Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (152)

Search Parameters:
Keywords = mitochondrial proteostasis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 889 KB  
Review
Glial Cells as Key Mediators in the Pathophysiology of Neurodegenerative Diseases
by Katarzyna Bogus, Nicoletta Marchesi, Lucrezia Irene Maria Campagnoli, Alessia Pascale and Artur Pałasz
Int. J. Mol. Sci. 2026, 27(2), 884; https://doi.org/10.3390/ijms27020884 - 15 Jan 2026
Viewed by 260
Abstract
Neurodegenerative disorders are characterized by progressive neuronal loss and dysfunction, yet increasing evidence indicates that glial cells are central mediators of both disease initiation and progression. Astrocytes, microglia, and oligodendrocyte lineage cells modulate neuronal survival by regulating neuroinflammation, metabolic support, synaptic maintenance, and [...] Read more.
Neurodegenerative disorders are characterized by progressive neuronal loss and dysfunction, yet increasing evidence indicates that glial cells are central mediators of both disease initiation and progression. Astrocytes, microglia, and oligodendrocyte lineage cells modulate neuronal survival by regulating neuroinflammation, metabolic support, synaptic maintenance, and proteostasis. However, dysregulated glial responses, including chronic microglial activation, impaired phagocytosis, altered cytokine production, and mitochondrial dysfunction, contribute to persistent inflammation and structural degeneration observed across Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, Huntington’s disease and multiple sclerosis. Recent advances in single-cell and spatial omics have revealed extensive glial heterogeneity and dynamic shifts between neuroprotective and neurotoxic phenotypes, emphasizing the context-dependent nature of glial activity. This review summarizes current knowledge regarding the multifaceted involvement of glial cells in neurodegenerative disorders. Full article
(This article belongs to the Collection Latest Review Papers in Biochemistry)
Show Figures

Figure 1

23 pages, 17045 KB  
Article
BAP31 Modulates Mitochondrial Homeostasis Through PINK1/Parkin Pathway in MPTP Parkinsonism Mouse Models
by Wanting Zhang, Shihao Meng, Zhenzhen Hao, Xiaoshuang Zhu, Lingwei Cao, Qing Yuan and Bing Wang
Cells 2026, 15(2), 137; https://doi.org/10.3390/cells15020137 - 12 Jan 2026
Viewed by 179
Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder characterized by age-dependent degeneration of dopaminergic neurons in the substantia nigra, a process mediated by α-synuclein aggregation, mitochondrial dysfunction, and impaired proteostasis. While BAP31—an endoplasmic reticulum protein critical for protein trafficking and degradation—has been implicated in [...] Read more.
Parkinson’s disease (PD) is a neurodegenerative disorder characterized by age-dependent degeneration of dopaminergic neurons in the substantia nigra, a process mediated by α-synuclein aggregation, mitochondrial dysfunction, and impaired proteostasis. While BAP31—an endoplasmic reticulum protein critical for protein trafficking and degradation—has been implicated in neuronal processes, its role in PD pathogenesis remains poorly understood. To investigate the impact of BAP31 deficiency on PD progression, we generated dopamine neuron-specific BAP31 conditional knockout with DAT-Cre (cKO) mice (Slc6a3cre-BAP31fl/fl) and subjected them to MPTP-lesioned Parkinsonian models. Compared to BAP31fl/fl controls, Slc6a3cre-BAP31fl/fl mice exhibited exacerbated motor deficits following MPTP treatment, including impaired rotarod performance, reduced balance beam traversal time, and diminished climbing and voluntary motor capacity abilities. BAP31 conditional deletion showed no baseline phenotype, with deficits emerging only after MPTP. Our results indicate that these behavioral impairments correlated with neuropathological hallmarks: decreased NeuN neuronal counts, elevated GFAP astrogliosis, reduced tyrosine hydroxylase levels in the substantia nigra, and aggravated dopaminergic neurodegeneration. Mechanistically, BAP31 deficiency disrupted mitochondrial homeostasis by suppressing the PINK1–Parkin mitophagy pathway. Further analysis revealed that BAP31 regulates PINK1 transcription via the transcription factor Engrailed Homeobox 1. Collectively, our findings identify BAP31 as a neuroprotective modulator that mitigates PD-associated motor dysfunction by preserving mitochondrial stability, underscoring its therapeutic potential as a target for neurodegenerative disorders. Full article
Show Figures

