Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,212)

Search Parameters:
Keywords = mixed phases

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 1049 KiB  
Article
Strategic Human Resource Development for Industry 4.0 Readiness: A Sustainable Transformation Framework for Emerging Economies
by Kwanchanok Chumnumporn Vong, Kalaya Udomvitid, Yasushi Ueki, Nuchjarin Intalar, Akkaranan Pongsathornwiwat, Warut Pannakkong, Somrote Komolavanij and Chawalit Jeenanunta
Sustainability 2025, 17(15), 6988; https://doi.org/10.3390/su17156988 (registering DOI) - 1 Aug 2025
Viewed by 98
Abstract
Industry 4.0 represents a significant transformation in industrial systems through digital integration, presenting both opportunities and challenges for aligning the workforce, especially in emerging economies like Thailand. This study adopts a sequential exploratory mixed-method approach to investigate how strategic human resource development (HRD) [...] Read more.
Industry 4.0 represents a significant transformation in industrial systems through digital integration, presenting both opportunities and challenges for aligning the workforce, especially in emerging economies like Thailand. This study adopts a sequential exploratory mixed-method approach to investigate how strategic human resource development (HRD) contributes to sustainable transformation, defined as the enduring alignment between workforce capabilities and technological advancement. The qualitative phase involved case studies of five Thai manufacturing firms at varying levels of Industry 4.0 adoption, utilizing semi-structured interviews with executives and HR leaders. Thematic findings informed the development of a structured survey, distributed to 144 firms. Partial Least Squares Structural Equation Modeling (PLS SEM) was used to test the hypothesized relationships among business pressures, leadership support, HRD preparedness, and technological readiness. The analysis reveals that business pressures significantly influence leadership and HRD, which in turn facilitate technological readiness. However, business pressures alone do not directly enhance readiness without the support of intermediaries. These results underscore the critical role of integrated HRD and leadership frameworks in enabling sustainable digital transformation. This study contributes to theoretical perspectives by integrating HRD, leadership, and technological readiness, offering practical guidance for firms aiming to navigate the complexities of Industry 4.0. Full article
Show Figures

Figure 1

17 pages, 957 KiB  
Review
Unheard and Unseen: A Systematic Literature Review of Emotional Abuse Among Indian Adolescents
by Afreen Waseem and Naila Firdous
Adolescents 2025, 5(3), 41; https://doi.org/10.3390/adolescents5030041 (registering DOI) - 1 Aug 2025
Viewed by 65
Abstract
Background: Emotional abuse is both prevalent and underrecognized particularly in culturally complex settings like India. Adolescents, being in a critical developmental phase, are especially vulnerable to the long-lasting psychological effects of emotional abuse. This qualitative literature review aims to synthesize findings from primary [...] Read more.
Background: Emotional abuse is both prevalent and underrecognized particularly in culturally complex settings like India. Adolescents, being in a critical developmental phase, are especially vulnerable to the long-lasting psychological effects of emotional abuse. This qualitative literature review aims to synthesize findings from primary studies that explore the lived experiences of emotional abuse among Indian adolescents and identify emerging patterns across sociocultural contexts. Method: Electronic databases, including DOAJ, Google Scholar, ProQuest, JSTOR, Pubmed, PsycNet, and SCOPUS, were searched for peer-reviewed articles published in English up to March 2025. Inclusion criteria comprised qualitative or mixed-methods research focusing on emotional abuse among adolescents aged 12–20 in Indian contexts. The Critical Appraisal Skills Programme (CASP) was used for quality assessment. Results: Five major thematic domains were identified across the included studies: (1) Family as a primary site of emotional abuse; (2) Gendered experiences of abuse; (3) Cultural normalization and silence; (4) Psychological and emotional consequences; and (5) Coping and resilience among adolescents. These themes reflect shared experiences of emotional abuse shaped by cultural, familial, and gender-based expectations. Conclusions: This review highlights the urgent need for increased awareness and culturally sensitive interventions addressing emotional abuse in Indian adolescents. The findings suggest that parents, educators, and policymakers must recognize emotionally harmful behaviors and implement prevention-oriented strategies, particularly through non-violent communication and adolescent mental health support frameworks. Full article
(This article belongs to the Section Adolescent Health and Mental Health)
Show Figures

