Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (256)

Search Parameters:
Keywords = mitochondrial catalase

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 6223 KiB  
Article
Virulence, Antibiotic Resistance and Cytotoxic Effects of Lactococcus lactis Isolated from Chinese Cows with Clinical Mastitis on MAC-T Cells
by Tiancheng Wang, Fan Wu, Tao Du, Xiaodan Jiang, Shuhong Liu, Yiru Cheng and Jianmin Hu
Microorganisms 2025, 13(7), 1674; https://doi.org/10.3390/microorganisms13071674 - 16 Jul 2025
Viewed by 256
Abstract
Lactococcus lactis (L. lactis) is a pathogenic Gram-positive, catalase-negative coccobacillus (GPCN) associated with bovine mastitis. In this study, nine strains of L. lactis were successfully isolated and characterized from 457 milk samples from cows with clinical mastitis in China. All isolates [...] Read more.
Lactococcus lactis (L. lactis) is a pathogenic Gram-positive, catalase-negative coccobacillus (GPCN) associated with bovine mastitis. In this study, nine strains of L. lactis were successfully isolated and characterized from 457 milk samples from cows with clinical mastitis in China. All isolates exhibited a high degree of susceptibility to marbofloxacin and vancomycin. A series of molecular and cell biological techniques were used to explore the biological characteristics and pathogenicity of these isolates. The virulence gene profiles of the isolates were analyzed using whole genome resequencing combined with polymerase chain reaction (PCR) to elucidate the differences in virulence gene expression between isolates. To provide a more visual demonstration of the pathogenic effect of L. lactis on bovine mammary epithelial cells, an in vitro infection model was established using MAC-T cells. The results showed that L. lactis rapidly adhered to the surface of bovine mammary epithelial cells and significantly induced the release of lactate dehydrogenase, suggesting that the cell membranes might be damaged. Ultrastructural observations showed that L. lactis not only adhered to MAC-T cells, but also invaded the cells through a perforation mechanism, leading to a cascade of organelle damage, including mitochondrial swelling and ribosome detachment from the endoplasmic reticulum. The objective of this study was to provide strong evidence for the cytotoxic effects of L. lactis on bovine mammary epithelial cells. Based on this research, a prevention and treatment strategy for L. lactis as well as major pathogenic mastitis bacteria should be established, and there is a need for continuous monitoring. Full article
(This article belongs to the Section Antimicrobial Agents and Resistance)
Show Figures

Figure 1

17 pages, 1902 KiB  
Article
Enhanced Mitochondrial Dynamics and Reactive Oxygen Species Levels with Reduced Antioxidant Defenses in Human Epicardial Adipose Tissue
by Ana Burgeiro, Diana Santos, Ana Catarina R. G. Fonseca, Inês Baldeiras, Ermelindo C. Leal, João Moura, João Costa-Nunes, Patrícia Monteiro Seraphim, Aryane Oliveira, António Canotilho, Gonçalo Coutinho, David Prieto, Pedro Antunes, Manuel Antunes and Eugenia Carvalho
Metabolites 2025, 15(7), 481; https://doi.org/10.3390/metabo15070481 - 16 Jul 2025
Viewed by 748
Abstract
Background/Objectives: Epicardial adipose tissue (EAT) is metabolically active and is in dynamic crosstalk with the surrounding cardiomyocytes, modulating their function and metabolism. Oxidative stress is a key contributor to cell death and cardiac remodeling, is a hallmark of diabetes (DM) and cardiovascular [...] Read more.
Background/Objectives: Epicardial adipose tissue (EAT) is metabolically active and is in dynamic crosstalk with the surrounding cardiomyocytes, modulating their function and metabolism. Oxidative stress is a key contributor to cell death and cardiac remodeling, is a hallmark of diabetes (DM) and cardiovascular disease, such as coronary artery disease (CAD). However, little is known about these processes in EAT from patients undergoing cardiac surgery. This study investigates changes in mitochondrial dynamics, reactive oxygen species (ROS) production, and antioxidant defense levels in EAT compared to subcutaneous adipose tissue (SAT) in patients undergoing cardiac surgery, with a focus on the impact of DM and CAD. Methods: Adipose tissue biopsies were collected from 128 patients undergoing surgical cardiac intervention. Mitochondrial dynamics and oxidative stress markers were analyzed. Results: EAT exhibited increased expression of mitochondrial fusion markers [mitofusin 1 (p ≤ 0.001), mitofusin 2 (p = 0.038), and optic atrophy 1 (p ≤ 0.001)], as well as fission markers [fission 1 (p ≤ 0.001) and dynamin-related protein 1 (p ≤ 0.001)] relative to SAT. Additionally, ROS levels (dihydroethidium, p = 0.004) were elevated, while lipid peroxidation (malondialdehyde, p ≤ 0.001) was reduced in EAT compared to SAT. Reduced glutathione (GSH) levels (p ≤ 0.001) and the redox buffer ratio between reduced and oxidized glutathione (GSH/GSSG, p ≤ 0.001) were significantly increased in EAT. Interestingly, glutathione peroxidase activity (p ≤ 0.001) and the antioxidant defense markers catalase (p ≤ 0.001) and superoxide dismutase 2 (p = 0.001) were significantly reduced in EAT compared to SAT. Conclusions: The findings provide a unique molecular insight into the mitochondrial dynamics and oxidative stress profiles of EAT, highlighting potential avenues for a novel diagnostic method and therapeutic strategies for cardiac disease. Full article
Show Figures

