Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (393)

Search Parameters:
Keywords = minimal dosage

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 8847 KiB  
Article
From Pulp to Froth: Decoding the Role of Nanoparticle Colloidal Silica in Scheelite Flotation as a Calcite Depressant
by Borhane Ben Said, Suvarna Patil, Martin Rudolph, Daniel Goldmann and Lucas Pereira
Minerals 2025, 15(8), 834; https://doi.org/10.3390/min15080834 (registering DOI) - 6 Aug 2025
Abstract
Colloidal silica acts as a multifunctional reagent in the froth flotation process of semi-soluble salt-type minerals, enabling the selective depression of calcite. This study investigates its effect on four key minerals—calcite, scheelite, apatite, and fluorite—using a comprehensive suite of techniques to identify the [...] Read more.
Colloidal silica acts as a multifunctional reagent in the froth flotation process of semi-soluble salt-type minerals, enabling the selective depression of calcite. This study investigates its effect on four key minerals—calcite, scheelite, apatite, and fluorite—using a comprehensive suite of techniques to identify the flotation subprocesses modulated by colloidal silica. This work also aims to determine the specific flotation zones affected by colloidal silica, assessing the influence of its dosage, surface modification, and specific surface area on metallurgical outcomes. Atomic force microscopy revealed mineral-specific surface responses to colloidal silica conditioning: calcite exhibited localized nanoparticle adsorption, whereas apatite underwent a dissolution–reprecipitation mechanism. Scheelite and fluorite, in contrast, showed minimal surface modifications. These differences are attributed to variations in surface reactivity, hydration behavior, and crystallographic structure, with calcite offering a uniquely favorable environment for colloidal silica attachment. Mechanistic insights show that colloidal silica—especially the aluminate-modified type with high specific surface area—influences both the pulp and froth zones by producing small, stable bubbles, enhancing fine scheelite recovery, stabilizing froth, and effectively depressing calcite. In contrast, non-functionalized colloidal silica resulted in poor bubble control and unstable froth. These findings elucidate the subprocess-specific mechanisms by which colloidal silica operates and highlight its potential as a tunable, multifunctional reagent for improving selectivity in the flotation of semi-soluble salt-type minerals. Full article
(This article belongs to the Special Issue Application of Nanomaterials in Mineral Processing)
Show Figures

Graphical abstract

13 pages, 1674 KiB  
Article
The Role of the Clinical Pharmacist in Hospital Admission Medication Reconciliation in Low-Resource Settings
by Tijana Kovačević, Sonja Nedinić, Vedrana Barišić, Branislava Miljković, Emir Fazlić, Slobodan Vukadinović and Pedja Kovačević
Pharmacy 2025, 13(4), 107; https://doi.org/10.3390/pharmacy13040107 - 2 Aug 2025
Viewed by 151
Abstract
Medication discrepancies at hospital admission are common and may lead to adverse outcomes. Medication reconciliation is a critical process for minimizing medication discrepancies and medication errors at the time of hospital admission. This study aimed to evaluate the role of clinical pharmacists in [...] Read more.
Medication discrepancies at hospital admission are common and may lead to adverse outcomes. Medication reconciliation is a critical process for minimizing medication discrepancies and medication errors at the time of hospital admission. This study aimed to evaluate the role of clinical pharmacists in identifying pharmacotherapy-related issues upon patient admission in a low-resource setting. A prospective observational study was conducted at a university hospital between 1 March and 31 May 2023. Within 24 h of admission, a clinical pharmacist documented each patient’s pre-admission medication regimen and compared it with the medication history obtained by the admitting physician. Discrepancies and pharmacotherapy problems were subsequently identified. Among 65 patients, pharmacists documented 334 medications versus 189 recorded by physicians (p < 0.01). The clinical pharmacist identified 155 discrepancies, 112 (72.26%) of which were unintentional. The most frequent type was drug omission (91.07%), followed by incorrect dosage (4.46%), incorrect dosing interval (2.68%), and medications with unknown indications (1.79%). Most discrepancies were classified as errors without harm (53.57%), while 41.07% were potentially harmful. These findings underscore the importance of integrating clinical pharmacists into the healthcare team. Their active participation during hospital admission can significantly enhance medication safety and reduce preventable adverse drug events. Full article
Show Figures