Figure 1

17 pages, 333 KiB  
Article
Changes, Desire, Fear and Beliefs: Women’s Feelings and Perceptions About Dental Care During Pregnancy
by Natália Correia Fonseca Castro, Vânia Maria Godoy Pimenta Barroso, Henrique Cerva Melo, Camilla Aparecida Silva de Oliveira Lima, Rafaela Silveira Pinto and Lívia Guimarães Zina
Int. J. Environ. Res. Public Health 2025, 22(8), 1211; https://doi.org/10.3390/ijerph22081211 - 31 Jul 2025
Viewed by 91
Abstract
Oral health during pregnancy is essential for maternal and child well-being, as hormonal and physiological changes increase women’s susceptibility to oral diseases. Despite the recognized importance of prenatal dental care, adherence to dental services remains a challenge in the public health context. This [...] Read more.
Oral health during pregnancy is essential for maternal and child well-being, as hormonal and physiological changes increase women’s susceptibility to oral diseases. Despite the recognized importance of prenatal dental care, adherence to dental services remains a challenge in the public health context. This study aimed to analyze oral health and the use of dental services during pregnancy through the perception of pregnant women. It represents the qualitative phase of a mixed-method study conducted with 25 pregnant women (with and without dental care) receiving prenatal care in the Brazilian Unified Health System (SUS). Participants were selected through saturation sampling, and data were collected via semi-structured interviews, followed by content analysis. The findings revealed four major themes: barriers and facilitators to dental care, changes during pregnancy and oral health. Discomfort from oral changes was a common concern. Barriers included misinformation, fear, cultural beliefs, and service organization. In contrast, facilitating factors were identified, such as care prioritization, support from healthcare teams, health education, and access through SUS. This study concludes that emotional, cultural, and contextual aspects shape the use of dental services during pregnancy. Access through SUS is perceived as an important facilitator, which simultaneously presents organizational weaknesses that need to be addressed. Full article
(This article belongs to the Special Issue Perceptions of Women, Child and Adolescents' Oral Health)
19 pages, 6581 KiB  
Article
Simulation Study on Erosion of Gas–Solid Two-Phase Flow in the Wellbore near Downhole Chokes in Tight Gas Wells
by Cheng Du, Ruikang Ke, Xiangwei Bai, Rong Zheng, Yao Huang, Dan Ni, Guangliang Zhou and Dezhi Zeng
Processes 2025, 13(8), 2430; https://doi.org/10.3390/pr13082430 - 31 Jul 2025
Viewed by 145
Abstract
In order to study the problem of obvious wall thinning in the wellbore caused by proppant backflow and sand production under throttling conditions in tight gas wells. Based on the gas-phase control equation, particle motion equation, and erosion model, the wellbore erosion model [...] Read more.
In order to study the problem of obvious wall thinning in the wellbore caused by proppant backflow and sand production under throttling conditions in tight gas wells. Based on the gas-phase control equation, particle motion equation, and erosion model, the wellbore erosion model is established. The distribution law of pressure, temperature, and velocity trace fields under throttling conditions is analyzed, and the influences of different throttling pressures, particle diameters, and particle mass flows on wellbore erosion are analyzed. The flow field at the nozzle changes drastically, and there is an obvious pressure drop, temperature drop, and velocity rise. When the surrounding gas is completely mixed, the physical quantity gradually stabilizes. The erosion shape of the wellbore outlet wall has a point-like distribution. The closer to the throttle valve outlet, the more intense the erosion point distribution is. Increasing the inlet pressure and particle mass flow rate will increase the maximum erosion rate, and increasing the particle diameter will reduce the maximum erosion rate. The particle mass flow rate has the greatest impact on the maximum erosion rate, followed by the particle diameter. The erosion trend was predicted using multiple regression model fitting of the linear interaction term. The research results can provide a reference for the application of downhole throttling technology and wellbore integrity in tight gas exploitation. Full article
(This article belongs to the Section Process Control and Monitoring)
Show Figures