Graphical abstract

20 pages, 1227 KiB  
Review
Oxidative Stress Defense Module in Lung Cancers: Molecular Pathways and Therapeutic Approaches
by Eunsun Lee and Jeong Hee Hong
Antioxidants 2025, 14(7), 857; https://doi.org/10.3390/antiox14070857 - 13 Jul 2025
Viewed by 551
Abstract
The regulation of oxidative stress is an effective strategy for treating cancers. Therapeutic strategies for modulating an undesirable redox balance against cancers have included the enhancement of oxidative components, reducing the action of antioxidant systems, and the combined application of radiation and redox-modulating [...] Read more.
The regulation of oxidative stress is an effective strategy for treating cancers. Therapeutic strategies for modulating an undesirable redox balance against cancers have included the enhancement of oxidative components, reducing the action of antioxidant systems, and the combined application of radiation and redox-modulating drugs. A precise understanding of redox regulation is required to treat different kinds of cancer. This review focuses on the redox regulation and oxidative stress defense systems of lung cancers. Thus, we highlighted several enzymatic antioxidant components, such as superoxide dismutase, catalase, heme oxygenase-1, peroxiredoxin, glutaredoxin, thioredoxin, thioredoxin reductase, glutathione peroxidase, and antioxidant components, including glutathione, nuclear factor erythroid 2–related factor 2, 8-oxo-7,8-dihydro-2′-deoxyguanosine, and mitochondrial citrate carrier SLC25A1, based on PubMed and Scopus-indexed literature. Understanding the oxidative stress defense system in lung cancer would be beneficial for developing and expanding therapeutic strategies, such as drug development, drug design, and advanced delivery platforms. Full article
Show Figures

Figure 1

22 pages, 2690 KiB  
Article
PEMFs Restore Mitochondrial and CREB/BDNF Signaling in Oxidatively Stressed PC12 Cells Targeting Neurodegeneration
by Stefania Merighi, Mercedes Fernandez, Manuela Nigro, Alessia Travagli, Filippo Caldon, Simona Salati, Pier Andrea Borea, Ruggero Cadossi, Katia Varani and Stefania Gessi
Int. J. Mol. Sci. 2025, 26(13), 6495; https://doi.org/10.3390/ijms26136495 - 5 Jul 2025
Viewed by 450
Abstract
Alzheimer’s disease (AD), the most prevalent form of neurodegenerative dementia, is characterized by progressive cognitive decline and neuronal loss. Despite advances in pharmacological treatments, current therapies remain limited in efficacy and often induce adverse effects. Increasing evidence highlights oxidative stress, mitochondrial dysfunction, and [...] Read more.
Alzheimer’s disease (AD), the most prevalent form of neurodegenerative dementia, is characterized by progressive cognitive decline and neuronal loss. Despite advances in pharmacological treatments, current therapies remain limited in efficacy and often induce adverse effects. Increasing evidence highlights oxidative stress, mitochondrial dysfunction, and disrupted neurotrophic signaling as key contributors to AD pathogenesis. Pulsed electromagnetic fields (PEMFs) are emerging as a non-invasive, multifactorial approach with promising biological effects. In this study, we investigated the neuroprotective potential of PEMFs in NGF-differentiated PC12 cells exposed to hydrogen peroxide (H2O2) or amyloid-β peptide (Aβ), both of which model pathological features of AD. PEMF treatment significantly counteracted H2O2- and Aβ-induced cytotoxicity by restoring cell viability, reducing reactive oxygen species production, and improving catalase activity. Furthermore, PEMFs preserved the mitochondrial membrane potential and decreased caspase-3 activation and chromatin condensation. Mechanistically, PEMFs inhibited ERK phosphorylation and enhanced cAMP levels, CREB phosphorylation, and BDNF expression, pathways known to support neuronal survival and plasticity. In conclusion, these findings suggest that PEMFs modulate multiple stress response systems, promoting neuroprotection under oxidative and amyloidogenic conditions. Full article
(This article belongs to the Special Issue Potential Prevention and Treatment of Neurodegenerative Disorders)
Show Figures