Figure 1

23 pages, 5093 KB  
Article
Positive Effects of Allicin on Cytotoxicity, Antioxidative Status, and Immunity in “Eriocheir sinensis” Hepatopancreatic Cells Against Oxidative Stress-Induced Injury
by Yiqing Guo, Peng Huang, Wenhui Wang, Jingwen Wu, Jinliang Du, Jiayi Li, Jiancao Gao, Haojun Zhu, Jun Gao, Yao Zheng, Yanbing Zhuang, Gangchun Xu and Liping Cao
Antioxidants 2026, 15(1), 93; https://doi.org/10.3390/antiox15010093 - 12 Jan 2026
Viewed by 194
Abstract
Oxidative stress represents a critical threat to aquatic animal health and aquaculture productivity. Allicin, a natural plant extract, has not been systematically investigated for its antioxidant mechanisms in aquatic crustaceans. This study established in vitro and in vivo models of tert-butyl hydroperoxide (T-BHP)-induced [...] Read more.
Oxidative stress represents a critical threat to aquatic animal health and aquaculture productivity. Allicin, a natural plant extract, has not been systematically investigated for its antioxidant mechanisms in aquatic crustaceans. This study established in vitro and in vivo models of tert-butyl hydroperoxide (T-BHP)-induced oxidative stress in Chinese mitten crabs (Eriocheir sinensis) to evaluate the hepatoprotective effects of allicin. Integrating biochemical, transcriptomic, and ultrastructural analyses, we found that allicin significantly alleviated T-BHP-induced cytotoxicity and oxidative damage in vitro. Mechanistically, allicin up-regulated antioxidant genes including glutathione peroxidase (gpx) and thioredoxin reductase 1 (trxr1), and down-regulated pro-inflammatory cytokines such as interleukin-1 beta (il-1β), suggesting the concomitant activation of the Nrf2 signaling pathway and inhibition of the p38-MAPK/NF-κB pathway. Transcriptomics further indicated its role in restoring proteostasis and mitochondrial function. A 35-day feeding trial validated these findings in vivo; dietary supplementation with 300 mg·kg−1 allicin effectively reversed T-BHP-induced disturbances in antioxidant enzyme activities and immune-related gene expression. These consistent findings demonstrate that allicin alleviates hepatopancreatic oxidative damage through multi-pathway synergism, supporting its potential as a green and effective antioxidant feed additive in aquaculture. Full article
Show Figures

Figure 1

14 pages, 947 KB  
Review
A New Perspective on Osteogenesis Imperfecta: From Cellular Mechanisms to the Systemic Impact of Collagen Dysfunction
by Emma Lugli, Ludovica Gaiaschi, Maria Grazia Bottone and Fabrizio De Luca
Int. J. Mol. Sci. 2026, 27(2), 745; https://doi.org/10.3390/ijms27020745 - 12 Jan 2026
Viewed by 273
Abstract
Osteogenesis imperfecta (OI) is a rare genetic disease caused by mutations in collagen type I, leading to defective protein folding and an impaired extracellular matrix structure and remodelling. Beyond skeletal fragility, these molecular defects trigger a network of intracellular stress responses with multiorgan [...] Read more.
Osteogenesis imperfecta (OI) is a rare genetic disease caused by mutations in collagen type I, leading to defective protein folding and an impaired extracellular matrix structure and remodelling. Beyond skeletal fragility, these molecular defects trigger a network of intracellular stress responses with multiorgan implications: the accumulation of misfolded collagen can induce persistent endoplasmic reticulum stress, which can in turn compromise mitochondrial function and autophagy or lead to cell death activation, and it can even promote widespread redox imbalance and inflammation. The interplay between intracellular stress, widespread oxidative damage and inflammation not only underlies cellular dysfunction but also the multisystemic manifestations of osteogenesis imperfecta. Targeting these interconnected pathways may result in new insights for a better understanding of OI and possibly offer novel therapeutic strategies designed to restore proteostasis and improve cell homeostasis and overall patient outcomes, highlighting the need for an integrated understanding of the cellular and molecular mechanisms involved in the pathogenesis of this disease and their translation into patient-centred therapeutic interventions. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