Graphical abstract

20 pages, 1508 KiB  
Article
Using Community-Based Social Marketing to Promote Pro-Environmental Behavior in Municipal Solid Waste Management: Evidence from Norte de Santander, Colombia
by Myriam Carmenza Sierra Puentes, Elkin Manuel Puerto-Rojas, Sharon Naomi Correa-Galindo and Jose Alejandro Aristizábal Cuellar
Environments 2025, 12(8), 262; https://doi.org/10.3390/environments12080262 - 30 Jul 2025
Viewed by 259
Abstract
The sustainable management of Municipal Solid Waste (MSW) relies heavily on community participation in separating it at the source and delivering it to collection systems. These practices are crucial for reducing pollution, protecting ecosystems, and maximizing resource recovery. However, in the Global South [...] Read more.
The sustainable management of Municipal Solid Waste (MSW) relies heavily on community participation in separating it at the source and delivering it to collection systems. These practices are crucial for reducing pollution, protecting ecosystems, and maximizing resource recovery. However, in the Global South context, with conditions of socioeconomic vulnerability, community participation in the sustainable management of MSW remains limited, highlighting the need to generate context-specific interventions. MSW includes items such as household appliances, batteries, and electronic devices, which require specialized handling due to their size, hazardous components, or material complexity. This study implemented a Community-Based Social Marketing approach during the research and design phases of an intervention focused on promoting source separation and management of hard-to-manage MSW in five municipalities within the administrative region of Norte de Santander (Colombia), which borders Venezuela. Using a mixed-methods approach, we collected data from 1775 individuals (63.83% women; M age = 33.48 years; SD = 17.25), employing social mapping, focus groups, semi-structured interviews, participant observation, and a survey questionnaire. The results show that the source separation and delivery of hard-to-manage MSW to collection systems are limited by a set of psychosocial, structural, and institutional barriers that interact with each other, affecting communities’ willingness and capacity for action. Furthermore, a prediction model of willingness to engage in separation and delivery behaviors showed a good fit (R2 = 0.83). The strongest predictors were awareness of the negative consequences of non-participation and perceived environmental benefits, with subjective norms contributing to a lesser extent. Based on these results, we designed a context-specific intervention focused on reducing these barriers and promoting community engagement in the sustainable management of hard-to-manage MSW. Full article
Show Figures

Figure 1

30 pages, 7008 KiB  
Article
Microfossil (Diatoms, Tintinnids, and Testate Amoebae) Assemblages in the Holocene Sediments of the Laptev Sea Shelf off the Yana River as a Proxy for Paleoenvironments
by Maria S. Obrezkova, Lidiya N. Vasilenko, Ira B. Tsoy, Xuefa Shi, Limin Hu, Yaroslav V. Kuzmin, Aleksandr N. Kolesnik, Alexandr V. Alatortsev, Anna A. Mariash, Evgeniy A. Lopatnikov, Irina A. Yurtseva, Darya S. Khmel and Anatolii S. Astakhov
Quaternary 2025, 8(3), 40; https://doi.org/10.3390/quat8030040 - 30 Jul 2025
Viewed by 178
Abstract
The paper presents the results of a microfossil study of Holocene sediments in the Yana River flow zone in the southeastern part of the Laptev Sea. A rich diatom flora (242 species and intraspecific taxa, of which 177 species are freshwater) was revealed; [...] Read more.
The paper presents the results of a microfossil study of Holocene sediments in the Yana River flow zone in the southeastern part of the Laptev Sea. A rich diatom flora (242 species and intraspecific taxa, of which 177 species are freshwater) was revealed; additionally, five species of marine tintinnids (planktonic ciliates) and 15 species of freshwater testate amoebae (testacean) were discovered for the first time in the sea sediments. Three assemblages of microfossils reflecting the phases of environmental changes during the Holocene transgression are distinguished in the studied sediments of core LV83-32. Assemblage 1 was formed under terrestrial conditions (assemblage of diatoms Eunotia-Pinnularia and testacean Difflugia-Cylindrifflugia-Centropyxis), assemblage 2 in the zone of mixing of sea and fresh waters (assemblages of diatoms Cyclotella striata-Aulacoseira, Thalassiosira hyperborea-Chaetoceros and T. hyperborea-Aulacoseira, testacean Cyclopyxis kahli, tintinnids Tintinnopsis fimbriata), and assemblage 3 reflects modern conditions in the inner shelf of the Laptev Sea under the strong influence of river runoff (assemblage of diatoms T. hyperborea-Aulacoseira-M. arctica and tintinnids Tintinnopsis ventricosoides). Changes in the natural environment in the coastal part of the Laptev Sea shelf during the Holocene, established by microfossil assemblages, are confirmed by geochemical data. Full article
Show Figures