Graphical abstract

16 pages, 2188 KiB  
Article
Tartary Buckwheat Peptides Prevent Oxidative Damage in Differentiated SOL8 Cells via a Mitochondria-Mediated Apoptosis Pathway
by Yifan Xu, Yawen Wang, Min Yang, Pengxiang Yuan, Weikang Xu, Tong Jiang and Jian Huang
Nutrients 2025, 17(13), 2204; https://doi.org/10.3390/nu17132204 - 2 Jul 2025
Viewed by 476
Abstract
Background: Under oxidative stress conditions, the increased levels of reactive oxygen species (ROS) within cells disrupt the intracellular homeostasis. Tartary buckwheat peptides exert their effects by scavenging oxidative free radicals, such as superoxide anion and hydrogen peroxide, thereby reducing oxidative damage within cells. [...] Read more.
Background: Under oxidative stress conditions, the increased levels of reactive oxygen species (ROS) within cells disrupt the intracellular homeostasis. Tartary buckwheat peptides exert their effects by scavenging oxidative free radicals, such as superoxide anion and hydrogen peroxide, thereby reducing oxidative damage within cells. Meanwhile, these peptides safeguard mitochondria by maintaining the mitochondrial membrane potential, decreasing the production of mitochondrial oxygen free radicals, and regulating mitochondrial biogenesis and autophagy to preserve mitochondrial homeostasis. Through these mechanisms, Tartary buckwheat peptides restore the intracellular redox balance, sustain cellular energy metabolism and biosynthesis, and ensure normal cellular physiological functions, which is of great significance for cell survival and adaptation under oxidative stress conditions. Objectives: In this experiment, a classical cellular oxidative stress model was established. Indicators related to antioxidant capacity and mitochondrial membrane potential changes, as well as pathways associated with oxidative stress, were selected for detection. The aim was to elucidate the effects of Tartary buckwheat oligopeptides on the metabolism of cells in response to oxidative stress. Methods: In this study, we established an oxidative damage model of mouse skeletal muscle myoblast (SOL8) cells using hydrogen peroxide (H2O2), investigated the pre-protective effects of Tartary buckwheat oligopeptides on H2O2-induced oxidative stress damage in SOL8 cells at the cellular level, and explored the possible mechanisms. The CCK-8 method is a colorimetric assay based on WST-8-[2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodiumsalt], which is used to detect cell proliferation and cytotoxicity. Results: The value of CCK-8 showed that, when the cells were exposed to 0.01 mmol/L H2O2 for 1 h and 10 mg/mL Tartary buckwheat oligopeptides intervention for 48 h, these were the optimal conditions. Compared with the H2O2 group, the intervention group (KB/H2O2 group) showed that the production of ROS was significantly reduced (p < 0.001), the malondialdehyde (MDA) content was significantly decreased (p < 0.05), and the activity of catalase (CAT) was significantly increased (p < 0.01); the mitochondrial membrane potential in the KB/H2O2 group tended to return to the level of the control group, and they all showed dose-dependent effects. Compared with the H2O2 group, the mRNA expression of KEAP1 in the KB/H2O2 group decreased, while the mRNA expression of NRF2α, HO-1, nrf1, PGC-1, P62, and PINK increased. Conclusions: Therefore, Tartary buckwheat oligopeptides have a significant pre-protective effect on H2O2-induced SOL8 cells, possibly by enhancing the activity of superoxide dismutase, reducing ROS attack, balancing mitochondrial membrane potential, and maintaining intracellular homeostasis. Full article
Show Figures

Figure 1

20 pages, 2564 KiB  
Article
Investigating the Mechanisms Underlying Citral-Induced Oxidative Stress and Its Contribution to Antifungal Efficacy on Magnaporthe oryzae Through a Multi-Omics Approach
by Yonghui Huang, Ruoruo Wang, Yumei Tan, Yongxiang Liu, Xiyi Ren, Congtao Guo, Rongyu Li and Ming Li
Plants 2025, 14(13), 2001; https://doi.org/10.3390/plants14132001 - 30 Jun 2025
Viewed by 341
Abstract
Citral, an organic compound found in lemongrass (Cymbopogon citratus) oil and Litsea cubeba essential oil, has been reported to exhibit notable antifungal activity against Magnaporthe oryzae (M. oryzae), the pathogen of rice blast, which causes significant economic losses in [...] Read more.
Citral, an organic compound found in lemongrass (Cymbopogon citratus) oil and Litsea cubeba essential oil, has been reported to exhibit notable antifungal activity against Magnaporthe oryzae (M. oryzae), the pathogen of rice blast, which causes significant economic losses in rice production. However, the role of citral in inducing oxidative stress related to antifungal ability and its underlying regulatory networks in M. oryzae remain unclear. In this study, we investigated the oxidative effects of citral on M. oryzae and conducted transcriptomic and widely targeted metabolomic (WTM) analyses on the mycelia. The results showed that citral induced superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) activities but reduced glutathione S-transferase (GST) activity with 25% maximal effective concentration (EC25) and 75% maximal effective concentration (EC75). Importantly, citral at EC75 reduced the activities of mitochondrial respiratory chain complex I, complex III and ATP content, while increasing the activity of mitochondrial respiratory chain complex II. In addition, citral triggered a burst of reactive oxygen species (ROS) and a loss of mitochondrial membrane potential (MMP) through the observation of fluorescence. Furthermore, RNA-seq analysis and metabolomics analysis identified a total of 466 differentially expression genes (DEGs) and 32 differential metabolites (DAMs) after the mycelia were treated with citral. The following multi-omics analysis revealed that the metabolic pathways centered on AsA, GSH and melatonin were obviously suppressed by citral, indicating a disrupted redox equilibrium in the cell. These findings provide further evidences supporting the antifungal activity of citral and offer new insights into the response of M. oryzae under oxidative stress induced by citral. Full article
Show Figures