Figure 1

19 pages, 2547 KiB  
Article
Artificial Intelligence Optimization of Polyaluminum Chloride (PAC) Dosage in Drinking Water Treatment: A Hybrid Genetic Algorithm–Neural Network Approach
by Darío Fernando Guamán-Lozada, Lenin Santiago Orozco Cantos, Guido Patricio Santillán Lima and Fabian Arias Arias
Computation 2025, 13(8), 179; https://doi.org/10.3390/computation13080179 - 1 Aug 2025
Viewed by 186
Abstract
The accurate dosing of polyaluminum chloride (PAC) is essential for achieving effective coagulation in drinking water treatment, yet conventional methods such as jar tests are limited in their responsiveness and operational efficiency. This study proposes a hybrid modeling framework that integrates artificial neural [...] Read more.
The accurate dosing of polyaluminum chloride (PAC) is essential for achieving effective coagulation in drinking water treatment, yet conventional methods such as jar tests are limited in their responsiveness and operational efficiency. This study proposes a hybrid modeling framework that integrates artificial neural networks (ANN) with genetic algorithms (GA) to optimize PAC dosage under variable raw water conditions. Operational data from 400 jar test experiments, collected between 2022 and 2024 at the Yanahurco water treatment plant (Ecuador), were used to train an ANN model capable of predicting six post-treatment water quality indicators, including turbidity, color, and pH. The ANN achieved excellent predictive accuracy (R2 > 0.95 for turbidity and color), supporting its use as a surrogate model within a GA-based optimization scheme. The genetic algorithm evaluated dosage strategies by minimizing treatment costs while enforcing compliance with national water quality standards. The results revealed a bimodal dosing pattern, favoring low PAC dosages (~4 ppm) during routine conditions and higher dosages (~12 ppm) when influent quality declined. Optimization yielded a 49% reduction in median chemical costs and improved color compliance from 52% to 63%, while maintaining pH compliance above 97%. Turbidity remained a challenge under some conditions, indicating the potential benefit of complementary coagulants. The proposed ANN–GA approach offers a scalable and adaptive solution for enhancing chemical dosing efficiency in water treatment operations. Full article
(This article belongs to the Section Computational Engineering)
Show Figures

Figure 1

20 pages, 8914 KiB  
Article
Assessment of Low-Dose rhBMP-2 and Vacuum Plasma Treatments on Titanium Implants for Osseointegration and Bone Regeneration
by Won-Tak Cho, Soon Chul Heo, Hyung Joon Kim, Seong Soo Kang, Se Eun Kim, Jong-Ho Lee, Gang-Ho Bae and Jung-Bo Huh
Materials 2025, 18(15), 3582; https://doi.org/10.3390/ma18153582 - 30 Jul 2025
Viewed by 280
Abstract
This study evaluated the effects of low-dose recombinant human bone morphogenetic protein-2 (rhBMP-2) coating in combination with vacuum plasma treatment on titanium implants, aiming to enhance osseointegration and bone regeneration while minimizing the adverse effects associated with high-dose rhBMP-2. In vitro analyses demonstrated [...] Read more.
This study evaluated the effects of low-dose recombinant human bone morphogenetic protein-2 (rhBMP-2) coating in combination with vacuum plasma treatment on titanium implants, aiming to enhance osseointegration and bone regeneration while minimizing the adverse effects associated with high-dose rhBMP-2. In vitro analyses demonstrated that plasma treatment increased surface energy, promoting cell adhesion and proliferation. Additionally, it facilitated sustained rhBMP-2 release by enhancing protein binding to the implant surface. In vivo experiments using the four-beagle mandibular defect model were conducted with the following four groups: un-treated implants, rhBMP-2–coated implants, plasma-treated implants, and implants treated with both rhBMP-2 and plasma. Micro-computed tomography (micro-CT) and medical CT analyses revealed a significantly greater volume of newly formed bone in the combined treatment group (p < 0.05). Histological evaluation further confirmed superior outcomes in the combined group, showing significantly higher bone-to-implant contact (BIC), new bone area (NBA), and inter-thread bone density (ITBD) compared to the other groups (p < 0.05). These findings indicate that vacuum plasma treatment enhances the biological efficacy of low-dose rhBMP-2, representing a promising strategy to improve implant integration in compromised conditions. Further studies are warranted to determine the optimal clinical dosage. Full article
Show Figures