Figure 1

19 pages, 4860 KiB  
Article
Load-Flow-Based Calculation of Initial Short-Circuit Currents for Converter-Based Power System
by Deepak Deepak, Anisatur Rizqi Oetoyo, Krzysztof Rudion, Christoph John and Hans Abele
Energies 2025, 18(15), 4045; https://doi.org/10.3390/en18154045 - 30 Jul 2025
Viewed by 238
Abstract
Short-circuit current is a key characteristic value for synchronous generator-based power systems. It is employed for different applications during the planning and operation phases. The proportion of converter-interfaced units is increasing in order to integrate more renewable energy sources into the system. These [...] Read more.
Short-circuit current is a key characteristic value for synchronous generator-based power systems. It is employed for different applications during the planning and operation phases. The proportion of converter-interfaced units is increasing in order to integrate more renewable energy sources into the system. These units have different fault current characteristics due to their physical properties and operation strategies. Consequently, the network’s short-circuit current profile is changing, both in terms of magnitude and injection time. Therefore, accurately estimating fault currents is crucial for reliable power system planning and operation. Traditionally, two calculation methods are employed: the equivalent voltage source (IEC 60909/VDE 0102) and the superimposition (complete) method. In this work, the assumptions, simplifications, and limitations from both types of methods are addressed. As a result, a new load-flow-based method is presented, improving the static modeling of generating units and the accuracy in the estimation of short-circuit currents. The method is tested for mixed generation types comprising of synchronous generators, and grid-following (current source) and grid-forming (voltage source before and current source after the current limit) converters. All methods are compared against detailed time-domain RMS simulations using a modified IEEE-39 bus system and a real network from ENTSO-E. It is shown that the proposed method provides the best accuracy in the calculation of initial short-circuit currents for converter-based power systems. Full article
Show Figures

Figure 1

20 pages, 2399 KiB  
Article
Exploring Novel Optical Soliton Molecule for the Time Fractional Cubic–Quintic Nonlinear Pulse Propagation Model
by Syed T. R. Rizvi, Atef F. Hashem, Azrar Ul Hassan, Sana Shabbir, A. S. Al-Moisheer and Aly R. Seadawy
Fractal Fract. 2025, 9(8), 497; https://doi.org/10.3390/fractalfract9080497 - 29 Jul 2025
Viewed by 236
Abstract
This study focuses on the analysis of soliton solutions within the framework of the time-fractional cubic–quintic nonlinear Schrödinger equation (TFCQ-NLSE), a powerful model with broad applications in complex physical phenomena such as fiber optic communications, nonlinear optics, optical signal processing, and laser–tissue interactions [...] Read more.
This study focuses on the analysis of soliton solutions within the framework of the time-fractional cubic–quintic nonlinear Schrödinger equation (TFCQ-NLSE), a powerful model with broad applications in complex physical phenomena such as fiber optic communications, nonlinear optics, optical signal processing, and laser–tissue interactions in medical science. The nonlinear effects exhibited by the model—such as self-focusing, self-phase modulation, and wave mixing—are influenced by the combined impact of the cubic and quintic nonlinear terms. To explore the dynamics of this model, we apply a robust analytical technique known as the sub-ODE method, which reveals a diverse range of soliton structures and offers deep insight into laser pulse interactions. The investigation yields a rich set of explicit soliton solutions, including hyperbolic, rational, singular, bright, Jacobian elliptic, Weierstrass elliptic, and periodic solutions. These waveforms have significant real-world relevance: bright solitons are employed in fiber optic communications for distortion-free long-distance data transmission, while both bright and dark solitons are used in nonlinear optics to study light behavior in media with intensity-dependent refractive indices. Solitons also contribute to advancements in quantum technologies, precision measurement, and fiber laser systems, where hyperbolic and periodic solitons facilitate stable, high-intensity pulse generation. Additionally, in nonlinear acoustics, solitons describe wave propagation in media where amplitude influences wave speed. Overall, this work highlights the theoretical depth and practical utility of soliton dynamics in fractional nonlinear systems. Full article
Show Figures