Figure 1

20 pages, 6365 KiB  
Article
Peptide DFCPPGFNTK Mitigates Dry Eye Pathophysiology by Suppressing Oxidative Stress, Apoptosis, Inflammation, and Autophagy: Evidence from In Vitro and In Vivo Models
by Kaishu Deng, Wenan Li, Jinyuan Liang, Zhengdao Chen, Yan Xu, Jingxi Zhang, Yingtong Zhan, Zhiyou Yang, Shaohong Chen, Yun-Tao Zhao and Chuanyin Hu
Curr. Issues Mol. Biol. 2025, 47(6), 441; https://doi.org/10.3390/cimb47060441 - 10 Jun 2025
Viewed by 521
Abstract
Dry eye is an ophthalmic disease with an intricate pathomechanism, and there are no effective interventions or medications available. We investigated the effects of a peptide, DFCPPGFNTK (DFC), screened from tilapia skin hydrolysate on dry eye and its underlying mechanisms. In vitro, human [...] Read more.
Dry eye is an ophthalmic disease with an intricate pathomechanism, and there are no effective interventions or medications available. We investigated the effects of a peptide, DFCPPGFNTK (DFC), screened from tilapia skin hydrolysate on dry eye and its underlying mechanisms. In vitro, human corneal epithelial cells (HCECs) were challenged by 100 mM NaCl in a hyperosmotic environment. DFC restored the cell viability of HCECs induced by NaCl, reduced the transition of mitochondrial membrane potential, delayed the apoptosis of damaged cells, reduced the production of reactive oxygen (ROS) and malondialdehyde (MDA), increased the activities of superoxide dismutase (SOD) and catalase (CAT), and increased the expression rate of Bcl-2/Bax. Compared to the model group, the protein expression levels of COX-2 and iNOS were down-regulated, the mRNA expression of Tnf-α and Il-6 were decreased, the protein expression levels of Nrf2 and HO-1 were increased, and the levels of autophagy-related proteins p62 and LC3B were regulated. In vivo, the dry eye model was developed by administering eye drops of 0.2% BAC to mice for 14 days. DFC increased tear secretion, changed the morphology of tear fern crystals, prevented corneal epithelial thinning, reduced the loss of conjunctival goblet cells (GCs), and inhibited the apoptosis of mice corneal epithelial cells. In summary, DFC improved dry eye by inhibiting oxidative stress, apoptosis, inflammation, and autophagy. Full article
(This article belongs to the Special Issue Molecular Research in Bioactivity of Natural Products, 2nd Edition)
Show Figures

Figure 1

26 pages, 4181 KiB  
Article
Alleviating the Effect of Branched-Chain Fatty Acids on the Lipopolysaccharide-Induced Inflammatory Response in Calf Small Intestinal Epithelial Cells
by Siqi Zhang, Qingyuan Yu, Yukun Sun, Guangning Zhang, Yonggen Zhang and Hangshu Xin
Antioxidants 2025, 14(5), 608; https://doi.org/10.3390/antiox14050608 - 19 May 2025
Viewed by 818
Abstract
This study examined branched-chain fatty acids (BCFAs)’ effects on oxidative stress, energy metabolism, inflammation, tight junction disruption, apoptosis, and Toll-like receptor 4/nuclear factor kappa-B (TLR4/NF-κB) signaling in lipopolysaccharide (LPS)-induced calf small intestinal epithelial cells (CSIECs). Eight groups were used: a control [...] Read more.
This study examined branched-chain fatty acids (BCFAs)’ effects on oxidative stress, energy metabolism, inflammation, tight junction disruption, apoptosis, and Toll-like receptor 4/nuclear factor kappa-B (TLR4/NF-κB) signaling in lipopolysaccharide (LPS)-induced calf small intestinal epithelial cells (CSIECs). Eight groups were used: a control group, an LPS-induced group, and six BCFA treatment groups (12-methyltridecanoic acid (iso-C14:0), 13-methyltetradecanoic acid (iso-C15:0), 14-methylpentadecanoic acid (iso-C16:0), 15-methylhexadecanoic acid (iso-C17:0), 12-methyltetradecanoic acid (anteiso-C15:0), and 14-methylhexadecanoic acid (anteiso-C17:0)) with LPS. The BCFA pretreatments significantly increased CSIEC activity compared to the LPS-induced group, with iso-C14:0 showing the highest activity (89.73%). BCFA reduced Reactive Oxygen Species (ROS) generation and malondialdehyde (MDA) levels and improved the superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) activities and glutathione (GSH) levels. Iso-C16:0 optimized total antioxidant capacity (T-AOC). BCFA enhanced the mitochondrial membrane potential, Adenosine Triphosphate (ATP) enzyme activity, and ATP content, with iso-C14:0 increasing ATP by 27.01%. BCFA downregulated interleukin (IL)-1β, IL-8, tumor necrosis factor (TNF)-α, and interferon (INF)-γ gene expression, reduced IL-6 levels, and increased IL-10 expression. Myeloid differentiation factor 88 (MyD88) mRNA levels were reduced. BCFA alleviated Zonula Occludin (ZO-1), Claudin-1, and Claudin-4 decrease and increased Occludin levels. BCFA mitigated LPS-induced increases in Caspase-3 and BCL2-Associated X (BAX) mRNA levels, reduced Caspase-8 and Caspase-9 expression, and increased B-Cell Lymphoma-2 (BCL-2) mRNA levels. The Entropy Weight-TOPSIS method was adopted, and it was discovered that iso-C15:0 has the best effect. In summary, BCFA supplementation mitigated oxidative stress and enhanced mitochondrial function. BCFA inhibited TLR4/NF-κB signaling pathway overactivation, regulated inflammatory cytokine gene expression, reduced cellular apoptosis, preserved tight junction integrity, and supported barrier function. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Figure 1

