Sun, Xiao Zhang, Guorong Zhang, Xue Wan and Jianjun He
Remote Sens. 2025, 17(14), 2422; https://doi.org/10.3390/rs17142422 - 12 Jul 2025
Viewed by 239
Abstract
Atmospheric turbulence severely degrades high-resolution satellite videos through spatiotemporally coupled distortions, including temporal jitter, spatial-variant blur, deformation, and scintillation, thereby constraining downstream analytical capabilities. Restoring turbulence-corrupted videos poses a challenging ill-posed inverse problem due to the inherent randomness of turbulent fluctuations. While existing [...] Read more.
Atmospheric turbulence severely degrades high-resolution satellite videos through spatiotemporally coupled distortions, including temporal jitter, spatial-variant blur, deformation, and scintillation, thereby constraining downstream analytical capabilities. Restoring turbulence-corrupted videos poses a challenging ill-posed inverse problem due to the inherent randomness of turbulent fluctuations. While existing turbulence mitigation methods for long-range imaging demonstrate partial success, they exhibit limited generalizability and interpretability in large-scale satellite scenarios. Inspired by refractive-index structure constant (Cn2) estimation from degraded sequences, we propose a physics-informed turbulence signature (TS) prior that explicitly captures spatiotemporal distortion patterns to enhance model transparency. Integrating this prior into a lucky imaging framework, we develop a Physics-Based Turbulence Mitigation Network guided by Turbulence Signature (TMTS) to disentangle atmospheric disturbances from satellite videos. The framework employs deformable attention modules guided by turbulence signatures to correct geometric distortions, iterative gated mechanisms for temporal alignment stability, and adaptive multi-frame aggregation to address spatially varying blur. Comprehensive experiments on synthetic and real-world turbulence-degraded satellite videos demonstrate TMTS’s superiority, achieving 0.27 dB PSNR and 0.0015 SSIM improvements over the DATUM baseline while maintaining practical computational efficiency. By bridging turbulence physics with deep learning, our approach provides both performance enhancements and interpretable restoration mechanisms, offering a viable solution for operational satellite video processing under atmospheric disturbances. Full article
Show Figures

Graphical abstract

36 pages, 25361 KiB  
Article
Remote Sensing Image Compression via Wavelet-Guided Local Structure Decoupling and Channel–Spatial State Modeling
by Jiahui Liu, Lili Zhang and Xianjun Wang
Remote Sens. 2025, 17(14), 2419; https://doi.org/10.3390/rs17142419 - 12 Jul 2025
Viewed by 447
Abstract
As the resolution and data volume of remote sensing imagery continue to grow, achieving efficient compression without sacrificing reconstruction quality remains a major challenge, given that traditional handcrafted codecs often fail to balance rate-distortion performance and computational complexity, while deep learning-based approaches offer [...] Read more.
As the resolution and data volume of remote sensing imagery continue to grow, achieving efficient compression without sacrificing reconstruction quality remains a major challenge, given that traditional handcrafted codecs often fail to balance rate-distortion performance and computational complexity, while deep learning-based approaches offer superior representational capacity. However, challenges remain in achieving a balance between fine-detail adaptation and computational efficiency. Mamba, a state–space model (SSM)-based architecture, offers linear-time complexity and excels at capturing long-range dependencies in sequences. It has been adopted in remote sensing compression tasks to model long-distance dependencies between pixels. However, despite its effectiveness in global context aggregation, Mamba’s uniform bidirectional scanning is insufficient for capturing high-frequency structures such as edges and textures. Moreover, existing visual state–space (VSS) models built upon Mamba typically treat all channels equally and lack mechanisms to dynamically focus on semantically salient spatial regions. To address these issues, we present an innovative architecture for distant sensing image compression, called the Multi-scale Channel Global Mamba Network (MGMNet). MGMNet integrates a spatial–channel dynamic weighting mechanism into the Mamba architecture, enhancing global semantic modeling while selectively emphasizing informative features. It comprises two key modules. The Wavelet Transform-guided Local Structure Decoupling (WTLS) module applies multi-scale wavelet decomposition to disentangle and separately encode low- and high-frequency components, enabling efficient parallel modeling of global contours and local textures. The Channel–Global Information Modeling (CGIM) module enhances conventional VSS by introducing a dual-path attention strategy that reweights spatial and channel information, improving the modeling of long-range dependencies and edge structures. We conducted extensive evaluations on three distinct remote sensing datasets to assess the MGMNet. The results of the investigations revealed that MGMNet outperforms the current SOTA models across various performance metrics. Full article
Show Figures

Figure 1

Back to TopTop