Figure 1

39 pages, 8119 KiB  
Article
Magmatic Redox Evolution and Porphyry–Skarn Transition in Multiphase Cu-Mo-W-Au Systems of the Eocene Tavşanlı Belt, NW Türkiye
by Hüseyin Kocatürk, Mustafa Kumral, Hüseyin Sendir, Mustafa Kaya, Robert A. Creaser and Amr Abdelnasser
Minerals 2025, 15(8), 792; https://doi.org/10.3390/min15080792 - 28 Jul 2025
Viewed by 273
Abstract
This study explores the magmatic and hydrothermal evolution of porphyry–skarn–transitional Cu-Mo-W-Au systems within the Nilüfer Mineralization Complex (NMC), located in the westernmost segment of the Eocene Tavşanlı Metallogenic Belt, NW Türkiye. Through integration of field data, whole-rock geochemistry, Re–Os molybdenite dating, and amphibole–biotite [...] Read more.
This study explores the magmatic and hydrothermal evolution of porphyry–skarn–transitional Cu-Mo-W-Au systems within the Nilüfer Mineralization Complex (NMC), located in the westernmost segment of the Eocene Tavşanlı Metallogenic Belt, NW Türkiye. Through integration of field data, whole-rock geochemistry, Re–Os molybdenite dating, and amphibole–biotite mineral chemistry, the petrogenetic controls on mineralization across four spatially associated mineralized regions (Kirazgedik, Güneybudaklar, Kozbudaklar, and Delice) were examined. The earliest and thermally most distinct phase is represented by the Kirazgedik porphyry system, characterized by high temperature (~930 °C), oxidized quartz monzodioritic intrusions emplaced at ~2.7 kbar. Rising fO2 and volatile enrichment during magma ascent facilitated structurally focused Cu-Mo mineralization. At Güneybudaklar, Re–Os geochronology yields an age of ~49.9 Ma, linking Mo- and W-rich mineralization to a transitional porphyry–skarn environment developed under moderately oxidized (ΔFMQ + 1.8 to +0.5) and hydrous (up to 7 wt.% H2O) magmatic conditions. Kozbudaklar represents a more reduced, volatile-poor skarn system, leading to Mo-enriched scheelite mineralization typical of late-stage W-skarns. The Delice system, developed at the contact of felsic cupolas and carbonates, records the broadest range of redox and fluid compositions. Mixed oxidized–reduced fluid signatures and intense fluid–rock interaction reflect complex, multistage fluid evolution involving both magmatic and external inputs. Geochemical and mineralogical trends—from increasing silica and Rb to decreasing Sr and V—trace a systematic evolution from mantle-derived to felsic, volatile-rich magmas. Structurally, mineralization is controlled by oblique fault zones that localize magma emplacement and hydrothermal flow. These findings support a unified genetic model in which porphyry and skarn mineralization styles evolved continuously from multiphase magmatic systems during syn-to-post-subduction processes, offering implications for exploration models in the Western Tethyan domain. Full article
Show Figures

Figure 1

14 pages, 1882 KiB  
Article
Carbon-Negative Construction Material Based on Rice Production Residues
by Jüri Liiv, Catherine Rwamba Githuku, Marclus Mwai, Hugo Mändar, Peeter Ritslaid, Merrit Shanskiy and Ergo Rikmann
Materials 2025, 18(15), 3534; https://doi.org/10.3390/ma18153534 - 28 Jul 2025
Viewed by 225
Abstract
This study presents a cost-effective, carbon-negative construction material for affordable housing, developed entirely from locally available agricultural wastes: rice husk ash, wood ash, and rice straw—materials often problematic to dispose of in many African regions. Rice husk ash provides high amorphous silica, acting [...] Read more.
This study presents a cost-effective, carbon-negative construction material for affordable housing, developed entirely from locally available agricultural wastes: rice husk ash, wood ash, and rice straw—materials often problematic to dispose of in many African regions. Rice husk ash provides high amorphous silica, acting as a strong pozzolanic agent. Wood ash contributes calcium oxide and alkalis to serve as a reactive binder, while rice straw functions as a lightweight organic filler, enhancing thermal insulation and indoor climate comfort. These materials undergo natural pozzolanic reactions with water, eliminating the need for Portland cement—a major global source of anthropogenic CO2 emissions (~900 kg CO2/ton cement). This process is inherently carbon-negative, not only avoiding emissions from cement production but also capturing atmospheric CO2 during lime carbonation in the hardening phase. Field trials in Kenya confirmed the composite’s sufficient structural strength for low-cost housing, with added benefits including termite resistance and suitability for unskilled laborers. In a collaboration between the University of Tartu and Kenyatta University, a semi-automatic mixing and casting system was developed, enabling fast, low-labor construction of full-scale houses. This innovation aligns with Kenya’s Big Four development agenda and supports sustainable rural development, post-disaster reconstruction, and climate mitigation through scalable, eco-friendly building solutions. Full article
Show Figures