46 pages, 7543 KB  
Review
Epigenetic Dysregulation in Neurodegeneration: The Role of Histone Deacetylases and Emerging Inhibitor Strategies
by Yogesh Pawar, Aleksandra Kopranovic, Ramaa C S and Franz-Josef Meyer-Almes
Biomolecules 2026, 16(1), 103; https://doi.org/10.3390/biom16010103 - 7 Jan 2026
Viewed by 322
Abstract
Neurodegenerative diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and Huntington’s disease (HD) are characterized by complex pathologies with progressive neurodegeneration, protein misfolding, oxidative stress, and persistent inflammation. Recent findings indicate the pivotal involvement of epigenetic disruption, particularly aberrant histone deacetylase (HDAC) [...] Read more.
Neurodegenerative diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and Huntington’s disease (HD) are characterized by complex pathologies with progressive neurodegeneration, protein misfolding, oxidative stress, and persistent inflammation. Recent findings indicate the pivotal involvement of epigenetic disruption, particularly aberrant histone deacetylase (HDAC) activity, in disease initiation and progression. In the current review, we systematically discuss the mechanistic function of HDACs across all classes (I, IIa, IIb, III, and IV) in neurodegenerative disease mechanisms, such as their involvement in the modulation of gene expression, mitochondrial function, proteostasis, and neuronal survival. We discuss the therapeutic potential, as well as limitations, of HDAC inhibitors (HDACis), such as pan-inhibitors and isoenzyme-selective inhibitors, and new multi-target-directed ligands with HDAC inhibition combined with acetylcholinesterase modulation, PDE modulation, MAO-B inhibition, or NMDAR modulation. Particular emphasis is placed on the development of HDAC6-selective inhibitors with enhanced brain permeability and reduced toxicity, which have shown promising preclinical efficacy in ameliorating hallmark pathologies of AD, PD, and HD. In addition, s-triazine-based scaffolds have recently emerged as promising chemotypes in HDAC inhibitor design, offering favorable pharmacokinetic profiles, metabolic stability, and the potential for dual-target modulation relevant to neurodegeneration. The review also explores the future of HDAC-targeted therapies, including PROTAC degraders, dual-inhibitor scaffolds, and sustainable, BBB-penetrant molecules. Collectively, this review underscores the importance of HDAC modulation as a multifaceted strategy in the treatment of neurodegenerative diseases and highlights the need for continued innovation in epigenetic drug design. Full article
Show Figures

Figure 1

29 pages, 670 KB  
Review
The Molecular Architecture of Neurodegeneration: An Integrative Overview of Convergent Mechanisms
by Gonzalo Emiliano Aranda-Abreu, Fausto Rojas-Durán, María Elena Hernández-Aguilar, Deissy Herrera-Covarrubias, Luis Roberto Tlapa-Monge and Sonia Lilia Mestizo-Gutiérrez
NeuroSci 2026, 7(1), 7; https://doi.org/10.3390/neurosci7010007 - 6 Jan 2026
Viewed by 367
Abstract
Neurodegenerative diseases such as Alzheimer’s, Parkinson’s, amyotrophic lateral sclerosis, and Huntington’s disease represent a major challenge in neuroscience due to their complex, multifactorial nature and the absence of curative treatments. These disorders share common molecular mechanisms, including oxidative stress, mitochondrial dysfunction, proteostasis collapse, [...] Read more.
Neurodegenerative diseases such as Alzheimer’s, Parkinson’s, amyotrophic lateral sclerosis, and Huntington’s disease represent a major challenge in neuroscience due to their complex, multifactorial nature and the absence of curative treatments. These disorders share common molecular mechanisms, including oxidative stress, mitochondrial dysfunction, proteostasis collapse, calcium dyshomeostasis, chronic neuroinflammation, and the prion-like propagation of misfolded proteins. Together, these processes trigger a cascade of cellular damage that culminates in synaptic dysfunction and programmed neuronal death. This review integrates current evidence on the sequential stages of neurodegeneration, emphasizing the convergence of oxidative, inflammatory, and proteotoxic pathways that drive neuronal vulnerability. Moreover, it explores emerging therapeutic strategies aimed at restoring cellular homeostasis, such as Nrf2 activation, modulation of the unfolded protein response (UPR), enhancement of autophagy, immunotherapy against pathological proteins, and gene therapy approaches. The dynamic interplay among mitochondria, endoplasmic reticulum, and glial cells is highlighted as a central element in disease progression. Understanding these interconnected mechanisms provides a foundation for developing multi-targeted interventions capable of halting or delaying neuronal loss and improving clinical outcomes in neurodegenerative disorders. This work provides an integrative and introductory overview of the convergent mechanisms underlying neurodegeneration rather than an exhaustive mechanistic analysis. Full article
Show Figures