Graphical abstract

17 pages, 3944 KiB  
Article
Functionalized Magnetic Nanoparticles as Recyclable Draw Solutes for Forward Osmosis: A Sustainable Approach to Produced Water Reclamation
by Sunith B. Madduri and Raghava R. Kommalapati
Separations 2025, 12(8), 199; https://doi.org/10.3390/separations12080199 - 29 Jul 2025
Viewed by 282
Abstract
Magnetic nanoparticles (MNPs), especially iron oxide (Fe3O4), display distinctive superparamagnetic characteristics and elevated surface-area-to-volume ratios, facilitating improved physicochemical interactions with solutes and pollutants. These characteristics make MNPs strong contenders for use in water treatment applications. This research investigates the [...] Read more.
Magnetic nanoparticles (MNPs), especially iron oxide (Fe3O4), display distinctive superparamagnetic characteristics and elevated surface-area-to-volume ratios, facilitating improved physicochemical interactions with solutes and pollutants. These characteristics make MNPs strong contenders for use in water treatment applications. This research investigates the application of iron oxide MNPs synthesized via co-precipitation as innovative draw solutes in forward osmosis (FO) for treating synthetic produced water (SPW). The FO membrane underwent surface modification with sulfobetaine methacrylate (SBMA), a zwitterionic polymer, to increase hydrophilicity, minimize fouling, and elevate water flux. The SBMA functional groups aid in electrostatic repulsion of organic and inorganic contaminants, simultaneously encouraging robust hydration layers that improve water permeability. This adjustment is vital for sustaining consistent flux performance while functioning with MNP-based draw solutions. Material analysis through thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and Fourier-transform infrared spectroscopy (FTIR) verified the MNPs’ thermal stability, consistent morphology, and modified surface chemistry. The FO experiments showed a distinct relationship between MNP concentration and osmotic efficiency. At an MNP dosage of 10 g/L, the peak real-time flux was observed at around 3.5–4.0 L/m2·h. After magnetic regeneration, 7.8 g of retrieved MNPs generated a steady flow of ~2.8 L/m2·h, whereas a subsequent regeneration (4.06 g) resulted in ~1.5 L/m2·h, demonstrating partial preservation of osmotic driving capability. Post-FO draw solutions, after filtration, exhibited total dissolved solids (TDS) measurements that varied from 2.5 mg/L (0 g/L MNP) to 227.1 mg/L (10 g/L MNP), further validating the effective dispersion and solute contribution of MNPs. The TDS of regenerated MNP solutions stayed similar to that of their fresh versions, indicating minimal loss of solute activity during the recycling process. The combined synergistic application of SBMA-modified FO membranes and regenerable MNP draw solutes showcases an effective and sustainable method for treating produced water, providing excellent water recovery, consistent operational stability, and opportunities for cyclic reuse. Full article
(This article belongs to the Section Purification Technology)
Show Figures

Graphical abstract

35 pages, 5195 KiB  
Article
A Multimodal AI Framework for Automated Multiclass Lung Disease Diagnosis from Respiratory Sounds with Simulated Biomarker Fusion and Personalized Medication Recommendation
by Abdullah, Zulaikha Fatima, Jawad Abdullah, José Luis Oropeza Rodríguez and Grigori Sidorov
Int. J. Mol. Sci. 2025, 26(15), 7135; https://doi.org/10.3390/ijms26157135 - 24 Jul 2025
Viewed by 448
Abstract
Respiratory diseases represent a persistent global health challenge, underscoring the need for intelligent, accurate, and personalized diagnostic and therapeutic systems. Existing methods frequently suffer from limitations in diagnostic precision, lack of individualized treatment, and constrained adaptability to complex clinical scenarios. To address these [...] Read more.
Respiratory diseases represent a persistent global health challenge, underscoring the need for intelligent, accurate, and personalized diagnostic and therapeutic systems. Existing methods frequently suffer from limitations in diagnostic precision, lack of individualized treatment, and constrained adaptability to complex clinical scenarios. To address these challenges, our study introduces a modular AI-powered framework that integrates an audio-based disease classification model with simulated molecular biomarker profiles to evaluate the feasibility of future multimodal diagnostic extensions, alongside a synthetic-data-driven prescription recommendation engine. The disease classification model analyzes respiratory sound recordings and accurately distinguishes among eight clinical classes: bronchiectasis, pneumonia, upper respiratory tract infection (URTI), lower respiratory tract infection (LRTI), asthma, chronic obstructive pulmonary disease (COPD), bronchiolitis, and healthy respiratory state. The proposed model achieved a classification accuracy of 99.99% on a holdout test set, including 94.2% accuracy on pediatric samples. In parallel, the prescription module provides individualized treatment recommendations comprising drug, dosage, and frequency trained on a carefully constructed synthetic dataset designed to emulate real-world prescribing logic.The model achieved over 99% accuracy in medication prediction tasks, outperforming baseline models such as those discussed in research. Minimal misclassification in the confusion matrix and strong clinician agreement on 200 prescriptions (Cohen’s κ = 0.91 [0.87–0.94] for drug selection, 0.78 [0.74–0.81] for dosage, 0.96 [0.93–0.98] for frequency) further affirm the system’s reliability. Adjusted clinician disagreement rates were 2.7% (drug), 6.4% (dosage), and 1.5% (frequency). SHAP analysis identified age and smoking as key predictors, enhancing model explainability. Dosage accuracy was 91.3%, and most disagreements occurred in renal-impaired and pediatric cases. However, our study is presented strictly as a proof-of-concept. The use of synthetic data and the absence of access to real patient records constitute key limitations. A trialed clinical deployment was conducted under a controlled environment with a positive rate of satisfaction from experts and users, but the proposed system must undergo extensive validation with de-identified electronic medical records (EMRs) and regulatory scrutiny before it can be considered for practical application. Nonetheless, the findings offer a promising foundation for the future development of clinically viable AI-assisted respiratory care tools. Full article
Show Figures