Figure 1

10 pages, 2001 KiB  
Article
Low Phase Noise Millimeter-Wave Generation Based on Optoelectronic Feed-Forward
by Tong Yang, Yiwen Lu, Qizhuang Cen, Xinpeng Wang, Zhen Feng, Chong Liu, Feifei Yin, Kun Xu, Ming Li and Yitang Dai
Photonics 2025, 12(8), 757; https://doi.org/10.3390/photonics12080757 - 28 Jul 2025
Viewed by 170
Abstract
In this paper, we propose an optoelectronic feed-forward millimeter-wave generator based on the Mach–Zehnder interferometer (MZI) structure. The phase noise of the local oscillation (LO) input is extracted by loop design and used for phase noise suppression of the output, thereby optimizing the [...] Read more.
In this paper, we propose an optoelectronic feed-forward millimeter-wave generator based on the Mach–Zehnder interferometer (MZI) structure. The phase noise of the local oscillation (LO) input is extracted by loop design and used for phase noise suppression of the output, thereby optimizing the phase noise performance of the generator output. The scheme achieves separation of the phase noise by using an MZI structure and a mixing-frequency oscillator to realize the differential and integration process of the phase noise from the LO input source, respectively. Then, it is combined with a feed-forward operation to skillfully realize phase noise rejection of the resulting high-frequency output. The proposed scheme has been demonstrated to facilitate millimeter-wave generation at 40 GHz and 50 GHz. The measured phase noise is as low as −120 dBc/Hz at a 10 kHz offset, and the experimental setup achieves phase noise suppression of up to 36 dB at this frequency offset. Through systematic theoretical analysis and experimental verification, the excellent capabilities of the proposed scheme in high-frequency signal generation and phase noise suppression are fully demonstrated, which provides a new technological path for high-performance millimeter-wave generation, avoiding the deterioration of the phase noise introduced using high-frequency optoelectronic devices other than photodetectors (PDs) to process the signals. Full article
(This article belongs to the Special Issue Optoelectronic Oscillators (OEO): Principles and Applications)
Show Figures

Figure 1

14 pages, 1343 KiB  
Article
Role of Plasma-Derived Exosomal MicroRNAs in Mediating Type 2 Diabetes Remission
by Sujing Wang, Shuxiao Shi, Xuanwei Jiang, Guangrui Yang, Deshan Wu, Kexin Li, Victor W. Zhong and Xihao Du
Nutrients 2025, 17(15), 2450; https://doi.org/10.3390/nu17152450 - 27 Jul 2025
Viewed by 396
Abstract
Objective: This study aimed to identify plasma exosomal microRNAs (miRNAs) associated with weight loss and type 2 diabetes (T2D) remission following low-calorie diet (LCD) intervention. Methods: A 6-month dietary intervention targeting T2D remission was conducted among individuals with T2D. Participants underwent a 3-month [...] Read more.
Objective: This study aimed to identify plasma exosomal microRNAs (miRNAs) associated with weight loss and type 2 diabetes (T2D) remission following low-calorie diet (LCD) intervention. Methods: A 6-month dietary intervention targeting T2D remission was conducted among individuals with T2D. Participants underwent a 3-month intensive weight loss phase consuming LCD (815–835 kcal/day) and a 3-month weight maintenance phase (N = 32). Sixteen participants were randomly selected for characterization of plasma-derived exosomal miRNA profiles at baseline, 3 months, and 6 months using small RNA sequencing. Linear mixed-effects models were used to identify differentially expressed exosomal miRNAs between responders and non-responders. Pathway enrichment analyses were conducted using target mRNAs of differentially expressed miRNAs. Logistic regression models assessed the predictive value of differentially expressed miRNAs for T2D remission. Results: Among the 16 participants, 6 achieved weight loss ≥10% and 12 achieved T2D remission. Eighteen exosomal miRNAs, including miR-92b-3p, miR-495-3p, and miR-452b-5p, were significantly associated with T2D remission and weight loss. Pathway analyses revealed enrichment in PI3K-Akt pathway, FoxO signaling pathway, and insulin receptor binding. The addition of individual miRNAs including miR-15b-3p, miR-26a-5p, and miR-3913-5p to base model improved the area under the curve values by 0.02–0.08 at 3 months and by 0.02–0.06 at 6 months for T2D remission. Conclusions: This study identified exosomal miRNAs associated with T2D remission and weight loss following LCD intervention. Several exosomal miRNAs might serve as valuable predictors of T2D remission in response to LCD intervention. Full article
(This article belongs to the Special Issue Nutrition for Patients with Diabetes and Clinical Obesity)
Show Figures