22 pages, 1908 KiB  
Article
Melatonin Improves Lipid Homeostasis, Mitochondrial Biogenesis, and Antioxidant Defenses in the Liver of Prediabetic Rats
by Milena Cremer de Souza, Maria Luisa Gonçalves Agneis, Karoliny Alves das Neves, Matheus Ribas de Almeida, Geórgia da Silva Feltran, Ellen Mayara Souza Cruz, João Paulo Ferreira Schoffen, Luiz Gustavo de Almeida Chuffa and Fábio Rodrigues Ferreira Seiva
Int. J. Mol. Sci. 2025, 26(10), 4652; https://doi.org/10.3390/ijms26104652 - 13 May 2025
Viewed by 819
Abstract
Type 2 diabetes mellitus represents a major global health burden and is often preceded by a prediabetic state characterized by insulin resistance and metabolic dysfunction. Mitochondrial alterations, oxidative stress, and disturbances in lipid metabolism are central to the prediabetes pathophysiology. Melatonin, a pleiotropic [...] Read more.
Type 2 diabetes mellitus represents a major global health burden and is often preceded by a prediabetic state characterized by insulin resistance and metabolic dysfunction. Mitochondrial alterations, oxidative stress, and disturbances in lipid metabolism are central to the prediabetes pathophysiology. Melatonin, a pleiotropic indolamine, is known to regulate metabolic and mitochondrial processes; however, its therapeutic potential in prediabetes remains poorly understood. This study investigated the effects of melatonin on energy metabolism, oxidative stress, and mitochondrial function in a rat model of prediabetes induced by chronic sucrose intake and low-dose streptozotocin administration. Following prediabetes induction, animals were treated with melatonin (20 mg/kg) for four weeks. Biochemical analyses were conducted to evaluate glucose and lipid metabolism, and mitochondrial function was assessed via gene expression, enzymatic activity, and oxidative stress markers. Additionally, hepatic mitochondrial dynamics were examined by quantifying key regulators genes associated with biogenesis, fusion, and fission. Prediabetic animals exhibited dyslipidemia, hepatic lipid accumulation, increased fat depots, and impaired glucose metabolism. Melatonin significantly reduced serum glucose, triglycerides, and total cholesterol levels, while enhancing the hepatic high-density lipoprotein content. It also stimulated β-oxidation by upregulating hydroxyacyl-CoA dehydrogenase and citrate synthase activity. Mitochondrial dysfunction in prediabetic animals was evidenced by the reduced expression of peroxisome proliferator-activated receptor gamma coactivator-1 alpha and mitochondrial transcription factor A, both of which were markedly upregulated by melatonin. The indolamine also modulated mithocondrial dynamics by regulating fusion and fission markers, including mitosuin 1 and 2, optic atrophy protein, and dynamin-related protein. Additionally, melatonin mitigated oxidative stress by enhancing the activity of superoxide dismutase and catalase while reducing lipid peroxidation. These findings highlight melatonin’s protective role in prediabetes by improving lipid and energy metabolism, alleviating oxidative stress, and restoring mitochondrial homeostasis. This study provides novel insights into the therapeutic potential of melatonin in addressing metabolic disorders, particularly in mitigating mitochondrial dysfunction associated with prediabetes. Full article
Show Figures