Graphical abstract

39 pages, 3332 KB  
Review
The Expanding Role of Non-Coding RNAs in Neurodegenerative Diseases: From Biomarkers to Therapeutic Targets
by Xuezhi Zhao, Yongquan Zheng, Xiaoyu Cai, Yao Yao and Dongxu Qin
Pharmaceuticals 2026, 19(1), 92; https://doi.org/10.3390/ph19010092 - 3 Jan 2026
Viewed by 646
Abstract
Non-coding RNAs have emerged as central regulators of gene expression in neurodegenerative diseases, offering new opportunities for diagnosis and therapy. This review synthesizes current knowledge on microRNAs, long non-coding RNAs, and circular RNAs in Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis, emphasizing [...] Read more.
Non-coding RNAs have emerged as central regulators of gene expression in neurodegenerative diseases, offering new opportunities for diagnosis and therapy. This review synthesizes current knowledge on microRNAs, long non-coding RNAs, and circular RNAs in Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis, emphasizing their roles in synaptic function, proteostasis, mitochondrial biology, and neuroinflammation. We evaluate evidence supporting non-coding RNAs as circulating and tissue-based biomarkers for early detection, disease monitoring, and patient stratification, and we compare analytical platforms and biofluid sources. Mechanistic insights reveal how non-coding RNAs modulate pathogenic protein aggregation, neuronal excitability, immune cell crosstalk, and blood–brain barrier integrity. Translational efforts toward RNA-targeted interventions are reviewed, including antisense oligonucleotides, small interfering RNAs, miRNA mimics and inhibitors, circular RNA decoys, and extracellular vesicle-mediated delivery systems. We discuss pharmacological modulation, delivery challenges, safety concerns, and strategies to enhance specificity and CNS penetration. Finally, we outline emerging computational and multi-omics approaches to prioritize therapeutic targets and propose a roadmap for advancing non-coding RNA research from preclinical models to clinical trials. Addressing biological heterogeneity and delivery barriers will be pivotal to realizing the diagnostic and therapeutic promise of the non-coding transcriptome in neurodegenerative disease. Collaboration across disciplines and rigorous clinical validation are urgently needed. Full article
Show Figures

Graphical abstract

24 pages, 4478 KB  
Article
Citicoline Triggers Proteome Remodeling and Proteostatic Adaptation: Evidence from Shotgun Proteomics
by Dario Cavaterra, Sara Giammaria, Irene Pandino, Gabriele Antonio Zingale, Valerio Delli Paoli, Rebecca Fiore, Manuele Michelessi, Gloria Roberti, Carmela Carnevale, Lucia Tanga, Daniela Cazzato, Elisa Peroni, Giuseppe Grasso, Gianluca Manni, Alessio Bocedi, Francesco Oddone, Massimiliano Coletta, Diego Sbardella and Grazia Raffaella Tundo
Pharmaceutics 2026, 18(1), 61; https://doi.org/10.3390/pharmaceutics18010061 - 1 Jan 2026
Viewed by 485
Abstract
Background/Objectives: Citicoline, also known as CDP-choline, is a nootropic agent currently used in the treatment of glaucoma and is undergoing evaluation as a first-line therapy in a multi-center, international, phase III, randomized clinical trial involving citicoline eyedrops (ClinicalTrials.gov ID: NCT05710198). Numerous clinical [...] Read more.
Background/Objectives: Citicoline, also known as CDP-choline, is a nootropic agent currently used in the treatment of glaucoma and is undergoing evaluation as a first-line therapy in a multi-center, international, phase III, randomized clinical trial involving citicoline eyedrops (ClinicalTrials.gov ID: NCT05710198). Numerous clinical and preclinical studies have linked the neuroenhancement and neuroprotective effects of citicoline to its role as a metabolic precursor for structural and functional components of cell membranes (such as phosphatidylcholine and sphingomyelin) and for neurotransmitters (e.g., acetylcholine and dopamine). However, compelling evidence suggests that the molecular mechanisms underlying its cytoprotective activity involve additional as-yet uncharacterized pharmacological actions. Methods: To further elucidate its pharmacology, we investigated the effect of two cytoprotective doses of citicoline (0.1 mM and 1 mM) on the global proteome of neuroblastoma cells using an unbiased shotgun proteomics approach. Results: With over 4000 unique proteins identified and quantified per experimental condition, the proteomics analysis revealed that citicoline, after 6 h of stimulation, induces a profound and robust remodeling of the intracellular proteome compared to untreated cells. Importantly, this effect was observed to significantly diminish by 18 h of stimulation, highlighting its transient nature (data are available via ProteomeXchange with identifier PXD061053). The clustering and rationalization of proteins upregulated by citicoline treatment identified the enrichment of key pathways for mRNA splicing, protein translation, proteostasis balance through the ubiquitin proteasome system (UPS), and mitochondrial metabolism. Conclusions: These proteomics findings introduce previously uncharacterized biological effects of citicoline and foster the working hypothesis that this drug may exert its cytoprotective activity through molecular mechanisms linked to the hormesis principle. These data further support the rationale for its clinical application in neurodegenerative processes and human disorders characterized by proteotoxicity. Full article
(This article belongs to the Special Issue Advances in Drug Delivery Systems for Targeted Neurological Therapies)
Show Figures