Figure 1

21 pages, 8515 KiB  
Article
Preparation and Performance Study of Alkali-Activated Conductive Mortar via Response Surface Methodology
by Wenfang Lv, Wenhua Zha, Tao Xu and Minqian Sun
Minerals 2025, 15(8), 787; https://doi.org/10.3390/min15080787 - 26 Jul 2025
Viewed by 183
Abstract
In this study, alkali-activated coal gangue-slag material (AACGS) was prepared using coal gangue and slag as precursors, and its feasibility as conductive mortar substrate material was preliminarily investigated. Firstly, this study employed Response Surface Methodology (RSM) to develop statistical models correlating the alkali [...] Read more.
In this study, alkali-activated coal gangue-slag material (AACGS) was prepared using coal gangue and slag as precursors, and its feasibility as conductive mortar substrate material was preliminarily investigated. Firstly, this study employed Response Surface Methodology (RSM) to develop statistical models correlating the alkali equivalent, water-to-binder ratio, and slag content with the compressive strength, flexural strength, and resistivity of AACGS, aiming to identify the optimal mix proportions. Secondly, based on the optimal ratio identified above and using carbon fibers (CF) as the conductive phase, an alkali-activated conductive mortar (CF-AACGS) was prepared, and its compressive strength, flexural strength, and resistivity were tested. Lastly, XRD and SEM-EDS were conducted to characterize the mineral composition and microstructure of CF-AACGS. The results indicate that when the alkali equivalent, water-to-binder ratio, and slag content are 13.34%, 0.54, and 57.52%, respectively, the AACGS achieves compressive strength, flexural strength, and resistivity of 72.5 MPa, 7.0 MPa, and 62.41 Ω·m at 28 days. Under the action of the alkali activator, coal gangue and slag undergo hydration reactions, forming a denser N, C-(A)-S-H gel. This effectively improves the interface transition zone between the CF and AACGS, endowing the CF-AACGS with superior mechanical properties. Furthermore, the AACGS matrix enhances the conductive contact point density by optimizing CF dispersion, which significantly reduces the resistivity of the CF-AACGS. Full article
(This article belongs to the Special Issue Development in Alkali-Activated Materials and Applications)
Show Figures

Figure 1

28 pages, 6625 KiB  
Article
Short- and Long-Term Mechanical and Durability Performance of Concrete with Copper Slag and Recycled Coarse Aggregate Under Magnesium Sulfate Attack
by Yimmy Fernando Silva, Claudia Burbano-Garcia, Eduardo J. Rueda, Arturo Reyes-Román and Gerardo Araya-Letelier
Appl. Sci. 2025, 15(15), 8329; https://doi.org/10.3390/app15158329 (registering DOI) - 26 Jul 2025
Viewed by 235
Abstract
Sustainability in the construction sector has become a fundamental objective for mitigating escalating environmental challenges; given that concrete is the most widely used man-made material, extending its service life is therefore critical. Among durability concerns, magnesium sulfate (MgSO4) attack is particularly [...] Read more.
Sustainability in the construction sector has become a fundamental objective for mitigating escalating environmental challenges; given that concrete is the most widely used man-made material, extending its service life is therefore critical. Among durability concerns, magnesium sulfate (MgSO4) attack is particularly deleterious to concrete structures. Therefore, this study investigates the short- and long-term performance of concrete produced with copper slag (CS)—a massive waste generated by copper mining activities worldwide—employed as a supplementary cementitious material (SCM), together with recycled coarse aggregate (RCA), obtained from concrete construction and demolition waste, when exposed to MgSO4. CS was used as a 15 vol% cement replacement, while RCA was incorporated at 0%, 20%, 50%, and 100 vol%. Compressive strength, bulk density, water absorption, and porosity were measured after water curing (7–388 days) and following immersion in a 5 wt.% MgSO4 solution for 180 and 360 days. Microstructural characteristics were assessed using scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetric analysis with its differential thermogravimetric derivative (TG-DTG), and Fourier transform infrared spectroscopy (FTIR) techniques. The results indicated that replacing 15% cement with CS reduced 7-day strength by ≤10%, yet parity with the reference mix was reached at 90 days. Strength losses increased monotonically with RCA content. Under MgSO4 exposure, all mixtures experienced an initial compressive strength gain during the short-term exposures (28–100 days), attributed to the pore-filling effect of expansive sulfate phases. However, at long-term exposure (180–360 days), a clear strength decline was observed, mainly due to internal cracking, brucite formation, and the transformation of C–S–H into non-cementitious M–S–H gel. Based on these findings, the combined use of CS and RCA at low replacement levels shows potential for producing environmentally friendly concrete with mechanical and durability performance comparable to those of concrete made entirely with virgin materials. Full article
Show Figures