Figure 1

18 pages, 4721 KiB  
Article
Study on Stability and Fluidity of HPMC-Modified Gangue Slurry with Industrial Validation
by Junyu Jin, Xufeng Jin, Yu Wang and Fang Qiao
Materials 2025, 18(15), 3461; https://doi.org/10.3390/ma18153461 - 23 Jul 2025
Viewed by 318
Abstract
HPMC, regulating slurry properties, is widely used in cement-based materials. Research on the application of HPMC in gangue slurry is still in its early stages. Moreover, the interactive effects of various factors on gangue slurry performance have not been thoroughly investigated. The work [...] Read more.
HPMC, regulating slurry properties, is widely used in cement-based materials. Research on the application of HPMC in gangue slurry is still in its early stages. Moreover, the interactive effects of various factors on gangue slurry performance have not been thoroughly investigated. The work examined the effects of slurry concentration (X1), maximum gangue particle size (X2), and HPMC dosage (X3) on slurry performance using response surface methodology (RSM). The microstructure of the slurry was characterized via scanning electron microscopy (SEM) and polarized light microscopy (PLM), while low-field nuclear magnetic resonance (LF-NMR) was employed to analyze water distribution. Additionally, industrial field tests were conducted. The results are presented below. (1) X1 and X3 exhibited a negative correlation with layering degree and slump flow, while X2 showed a positive correlation. Slurry concentration had the greatest impact on slurry performance, followed by maximum particle size and HPMC dosage. HPMC significantly improved slurry stability, imposing the minimum negative influence on fluidity. Interaction terms X1X2 and X1X3 significantly affected layering degree and slump flow, while X2X3 significantly affected layering degree instead of slump flow. (2) Derived from the RSM, the statistical models for layering degree and slump flow define the optimal slurry mix proportions. The gangue gradation index ranged from 0.40 to 0.428, with different gradations requiring specific slurry concentration and HPMC dosages. (3) HPMC promoted the formation of a 3D floc network structure of fine particles through adsorption-bridging effects. The spatial supporting effect of the floc network inhibited the sedimentation of coarse particles, which enhanced the stability of the slurry. Meanwhile, HPMC only converted a small amount of free water into floc water, which had a minimal impact on fluidity. HPMC addition achieved the synergistic optimization of slurry stability and fluidity. (4) Field industrial trials confirmed that HPMC-optimized gangue slurry demonstrated significant improvements in both stability and flowability. The optimized slurry achieved blockage-free pipeline transportation, with a maximum spreading radius exceeding 60 m in the goaf and a maximum single-borehole backfilling volume of 2200 m3. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