Figure 1

24 pages, 697 KB  
Review
GLP-1 Signalling as a Therapeutic Avenue in Parkinson’s Disease: A Comprehensive Review
by María Paz Orozco, Valentina Vintimilla Rivadeneira and Jose E. Leon-Rojas
Int. J. Mol. Sci. 2025, 26(24), 12163; https://doi.org/10.3390/ijms262412163 - 18 Dec 2025
Viewed by 829
Abstract
Parkinson’s disease (PD) is a complex neurodegenerative disorder characterised by progressive motor and non-motor impairment, in which current therapies remain symptomatic and fail to halt dopaminergic neuron loss. Growing evidence linking metabolic dysfunction, type 2 diabetes, and neurodegeneration has renewed interest in glucagon-like [...] Read more.
Parkinson’s disease (PD) is a complex neurodegenerative disorder characterised by progressive motor and non-motor impairment, in which current therapies remain symptomatic and fail to halt dopaminergic neuron loss. Growing evidence linking metabolic dysfunction, type 2 diabetes, and neurodegeneration has renewed interest in glucagon-like peptide 1 (GLP-1) receptor agonists as potential disease-modifying agents. While several recent reviews have explored the role of incretin-based therapies, the present work provides an integrative perspective by combining a mechanistic analysis of GLP-1 signalling pathways with a model-specific synthesis of preclinical findings and an appraisal of clinical translational relevance. We consolidate evidence across PI3K/Akt, MAPK/ERK, cAMP/PKA–CREB, and AMPK pathways, emphasising their convergence on mitochondrial homeostasis, proteostasis, neuroinflammation, and synaptic resilience. To enhance translational clarity, we summarise preclinical studies across major PD models, evaluate dose comparability and blood–brain barrier penetration, and identify pharmacokinetic and mechanistic factors that may explain divergent clinical outcomes. We also compare the therapeutic potential of key GLP-1 agonists, including exendin-4, liraglutide, semaglutide, lixisenatide, and emerging dual agonists. By integrating biochemical, preclinical, and clinical domains, this review provides a comprehensive framework for interpreting the current evidence and guiding the future development of incretin-based neuroprotective strategies in PD. Full article
(This article belongs to the Special Issue New Challenges of Parkinson’s Disease, 2nd Edition)
Show Figures

Figure 1

26 pages, 800 KB  
Review
SIRT3-Mediated Mitochondrial Regulation and Driver Tissues in Systemic Aging
by Kate Šešelja, Ena Šimunić, Sandra Sobočanec, Iva I. Podgorski, Marija Pinterić, Marijana Popović Hadžija, Tihomir Balog and Robert Belužić
Genes 2025, 16(12), 1497; https://doi.org/10.3390/genes16121497 - 15 Dec 2025
Viewed by 791
Abstract
Mitochondrial dysfunction is a defining hallmark of aging that connects redox imbalance, metabolic decline, and inflammatory signaling across organ systems. The mitochondrial deacetylase SIRT3 preserves oxidative metabolism and proteostasis, yet its age-related decline transforms metabolically demanding organs into sources of pro-senescent cues. This [...] Read more.
Mitochondrial dysfunction is a defining hallmark of aging that connects redox imbalance, metabolic decline, and inflammatory signaling across organ systems. The mitochondrial deacetylase SIRT3 preserves oxidative metabolism and proteostasis, yet its age-related decline transforms metabolically demanding organs into sources of pro-senescent cues. This review synthesizes evidence showing how SIRT3 loss in select “driver tissues”—notably liver, adipose tissue, vascular endothelium, bone-marrow macrophages, and ovary—initiates systemic aging through the release of cytokines, oxidized metabolites, and extracellular vesicles. We discuss molecular routes and mediators of senescence propagation, including the senescence-associated secretory phenotype (SASP), mitochondrial-derived vesicles, and circulating mitochondrial DNA, as well as sex-specific modulation of SIRT3 by hormonal and intrinsic factors. By integrating multi-tissue and sex-dependent data, we outline a framework in which SIRT3 activity defines the mitochondrial threshold separating local adaptation from systemic aging spread. Targeting SIRT3 and its NAD+-dependent network may offer a unified strategy to restore mitochondrial quality, dampen chronic inflammation, and therefore recalibrate the aging dynamics of an organism. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Graphical abstract