Figure 1

20 pages, 3102 KiB  
Article
Ultrasonographic Evaluation of Labor Patterns: A Prospective Cohort Study in Greece
by Kyriaki Mitta, Ioannis Tsakiridis, Andriana Virgiliou, Apostolos Mamopoulos, Hristiana Capros, Apostolos Athanasiadis and Themistoklis Dagklis
J. Clin. Med. 2025, 14(15), 5283; https://doi.org/10.3390/jcm14155283 - 25 Jul 2025
Viewed by 289
Abstract
Background/Objectives: Recent changes in obstetric practices and population demographics have prompted a re-evaluation of labor patterns. This study aimed to characterize labor patterns in a Greek pregnant population using ultrasound and compare them with established labor curves. Methods: A prospective cohort study was [...] Read more.
Background/Objectives: Recent changes in obstetric practices and population demographics have prompted a re-evaluation of labor patterns. This study aimed to characterize labor patterns in a Greek pregnant population using ultrasound and compare them with established labor curves. Methods: A prospective cohort study was conducted at the Third Department of Obstetrics and Gynecology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece, over a two-year period (December 2022 to June 2024). Transabdominal ultrasound was used to determine the fetal head position and transperineal ultrasound was used to measure angle of progression (AoP) and head–perineum distance (HPD) during labor. Maternal and labor characteristics, including body mass index (BMI), parity, labor duration, and mode of delivery, were recorded. Statistical analysis included mixed linear models to assess the relationship between AoP, HPD, and cervical dilatation. Results: In total, 500 parturients were included in this study. Women entered the active phase of labor approximately 5 h before delivery, with AoP increasing sharply and HPD decreasing rapidly at this point. Cesarean section (CS) cases showed a slower increase in AoP compared to vaginal deliveries (VDs), with CS cases having a mean AoP of 117.9° (95% CI: 111.6–124.2°) at full dilation, compared to 133.4° (95% CI: 130.6–136.2°) in VD. HPD values declined more slowly in CS cases, with a mean HPD of 45.1 mm (95% CI: 40.6–49.6 mm) at full dilation, compared to 36.4 mm (95% CI: 34.3–38.5 mm) in VD. Epidural analgesia was associated with steeper increases in AoP and decreases in HPD in the final 2.5 h before delivery, while oxytocin administration accelerated these changes in the last 3–4 h. The mean time to delivery was 3.19 h (95% CI: 2.80–3.59 h) when AoP reached 125° and 3.92 h when HPD was 40 mm (95% CI: 3.53–4.30 h). BMI in women who gave birth via CS was significantly higher compared to VD (32.03 vs. 29.94 kg/m2, p-value: 0.008), and the total duration of labor was shorter in VD compared to CS and operative vaginal delivery (OVD) (8 h vs. 15 h, p-value < 0.001 and 8 h vs. 12 h, p-value < 0.001, respectively). Birthweight was also lower in VD compared to CS (3103.09 g vs. 3267.88 g, p-value: 0.05). Conclusions: This study provides the first ultrasonographic characterization of labor patterns in a Greek population, highlighting the utility of ultrasound in objectively assessing labor progression. Full article
(This article belongs to the Section Obstetrics & Gynecology)
Show Figures

Figure 1

Back to TopTop