17 pages, 5515 KiB  
Article
Hypoglycemic Effects of Silphium perfoliatum L. In Vitro and In Vivo and Its Active Composition Identification by UPLC-Triple-TOF-MS/MS
by Guoying Zhang, Liying Liu, Wenjing Jia, Luya Wang, Jihong Tao, Wei Zhang, Huilan Yue, Dejun Zhang and Xiaohui Zhao
Pharmaceuticals 2025, 18(8), 1087; https://doi.org/10.3390/ph18081087 - 23 Jul 2025
Viewed by 255
Abstract
Background: Reducing postprandial blood glucose (PBG) is a crucial strategy for treating diabetes and minimizing the risk of complications. Developing efficient and safe α-glycosidase inhibitors from natural products to lower PBG has attracted much attention. Silphium perfoliatum L. (SP), a traditional herbal [...] Read more.
Background: Reducing postprandial blood glucose (PBG) is a crucial strategy for treating diabetes and minimizing the risk of complications. Developing efficient and safe α-glycosidase inhibitors from natural products to lower PBG has attracted much attention. Silphium perfoliatum L. (SP), a traditional herbal medicine of North American Indigenous tribes, has efficacy of treating metabolic diseases, but its hypoglycemic activity and bioactive components have not been fully studied. Methods: In vitro α-glucosidase inhibition and in vivo sucrose/maltose/starch tolerance assays were performed to assess the hypoglycemic effects of SP extracts, and UPLC-Triple-TOF-MS/MS analysis was used to tentatively identify its chemical structure composition. In vitro enzyme inhibition and molecular docking were used to verify the effective ingredients. Results: In vitro hypoglycemic activities of four extracts of SP (SP-10/SP-40/SP-60/SP-C) showed that SP-10 exhibited strong α-glucosidase (sucrase and maltase) inhibitory effects with IC50 of 67.81 μg/mL and 62.99 μg/mL, respectively. Carbohydrate tolerance assays demonstrated that SP-10 could significantly reduce the PBG levels of diabetic mice, with a significant hypoglycemic effect at a dosage of 20 mg/kg. A total of 26 constituents, including 11 caffeoylquinic acids (CQAs) and 15 flavonol glycosides, were tentatively identified by mainly analyzing secondary MS fragmentation. Moreover, three CQAs rich in SP-10, namely chlorogenic acid (CGA), neochlorogenic acid (NCGA), and cryptochlorogenic acid (CCGA), may be the main hypoglycemic substances, as evidenced by their inhibitory effects on sucrase and maltase. Conclusions: The α-glucosidase inhibitory effects of SP extract both in vitro and in vivo and its active ingredients were systematically studied for the first time. Results indicated that SP extract, rich in CQAs, had significant hypoglycemic activity, supporting the considerable potential of SP as hypoglycemic functional food or cost-effective therapeutic agents for diabetes treatment. Full article
(This article belongs to the Section Natural Products)
Show Figures

Graphical abstract

24 pages, 3944 KiB  
Article
Effect of Rice Husk Addition on the Hygrothermal, Mechanical, and Acoustic Properties of Lightened Adobe Bricks
by Grégoire Banaba, Sébastien Murer, Céline Rousse, Fabien Beaumont, Christophe Bliard, Éric Chatelet and Guillaume Polidori
Materials 2025, 18(14), 3364; https://doi.org/10.3390/ma18143364 - 17 Jul 2025
Viewed by 292
Abstract
In the context of efforts to reduce greenhouse gas emissions in the building sector, the reintegration of traditional earthen construction into modern architectural and renovation practices offers a sustainable alternative. To address the mechanical and water-resistance limitations of adobe bricks, the use of [...] Read more.
In the context of efforts to reduce greenhouse gas emissions in the building sector, the reintegration of traditional earthen construction into modern architectural and renovation practices offers a sustainable alternative. To address the mechanical and water-resistance limitations of adobe bricks, the use of agricultural waste—such as rice husk—is increasingly being explored. This experimental study evaluates the effects of rice husk addition on the mechanical, hygrothermal, and acoustic properties of adobe bricks. Two soil types—one siliceous and one calcareous—were combined with 1, 2, and 3 wt% rice husk to produce bio-based earthen bricks. The influence of rice husk was found to depend strongly on the soils’ mineralogical and granulometric characteristics. The most significant improvements were in hygrothermal performance: at 3 wt%, thermal conductivity was reduced by up to 35% for calcareous soil and 20% for siliceous soil, indicating enhanced insulation. Specific heat capacity also increased with husk content, suggesting better thermal inertia. The moisture buffering capacity, already high in raw soils, is further improved due to increased surface porosity. Mechanically, rice husk incorporation had mixed effects: a modest increase in compressive strength was observed in siliceous soil at 1 wt%, while calcareous soil showed slight improvement at 3 wt%. Acoustic performance remained low across all samples, with minimal gains attributed to limited macro-porosity. These findings highlight the importance of soil composition in optimizing rice husk dosage and suggest promising potential for rice husk-stabilized adobe bricks, especially in thermally demanding environments. Full article
Show Figures