33 pages, 2141 KB  
Review
From Elixirs to Geroscience: A Historical and Molecular Perspective on Anti-Aging Medicine
by Giuseppe Rosario Pietro Nicoletti, Katia Mangano, Ferdinando Nicoletti and Eugenio Cavalli
Molecules 2025, 30(24), 4728; https://doi.org/10.3390/molecules30244728 - 10 Dec 2025
Viewed by 2753
Abstract
The pursuit of youth and longevity has accompanied human societies for millennia, evolving from mythological and esoteric traditions toward a scientific understanding of aging. Early concepts such as Greek ambrosia, Taoist elixirs, and medieval “aqua vitae” reflected symbolic or spiritual interpretations. A major [...] Read more.
The pursuit of youth and longevity has accompanied human societies for millennia, evolving from mythological and esoteric traditions toward a scientific understanding of aging. Early concepts such as Greek ambrosia, Taoist elixirs, and medieval “aqua vitae” reflected symbolic or spiritual interpretations. A major conceptual transition occurred between the late nineteenth and early twentieth centuries, when aging began to be framed as a biological process. Pioneering ideas by Metchnikoff, together with early and sometimes controversial attempts such as Voronoff’s grafting experiments, marked the first efforts to rationalize aging scientifically. In the mid-twentieth century, discoveries including the Hayflick limit, telomere biology, oxidative stress, and mitochondrial dysfunction established gerontology as an experimental discipline. Contemporary geroscience integrates these insights into a coherent framework linking cellular pathways to chronic disease risk. Central roles are played by nutrient-sensing networks such as mTOR, AMPK, and sirtuins, together with mitochondrial regulation, proteostasis, and cellular senescence. Interventions, including caloric restriction, fasting-mimicking diets, rapalogues, sirtuin activators, metformin, NAD+ boosters, senolytics, and antioxidant combinations such as GlyNAC, show consistent benefits across multiple model organisms, with early human trials reporting improvements in immune function, mitochondrial activity, and biomarkers of aging. Recent advances extend to epigenetic clocks, multi-omic profiling, gender-specific responses, and emerging regenerative and gene-based approaches. Overall, the evolution from historical elixirs to molecular geroscience highlights a shift toward targeting aging itself as a modifiable biological process and outlines a growing translational landscape aimed at extending healthspan and reducing age-related morbidity. Full article
Show Figures