Figure 1

16 pages, 1058 KiB  
Article
Differential Effects of Sphingolipids on Cell Death and Antioxidant Defenses in Type 1 and Type 2 Endometrial Cancer Cells
by Agnieszka U. Błachnio-Zabielska, Patrycja Sadowska, Urszula Chlabicz, Karolina Pogodzińska, Hervé Le Stunff, Piotr Laudański, Jacek Szamatowicz and Mariusz Kuźmicki
Int. J. Mol. Sci. 2025, 26(10), 4472; https://doi.org/10.3390/ijms26104472 - 8 May 2025
Viewed by 616
Abstract
Endometrial cancer (EC) is classified into two main subtypes with distinct molecular profiles. Sphingolipids, particularly ceramide and sphingosine-1-phosphate (S1P), are crucial regulators of cell survival, apoptosis, and oxidative stress. This study examined the impact of sphingolipid metabolism in Ishikawa (type 1) and HEC-1A [...] Read more.
Endometrial cancer (EC) is classified into two main subtypes with distinct molecular profiles. Sphingolipids, particularly ceramide and sphingosine-1-phosphate (S1P), are crucial regulators of cell survival, apoptosis, and oxidative stress. This study examined the impact of sphingolipid metabolism in Ishikawa (type 1) and HEC-1A (type 2) EC cells following the silencing of Sptlc1 and Sptlc2, which encode subunits of serine palmitoyltransferase (SPT), a key enzyme in de novo sphingolipid synthesis. Gene silencing was confirmed by RT-PCR and Western blot, while sphingolipid levels were quantified using UHPLC/MS/MS and the sphingolipid rheostat (S1P/ceramide ratio) was calculated. Cell viability (MTT assay), cell death, ROS levels (ELISA), total antioxidant capacity (TAC), catalase and caspase-3 activity, and mitochondrial membrane potential were also assessed. The obtained data showed higher ceramide levels in Ishikawa(CON) cells and higher S1P levels in HEC-1A(CON) cells, resulting in a higher sphingolipid rheostat in HEC-1A cells. SPT knockdown reduced sphingolipid levels, increased cell viability, elevated ROS levels, and decreased cell death, particularly in Ishikawa cells. Furthermore, after gene silencing, these cells exhibited reduced catalase activity and diminished TAC, indicating an impaired redox balance. These findings reveal subtype-specific responses to disrupted sphingolipid synthesis and highlight the importance of sphingolipid homeostasis in the behavior of EC cells. Full article
Show Figures

Figure 1

14 pages, 4695 KiB  
Article
Effect of Lipopolysaccharide (LPS) on Oxidative Stress and Apoptosis in Immune Tissues from Schizothorax prenanti
by Jiqin Huang, Wei Jiang, Hongying Ma, Han Zhang, Hu Zhao, Qijun Wang and Jianlu Zhang
Animals 2025, 15(9), 1298; https://doi.org/10.3390/ani15091298 - 30 Apr 2025
Viewed by 450
Abstract
Schizothorax prenanti is an economically important cold-water fish in China. Lipopolysaccharide (LPS) can induce an immune response in S. prenanti; however, little is known about the effects of LPS on oxidative stress (OS) and apoptosis in S. prenanti. In this study, [...] Read more.
Schizothorax prenanti is an economically important cold-water fish in China. Lipopolysaccharide (LPS) can induce an immune response in S. prenanti; however, little is known about the effects of LPS on oxidative stress (OS) and apoptosis in S. prenanti. In this study, S. prenanti fish were stimulated with LPS at a dose of 10 mg/kg of body weight. After 0 h, 12 h and 24 h, the tissue samples were collected. The OS- and apoptosis-related genes and enzymatic activities in the liver, head kidney (HK), and spleen of S. prenanti were analyzed by a two-way repeated-measures analysis of variance (ANOVA). Hematoxylin and eosin and terminal transferase uridyl nick end labeling staining were also performed. In S. prenanti, LPS administration downregulated the catalase (CAT) and B-cell lymphoma/Leukemia-2 (Bcl-2) expression levels, and upregulated BCL2-associated X (Bax) and cysteine-aspartic-specific protease-3 (caspase-3) expression levels. Meanwhile, superoxide dismutase and CAT enzymatic activities were inhibited and malondialdehyde (MDA) content was increased by LPS treatment. Additionally, LPS treatment induced OS damage and apoptosis in tissue sections. These results indicated that apoptosis in the liver, HK, and spleen of LPS-administered S. prenanti may be mediated by OS via the mitochondrial apoptotic signaling pathway. Our findings are expected to contribute to a better understanding of the responses of different tissues to bacterial challenges. In addition, we can increase the tolerance of fish to the OS through dietary manipulation in the future. Full article
Show Figures