Figure 1

10 pages, 232 KiB  
Article
Symptom-Triggered Alcohol Detoxification Compared to Fixed-Dose Regimen of Benzodiazepines: A Retrospective Case–Control Study
by Laurent Becciolini, Fabienne Wehrli, Jens Kronschnabel, Carolina Wiesendanger, Norbert Scherbaum and Patrik Roser
Brain Sci. 2025, 15(7), 758; https://doi.org/10.3390/brainsci15070758 - 17 Jul 2025
Viewed by 325
Abstract
Background: Alcohol withdrawal syndrome is a common clinical challenge that may lead to significant complications if not properly managed. Symptom-triggered therapy (STT) represents a promising alternative to fixed-dose regimens (FDRs) providing benzodiazepine prescriptions based on objectively quantified withdrawal symptoms. This study aimed to [...] Read more.
Background: Alcohol withdrawal syndrome is a common clinical challenge that may lead to significant complications if not properly managed. Symptom-triggered therapy (STT) represents a promising alternative to fixed-dose regimens (FDRs) providing benzodiazepine prescriptions based on objectively quantified withdrawal symptoms. This study aimed to evaluate the effectiveness and safety of STT using the Hamburg Alcohol Withdrawal Scale (HAES) compared to FDRs in the management of inpatient alcohol detoxification. Methods: In a retrospective case–control study, alcohol detoxification treatment in STT was compared with FDRs. During a twelve-month observation period, a total of 123 patients in the STT group were recruited and compared with 123 controls in the FDR group (matched according to sex, age, and current amount of alcohol consumption) treated in the same hospital before the implementation of STT. The study outcomes included the total benzodiazepine dosage, duration of acute detoxification phase, length of inpatient stay, and occurrence of complications such as epileptic seizures and delirium tremens. Results: STT showed a significantly lower total benzodiazepine dosage (22.50 mg vs. 115.00 mg, p < 0.001), a shorter duration of the detoxification phase (48.00 h vs. 201.75 h, p < 0.001), and a reduced length of inpatient stay (23.00 days vs. 28.00 days, p = 0.003) compared to FDRs. There were no significant differences in the rates of complications between the two settings. Linear mixed model analysis revealed that the differences remained highly significant even after adjusting for various explanatory variables (i.e., age, sex, standard units of alcohol, psychiatric comorbidities, treatment discontinuation, and occurrence of any complication). Conclusions: STT appears to be as effective and safe as traditional fixed-dose regimens of benzodiazepines for the management of inpatient alcohol detoxification. This approach may thereby minimize unnecessary pharmacological exposure, facilitate the earlier integration of patients into psychoeducational and psychosocial interventions, and reduce healthcare costs. Full article
(This article belongs to the Special Issue Psychiatry and Addiction: A Multi-Faceted Issue)
12 pages, 422 KiB  
Review
Inhaled and Systemic Steroids for Bronchopulmonary Dysplasia: Targeting Inflammation and Oxidative Stress
by Francesca Galletta, Alessandra Li Pomi, Sara Manti and Eloisa Gitto
Antioxidants 2025, 14(7), 869; https://doi.org/10.3390/antiox14070869 - 16 Jul 2025
Viewed by 358
Abstract
Bronchopulmonary dysplasia (BPD) remains a significant complication of preterm birth, characterized by impaired alveolar and vascular development, chronic lung inflammation, and long-term respiratory morbidity. Corticosteroids, both systemic and inhaled, have been widely investigated as potential therapeutic agents due to their anti-inflammatory properties and [...] Read more.
Bronchopulmonary dysplasia (BPD) remains a significant complication of preterm birth, characterized by impaired alveolar and vascular development, chronic lung inflammation, and long-term respiratory morbidity. Corticosteroids, both systemic and inhaled, have been widely investigated as potential therapeutic agents due to their anti-inflammatory properties and their emerging role in modulating oxidative stress. This narrative review explores the current evidence regarding the use of inhaled and systemic corticosteroids in the prevention and management of BPD, analyzing their efficacy, safety profiles, and long-term outcomes. While systemic corticosteroids, particularly dexamethasone, have demonstrated benefits in reducing ventilator dependence and lung inflammation, concerns regarding adverse neurodevelopmental effects have limited their routine use. Inhaled steroids have been proposed as a safer alternative, but their role in altering the disease trajectory remains controversial. A better understanding of the optimal timing, dosage, and patient selection is essential to maximize benefits while minimizing risks. Future research should focus on optimizing dosing strategies and identifying subgroups of preterm infants who may derive the greatest benefit from corticosteroid therapy. Full article
(This article belongs to the Special Issue Oxidative Stress in the Newborn)
Show Figures