Figure 1

46 pages, 2441 KB  
Review
A State-of-the-Art Overview on (Epi)Genomics and Personalized Skin Rejuvenating Strategies
by Roxana-Georgiana Tauser, Ioana-Mirela Vasincu, Andreea-Teodora Iacob, Maria Apotrosoaei, Bianca-Ștefania Profire, Florentina-Geanina Lupascu, Oana-Maria Chirliu and Lenuta Profire
Pharmaceutics 2025, 17(12), 1585; https://doi.org/10.3390/pharmaceutics17121585 - 9 Dec 2025
Viewed by 1158
Abstract
This article aims to point out new perspectives opened by genomics and epigenomics in skin rejuvenation strategies which target the main hallmarks of the ageing. In this respect, this article presents a concise overview on: the clinical relevance of the most important clocks [...] Read more.
This article aims to point out new perspectives opened by genomics and epigenomics in skin rejuvenation strategies which target the main hallmarks of the ageing. In this respect, this article presents a concise overview on: the clinical relevance of the most important clocks and biomarkers used in skin anti-ageing strategy evaluation, the fundamentals, the main illustrating examples preclinically and clinically tested, the critical insights on knowledge gaps and future research perspectives concerning the most relevant skin anti-ageing and rejuvenation strategies based on novel epigenomic and genomic acquisitions. Thus the review dedicates distinct sections to: senolytics and senomorphics targeting senescent skin cells and their senescent-associated phenotype; strategies targeting genomic instability and telomere attrition by stimulation of the deoxyribonucleic acid (DNA) repair enzymes and proteins essential for telomeres’ recovery and stability; regenerative medicine based on mesenchymal stem cells or cell-free products in order to restore skin-resided stem cells; genetically and chemically induced skin epigenetic partial reprogramming by using transcription factors or epigenetic small molecule agents, respectively; small molecule modulators of DNA methylases, histone deacetylases, telomerases, DNA repair enzymes or of sirtuins; modulators of micro ribonucleic acid (miRNA) and long-non-coding ribonucleic acid (HOTAIR’s modulators) assisted or not by CRISPR-gene editing technology (CRISPR: Clustered Regularly Interspaced Short Palindromic Repeats); modulators of the most relevant altered nutrient-sensing pathways in skin ageing; as well as antioxidants and nanozymes to address mitochondrial dysfunctions and oxidative stress. In addition, some approaches targeting skin inflammageing, altered skin proteostasis, (macro)autophagy and intercellular connections, or skin microbiome, are very briefly discussed. The review also offers a comparative analysis among the newer genomic/epigenomic-based skin anti-ageing strategies vs. classical skin rejuvenation treatments from various perspectives: efficacy, safety, mechanism of action, evidence level in preclinical and clinical data and regulatory status, price range, current limitations. In these regards, a concise overview on senolytic/senomorphic agents, topical nutrigenomic pathways’ modulators and DNA repair enzymes, epigenetic small molecules agents, microRNAs and HOTAIRS’s modulators, is illustrated in comparison to classical approaches such as tretinoin and peptide-based cosmeceuticals, topical serum with growth factors, intense pulsed light, laser and microneedling combinations, chemical peels, botulinum toxin injections, dermal fillers. Finally, the review emphasizes the future research directions in order to accelerate the clinical translation of the (epi)genomic-advanced knowledge towards personalization of the skin anti-ageing strategies by integration of individual genomic and epigenomic profiles to customize/tailor skin rejuvenation therapies. Full article
(This article belongs to the Topic Challenges and Opportunities in Drug Delivery Research)
Show Figures

Graphical abstract

33 pages, 2706 KB  
Review
Targeting Cathepsins in Neurodegeneration: Biochemical Advances
by Francesca Di Matteo, Mariapia Vietri, Simone D’Alessio, Tania Ciaglia, Erica Federica Vestuto, Giacomo Pepe, Ornella Moltedo, Veronica Di Sarno, Simona Musella, Carmine Ostacolo, Fabio Cominelli, Pietro Campiglia, Alessia Bertamino, Maria Rosaria Miranda and Vincenzo Vestuto
Biomedicines 2025, 13(12), 3019; https://doi.org/10.3390/biomedicines13123019 - 9 Dec 2025
Viewed by 602
Abstract
Background/Objectives: Cathepsins, lysosomal proteases crucial for neuronal proteostasis, mediate the clearance of misfolded and aggregated proteins. Their dysregulation is implicated in neurodegenerative and neuropsychiatric disorders such as Alzheimer’s, Parkinson’s, and Huntington’s diseases. These conditions are characterized by toxic protein accumulation and impaired [...] Read more.
Background/Objectives: Cathepsins, lysosomal proteases crucial for neuronal proteostasis, mediate the clearance of misfolded and aggregated proteins. Their dysregulation is implicated in neurodegenerative and neuropsychiatric disorders such as Alzheimer’s, Parkinson’s, and Huntington’s diseases. These conditions are characterized by toxic protein accumulation and impaired clearance, which exacerbate cellular stress responses, including the unfolded protein response (UPR), oxidative damage, and mitochondrial dysfunction. This review aims to summarize current knowledge on cathepsin roles in these pathways and assess their therapeutic potential. Methods: A comprehensive literature review was conducted, focusing on recent in vitro and in vivo studies investigating cathepsin function, inhibition, and modulation. Mechanistic insights and pharmacological approaches targeting cathepsins were analyzed, with attention to challenges in translating preclinical findings to clinical settings. Results: Cathepsins demonstrate a dual role: their proteolytic activity supports neuronal health by degrading toxic aggregates, but altered or insufficient activity may worsen proteotoxic stress. Studies reveal that cathepsins regulate autophagy, apoptosis, and neuroinflammation both intracellularly and extracellularly. Despite promising mechanistic data, clinical translation is hindered by issues such as poor inhibitor selectivity, limited brain penetration, and variability across preclinical models. Conclusions: Targeting cathepsins presents a promising strategy for treating neurodegenerative and neuropsychiatric disorders, but significant challenges remain. Future research should focus on improving drug specificity and delivery, and on developing standardized models to better predict clinical outcomes. Full article
Show Figures