Figure 1

17 pages, 2438 KiB  
Article
Bergamot Leaf Extract as an Agent Against Chronic Liver Diseases? In Vitro and In Vivo Findings on Oxidative Stress Modulation
by Taynara Aparecida Vieira, Danielle Gabriel Seloto, Joyce Santana Rizzi, Paloma Vitória Lima Peixoto, Giulia Vitória Betoni Corrêa, Juliana Silva Siqueira, Nubia Alves Grandini, Erika Tiemi Nakandakare-Maia, Letícia Cardoso Valente, Fabiane Valentini Francisqueti-Ferron, Artur Junio Togneri Ferron, Giovanna Baron, Giancarlo Aldini, Camila Renata Correa, Lilian Cristina Pereira and Guilherme Ribeiro Romualdo
Antioxidants 2025, 14(5), 543; https://doi.org/10.3390/antiox14050543 - 30 Apr 2025
Viewed by 628
Abstract
Oxidative stress is involved in pathophysiological mechanisms associated with a myriad of liver diseases. Bergamot (Citrus bergamia) leaves yield a high level of antioxidant polyphenolic compounds that may hinder the development of liver diseases, while their potential is yet to be [...] Read more.
Oxidative stress is involved in pathophysiological mechanisms associated with a myriad of liver diseases. Bergamot (Citrus bergamia) leaves yield a high level of antioxidant polyphenolic compounds that may hinder the development of liver diseases, while their potential is yet to be fully explored. Thus, the aim of the study was to test the effects of bergamot leaf extract (BLE) on hepatic and mitochondrial oxidative stress in different models. In vivo study: Wistar rats were distributed into two groups: control diet (C) and high-sugar–fat diet (HSF) for twenty weeks. Afterward, the animals were redivided to initiate a ten-week treatment with BLE: C, HSF, and HSF+BLE. In vitro study: Rat hepatic mitochondria were isolated by differential centrifugation and used to assess safety and efficacy of the BLE. Hepatocyte monolayer and spheroids were applied to evaluate the safety of physiologically plausible BLE concentrations and their effects on hydrogen peroxide-induced cytotoxicity. The results showed that BLE improved metabolic parameters, reduced hepatic triglyceride levels, malondialdehyde, and increased catalase activity in vivo. In vitro, BLE decreased lipid peroxidation and increased the ratio of reduced and oxidized glutathione in chemically challenged mitochondria. BLE did not exert cytotoxicity in the hepatocyte monolayer and spheroids, while attenuated oxidative stress-induced cytotoxicity. Data indicate that in vivo and in vitro hepatic oxidative stress is modulated by BLE, reinforcing that BLE may act as an agent against chronic liver diseases. Full article
Show Figures

Figure 1

20 pages, 2275 KiB  
Article
The Regulatory Role of Exogenous Carnitine Applications in Lipid Metabolism, Mitochondrial Respiration, and Germination in Maize Seeds (Zea mays L.)
by Hulya Turk, Mucip Genisel and Rahmi Dumlupinar
Life 2025, 15(4), 631; https://doi.org/10.3390/life15040631 - 9 Apr 2025
Viewed by 650
Abstract
The present study aimed to investigate the effects of exogenous carnitine treatments on maize seed germination by stimulating lipid metabolism and regulating the mitochondrial respiratory pathway. Maize seeds were grown as control, 5, 7.5, and 10 μM carnitine treatment groups in a germination [...] Read more.
The present study aimed to investigate the effects of exogenous carnitine treatments on maize seed germination by stimulating lipid metabolism and regulating the mitochondrial respiratory pathway. Maize seeds were grown as control, 5, 7.5, and 10 μM carnitine treatment groups in a germination chamber at 25 °C under dark conditions for 5 d. It was determined that carnitine treatments increased the germination rate (GR), germination index (GI), germination potential (GP), vigor index (VI), root and hypocotyl length, fresh weight (FW), and content of total soluble protein but decreased the total carbohydrate content. It was also found that it increased the activities of α-amylase, isocitrate lyase (ICL), and malate synthase (MS) enzymes, which are critical in the germination process, and upregulated the expression of ICL and MS genes. To clarify the potential of carnitine treatments to promote the participation of lipids in respiration in roots and hypocotyls, lipase, carnitine acyltransferases (CATI and CATII), and citrate synthase (CS) enzyme activities were examined, and significant increases in these activities were detected. It was also found that gene levels of respiratory enzymes cytochrome oxidase (COX), pyruvate dehydrogenase (PDH), and Atp synthase, lipase, and CS proteins were upregulated by carnitine treatment. In support of the enzyme and gene change findings, significant changes were determined in fatty acid contents, free carnitine, and long-chain acylcarnitine levels in seeds, roots, and hypocotyls depending on carnitine application. In roots and hypocotyls, carnitine treatments significantly increased glutamine synthase (GS) and glutamate dehydrogenase (NADH-GDH) activities and gene expression levels, which are closely related to the tricarboxylic acid cycle (TCA). It was also noted that all proteins analyzed at the gene expression level were upregulated by carnitine applications in seeds. In addition, significant increases were recorded in antioxidant enzyme ascorbate peroxidase (APX) and superoxide dismutase (SOD) activities and total ascorbate (AsA) and glutathione (GSH) contents in roots and hypocotyls, while decreases were determined in guaiacol peroxidase (GPX) and catalase activities. Significant changes were recorded in all parameters examined, especially with 7.5 µM carnitine application. The findings suggest that carnitine may promote the transport of fatty acids to mitochondrial respiration by accelerating lipid catabolism in five-day-old maize and contribute to seed germination and growth and development processes by activating other metabolic pathways associated with respiration in this process. Full article
(This article belongs to the Section Plant Science)
Show Figures