Figure 1

22 pages, 1305 KiB  
Review
Hydrogel Conjugation: Engineering of Hydrogels for Drug Delivery
by Linh Dinh, Sung-Joo Hwang and Bingfang Yan
Pharmaceutics 2025, 17(7), 897; https://doi.org/10.3390/pharmaceutics17070897 - 10 Jul 2025
Viewed by 656
Abstract
Background: Hydrogels are 3D networks of hydrophilic polymers with various biomedical applications, including tissue regeneration, wound healing, and localized drug delivery. Hydrogel conjugation links therapeutic agents to a hydrogel network, creating a delivery system with adjustable and flexible hydrogel properties and drug [...] Read more.
Background: Hydrogels are 3D networks of hydrophilic polymers with various biomedical applications, including tissue regeneration, wound healing, and localized drug delivery. Hydrogel conjugation links therapeutic agents to a hydrogel network, creating a delivery system with adjustable and flexible hydrogel properties and drug activity, allowing for controlled release and enhanced drug stability. Conjugating therapeutic agents to hydrogels provides innovative delivery formats, including injectable and sprayable dosage forms, which facilitate localized and long-lasting delivery. This approach enables non-viral therapeutic methods, such as insertional mutagenesis, and minimally invasive drug administration. Scope and Objectives: While numerous reviews have analyzed advancements in hydrogel synthesis, characterization, properties, and hydrogels as a drug delivery vehicle, this review focuses on hydrogel conjugation, which enables the precise functionalization of hydrogels with small molecules and macromolecules. Subsequently, a description and discussion of several bio-conjugated hydrogel systems, as well as binding motifs (e.g., “click” chemistry, functional group coupling, enzymatic ligation, etc.) and their potential for clinical translation, are provided. In addition, the integration of therapeutic agents with nucleic acid-based hydrogels can be leveraged for sequence-specific binding, representing a leap forward in biomaterials. Key findings: Special attention was given to the latest conjugation approaches and binding motifs that are useful for designing hydrogel-based drug delivery systems. The review systematically categorizes hydrogel conjugates for drug delivery, focusing on conjugating hydrogels with major classes of therapeutic agents, including small-molecule drugs, nucleic acids, proteins, etc., each with distinct conjugation challenges. The design principles were discussed along with their properties and drug release profiles. Finally, future opportunities and current limitations of conjugated hydrogel systems are addressed. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Figure 1

18 pages, 1437 KiB  
Article
Exploration of Microbially Induced Carbonate Precipitation Technology for the Protection of Soil on Agricultural Drainage Ditch Slopes
by Xinran Huang, Jiang Li, Mingxiao Su, Xiyun Jiao, Qiuming Wu and Zhe Gu
Water 2025, 17(13), 2010; https://doi.org/10.3390/w17132010 - 4 Jul 2025
Viewed by 379
Abstract
Microbially induced carbonate precipitation (MICP) offers an eco-friendly approach to stabilize porous materials. This study evaluates its feasibility for protecting agricultural drainage ditch slopes through laboratory tests. Liquid experiments assessed calcium carbonate (CaCO3) precipitation rates under varying bacteria–cementation solution ratios (BCR), [...] Read more.
Microbially induced carbonate precipitation (MICP) offers an eco-friendly approach to stabilize porous materials. This study evaluates its feasibility for protecting agricultural drainage ditch slopes through laboratory tests. Liquid experiments assessed calcium carbonate (CaCO3) precipitation rates under varying bacteria–cementation solution ratios (BCR), cementation solution concentrations (1–2 mol/L), and urease inhibitor (NBPT) contents (0–0.3%). Soil experiments further analyzed the effects of solidified layer thickness (4 cm vs. 8 cm) and curing cycles on soil stabilization. The results showed that CaCO3 precipitation peaked at a BCR of 4:5 and declined when NBPT exceeded 0.1%. Optimal parameters (0.1% NBPT, 1 mol/L cementation solution, BCR 4:5) were applied to soil tests, revealing that multi-cycle treatments enhanced soil water retention and CaCO3 content (up to 7.6%) and reduced disintegration rates (by 70%) and permeability (by 83%). A 4 cm solidified layer achieved higher Ca2+ utilization, while an 8 cm layer matched or exceeded 4 cm performance with shorter curing. Calcite crystals dominated CaCO3 formation. Crucially, reagent dosage should approximate four times the target layer’s requirement to ensure efficacy. These findings demonstrate that MICP, when optimized, effectively stabilizes ditch slopes using minimal reagents, providing a sustainable strategy for agricultural soil conservation. Full article
(This article belongs to the Section Water, Agriculture and Aquaculture)
Show Figures