Figure 1

25 pages, 1490 KB  
Review
Linking Cell Architecture to Mitochondrial Signaling in Neurodegeneration: The Role of Intermediate Filaments
by Emanuele Marzetti, Rosa Di Lorenzo, Riccardo Calvani, Hélio José Coelho-Júnior, Francesco Landi, Vito Pesce and Anna Picca
Int. J. Mol. Sci. 2025, 26(24), 11852; https://doi.org/10.3390/ijms262411852 - 8 Dec 2025
Viewed by 562
Abstract
Mitochondrial dysfunction is a pivotal contributor to neurodegeneration. Neurons heavily rely on mitochondrial oxidative metabolism and therefore need highly efficient quality control mechanisms, including proteostasis, mitochondrial biogenesis, fusion–fission dynamics, and mitophagy, to sustain bioenergetics and synaptic function. With aging, deterioration of mitochondrial quality [...] Read more.
Mitochondrial dysfunction is a pivotal contributor to neurodegeneration. Neurons heavily rely on mitochondrial oxidative metabolism and therefore need highly efficient quality control mechanisms, including proteostasis, mitochondrial biogenesis, fusion–fission dynamics, and mitophagy, to sustain bioenergetics and synaptic function. With aging, deterioration of mitochondrial quality control pathways leads to impaired oxidative phosphorylation, excessive reactive oxygen species generation, calcium imbalance, and defective clearance of damaged organelles, ultimately compromising neuronal viability. Pathological protein aggregates, such as α-synuclein in Parkinson’s disease, β-amyloid and tau in Alzheimer’s disease, and misfolded superoxide dismutase 1 and transactive response DNA-binding protein 43 in amyotrophic lateral sclerosis, further aggravate mitochondrial stress, establishing self-perpetuating cycles of neurotoxicity. Such mitochondrial defects underscore mitochondria as a convergent pathogenic hub and a promising therapeutic target for neuroprotection. Intermediate filaments (IFs), traditionally viewed as passive structural elements, have recently gained attention for their roles in cytoplasmic organization, mitochondrial positioning, and energy regulation. Emerging evidence indicates that IF–mitochondria interactions critically influence organelle morphology and function in neurons. This review highlights the multifaceted involvement of mitochondrial dysfunction and IF dynamics in neurodegeneration, emphasizing their potential as targets for novel therapeutic strategies. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

17 pages, 2070 KB  
Article
Molecular Insights into the Genesis of Heat Hardening in Marine Bivalves
by Ioannis Georgoulis, Ioannis A. Giantsis, Basile Michaelidis, Athanasios Kouniakis and Konstantinos Feidantsis
Antioxidants 2025, 14(12), 1468; https://doi.org/10.3390/antiox14121468 - 7 Dec 2025
Viewed by 447
Abstract
Heat hardening induces complex biochemical reprogramming that enhances thermal resilience in marine bivalves. Despite this technique’s promising results in marine animals, the molecular basis of heat hardening is far from understood. This study elucidates the molecular mechanisms underlying the hardening process in Mytilus [...] Read more.
Heat hardening induces complex biochemical reprogramming that enhances thermal resilience in marine bivalves. Despite this technique’s promising results in marine animals, the molecular basis of heat hardening is far from understood. This study elucidates the molecular mechanisms underlying the hardening process in Mytilus galloprovincialis exposed to a 4-day sublethal heat treatment. Induction of hsf-1, hsp70, and hsp90 genes revealed the activation of the heat shock response and proteostasis machinery, ensuring proper protein folding and preventing oxidative and proteotoxic stress. Simultaneous upregulation of mitochondrial (atpase6, cox1, nadh) and glycolytic (pk, cs) genes reflects enhanced oxidative phosphorylation and glycolytic flux, maintaining ATP supply and metabolic flexibility under elevated temperatures. Increased hif-1α expression suggests transient hypoxia signaling, coordinating oxygen utilization with redox control. Reinforcement of antioxidant defenses, together with elevated autophagy-related transcription, denotes a shift toward oxidative stress mitigation and damaged organelle clearance. Balanced expression of pro- (bax) and anti-apoptotic (bcl-2) factors, along with nf-κb modulation, supports tight regulation of cell survival and inflammatory responses. These findings underscore a highly integrated biochemical network linking proteostasis, intermediary metabolism, redox balance, and antioxidant defense with cellular quality control, which together underpin the physiological plasticity of heat-hardened M. galloprovincialis, enhancing survival under transient thermal stress. Full article
Show Figures

Graphical abstract

Back to TopTop