Figure 1

13 pages, 6584 KiB  
Article
Protective Effect of Lipoic Acid on Oxidative Stress and Tissue Damage Induced by Aflatoxin B1 in Young Laying Hens
by Yihong Chu, Huanbin Wang, Xinyu Xu, Yun Ji, Yiting Zhao, Qianqian Yu, Shahid Ali Rajput, Yi Xue and Desheng Qi
Toxins 2025, 17(4), 184; https://doi.org/10.3390/toxins17040184 - 6 Apr 2025
Viewed by 656
Abstract
The aim of this study is to investigate the alleviating effect of lipoic acid on oxidative stress and tissue damage induced by aflatoxin B1 (AFB1) in young laying hens. The experiment was divided into a control group, an AFB1 [...] Read more.
The aim of this study is to investigate the alleviating effect of lipoic acid on oxidative stress and tissue damage induced by aflatoxin B1 (AFB1) in young laying hens. The experiment was divided into a control group, an AFB1 group, and three lipoic acid treatment groups. The AFB1 group and three lipoic acid treatment groups were given diets supplemented with 90 μg/kg of AFB1. The additional amounts of lipoic acid were 20, 100, and 500 mg/kg, respectively, with a feeding period of 4 weeks. The experimental results showed that AFB1 significantly increased the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) and malondialdehyde (MDA) in the serum and significantly decreased the levels of total protein (TP), albumin (ALB), total superoxide dismutase (T-SOD), glutathione peroxidase (GSH-Px) and catalase (CAT) (p < 0.05). In addition, AFB1 damaged the structure of the liver, spleen, and ovarian tissues. Lipoic acid reduced the levels of ALT, AST, ALP, and MDA in the serum and increased the levels of TP, ALB, T-SOD, GSH-Px, and CAT (p < 0.05). Meanwhile, lipoic acid also protected mitochondrial structure and alleviated liver, spleen, and ovarian tissue damage caused by AFB1. In summary, lipoic acid can alleviate oxidative stress and tissue damage caused by AFB1 in young laying hens. Full article
Show Figures

Figure 1

14 pages, 1873 KiB  
Article
Effects of Melatonin on H2O2-Induced Oxidative Damage of the Granulosa Cells in Hen Ovarian Follicles
by Sheng Wang, Yu Ou, Shengxiao Cao, Xue Sun, Ning Qin, Simushi Liswaniso and Rifu Xu
Genes 2025, 16(4), 362; https://doi.org/10.3390/genes16040362 - 22 Mar 2025
Viewed by 626
Abstract
Background: The egg-laying performance of hens is primarily regulated by ovarian follicle growth and development; these follicles are susceptible to oxidative damage caused by excessive reactive oxygen species (ROS). Oxidative damage can lead to follicular atresia and impaired reproductive performance. Melatonin (MT), a [...] Read more.
Background: The egg-laying performance of hens is primarily regulated by ovarian follicle growth and development; these follicles are susceptible to oxidative damage caused by excessive reactive oxygen species (ROS). Oxidative damage can lead to follicular atresia and impaired reproductive performance. Melatonin (MT), a known endogenous antioxidant, plays a role in regulating oxidative damage, but its precise mechanisms in mitigating H2O2-induced oxidative damage via mitophagy regulation in granulosa cells remain unclear. Methods: An in vitro oxidative damage model was established by determining the optimal H2O2 concentration using CCK-8 fluorescence quantification. The optimal MT concentration was identified through fluorescence quantification and catalase (CAT) activity assays. The protective effects of MT against H2O2-induced oxidative damage in follicular granulosa cells were investigated using flow cytometry, Western blotting, ELISA, and quantitative fluorescence analysis. Results: An in vitro oxidative damage model was established using H2O2-induced granulosa cells, characterized by P53 and LC3-II upregulation and LC3-I and BCL-2 downregulation. The optimal MT concentration for reducing cellular injury was determined. MT co-treatment enhanced CAT, GSH, and SOD activities, decreased LC3-II/LC3-I conversion, and increased P62 expression. Furthermore, MT reduced autophagic vesicle formation and restored mitochondrial membrane potential, demonstrating its protective effect against H2O2-induced oxidative damage. Conclusions: Melatonin alleviates H2O2-induced oxidative damage in chicken follicular granulosa cells by modulating antioxidant defense, autophagy, and mitochondrial function. These findings provide newer insights to our understanding of the regulatory mechanisms underlying the alleviation of the H2O2-induced oxidative damage in granulosa cells during ovarian follicle development in chickens. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

Back to TopTop