Figure 1

17 pages, 3910 KiB  
Article
Extraction of Valuable Metals from Spent Li-Ion Batteries Combining Reduction Smelting and Chlorination
by Chen Wang, Wei Liu, Congren Yang and Hongbin Ling
Metals 2025, 15(7), 732; https://doi.org/10.3390/met15070732 - 30 Jun 2025
Viewed by 377
Abstract
Pyrometallurgical recycling of lithium-ion batteries presents distinct advantages including streamlined processing, simplified pretreatment requirements, and high throughput capacity. However, its industrial implementation faces challenges associated with high energy demands and lithium loss into slag phases. This investigation develops an integrated reduction smelting–chloridizing volatilization [...] Read more.
Pyrometallurgical recycling of lithium-ion batteries presents distinct advantages including streamlined processing, simplified pretreatment requirements, and high throughput capacity. However, its industrial implementation faces challenges associated with high energy demands and lithium loss into slag phases. This investigation develops an integrated reduction smelting–chloridizing volatilization process for the comprehensive recovery of strategic metals (Li, Mn, Cu, Co, Ni) from spent ternary lithium-ion batteries; calcium chloride was selected as the chlorinating agent for this purpose. Thermodynamic analysis was performed to understand the phase evolution during reduction smelting and to design an appropriate slag composition. Preliminary experiments compared carbon and aluminum powder as reducing agents to identify optimal operational parameters: a smelting temperature of 1450 °C, 2.5 times theoretical CaCl2 dosage, and duration of 120 min. The process achieved effective element partitioning with lithium and manganese volatilizing as chloride species, while transition metals (Cu, Ni, Co) were concentrated into an alloy phase. Process validation in an induction furnace with N2-O2 top blowing demonstrated enhanced recovery efficiency through optimized oxygen supplementation (four times the theoretical oxygen requirement). The recovery rates of Li, Mn, Cu, Co, and Ni reached 94.1%, 93.5%, 97.6%, 94.4%, and 96.4%, respectively. This synergistic approach establishes an energy-efficient pathway for simultaneous multi-metal recovery, demonstrating industrial viability for large-scale lithium-ion battery recycling through minimized processing steps and maximized resource utilization. Full article
(This article belongs to the Special Issue Green Technologies in Metal Recovery)
Show Figures

Figure 1

25 pages, 2549 KiB  
Article
Development of Low-Dose Disulfiram Rectal Suppository Intended for Application in Post-Treatment Lyme Disease Syndrome
by Beáta-Mária Benkő, Bálint-Imre Szabó, Szabina Kádár, Edina Szabó, Gergő Tóth, Lajos Szente, Péter Tonka-Nagy, Romána Zelkó and István Sebe
Pharmaceutics 2025, 17(7), 849; https://doi.org/10.3390/pharmaceutics17070849 - 28 Jun 2025
Viewed by 1943
Abstract
Background/Objectives: Early diagnosis and oral or, in severe cases, intravenous antibiotics are usually effective for Lyme disease, but some patients have persistent symptoms unresponsive to standards of care, requiring alternative therapies. Disulfiram (DIS), a drug for alcoholism, is under investigation as a [...] Read more.
Background/Objectives: Early diagnosis and oral or, in severe cases, intravenous antibiotics are usually effective for Lyme disease, but some patients have persistent symptoms unresponsive to standards of care, requiring alternative therapies. Disulfiram (DIS), a drug for alcoholism, is under investigation as a potential adjunctive treatment, but its low bioavailability, rapid metabolism, and safety concerns urge the development of improved formulations for clinical translation. Methods: Screening dissolution and permeation studies were investigated for vehicle and excipient selection, following the pharmacopeia perspectives to develop and optimize the low-dose DIS rectal suppository intended for application in post-treatment Lyme disease syndrome (PTLDS). Further characterizations were carried out by differential scanning calorimetry, X-ray diffraction, and infrared spectroscopy. Results: Cyclodextrin (CD) encapsulation was investigated to improve the aqueous solubility of the hydrophobic drug. The dissolution of DIS from fatty base suppository was very slow; it was remarkably improved by the molecular encapsulation of the drug with CDs. The dissolution of DIS from a water-soluble base was more favorable, but incomplete. In the polyethylene glycol (PEG) based suppositories, the addition of CDs already in a physical mixture ensured the dissolution of the drug. The presented drug delivery system relates to a novel preparation for rectal administration comprising a low-dose disulfiram with improved solubility and permeability by the PEG and hydroxypropyl-β-cyclodextrin (HPBCD) synergistic matrix. Conclusions: The rectal dosage form containing the drug and CD in the physical mixture is advantageous, avoiding the hepatic first-pass effect, minimizing dose-limiting toxicity, simplifying production, and fasting the availability of the repositioned drug. Full article
(This article belongs to the Section Physical Pharmacy and Formulation)
Show Figures

Graphical abstract

Back to TopTop