Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (38)

Search Parameters:
Keywords = mini-spectrometers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 485 KB  
Article
Estimation and Classification of Coffee Plant Water Potential Using Spectral Reflectance and Machine Learning Techniques
by Deyvis Cabrini Teixeira Delfino, Danton Diego Ferreira, Margarete Marin Lordelo Volpato, Vânia Aparecida Silva, Renan Teixeira Delfino, Christiano Sousa Machado de Matos and Meline de Oliveira Santos
Biophysica 2025, 5(4), 60; https://doi.org/10.3390/biophysica5040060 - 4 Dec 2025
Viewed by 367
Abstract
Water potential is an important indicator used to study water relations in plants, as it reflects the level of hydration in their tissues. There are different numerical variables that describe plant properties and can be acquired from leaf reflectance. The objective of this [...] Read more.
Water potential is an important indicator used to study water relations in plants, as it reflects the level of hydration in their tissues. There are different numerical variables that describe plant properties and can be acquired from leaf reflectance. The objective of this study was to estimate water potential in coffee plants using spectral variables. For this, a range of wavelengths that provided analytical flexibility was used. After this, machine learning techniques were employed to build data-driven models. The dataset used presents spectral characteristics (wavelength) of coffee plants, collected through the CI-710 Mini-Leaf Spectrometer equipment and also the water potential of each coffee plant, measured by the Scholander Chamber equipment. The dataset was divided into two crop management groups: irrigated and rainfed. Four machine learning techniques were implemented: Multi-Layer Perceptron (MLP), Decision Tree, Random Forest and K-Nearest Neighbor (KNN). The implementation of machine learning techniques followed two distinct strategies: regression and classification. The results indicate that the decision tree-based model demonstrated superior performance under irrigated conditions for regression tasks. In contrast, the KNN technique achieved the best performance for classification. Under rainfed conditions, the MLP model outperformed the other techniques for regression, while the Random Forest method exhibited the highest accuracy in classification tasks. While no hardware prototype was developed, the machine learning-based methods presented here suggest a possible pathway toward future intelligent, user-friendly, and accessible sensing technologies for coffee plantations. Full article
Show Figures

Figure 1

17 pages, 3901 KB  
Article
Wearable Multispectral Sensor for Newborn Jaundice Monitoring
by Fernando Crivellaro, Ana Isabel Sousa Pedroso, Anselmo Costa and Pedro Vieira
Sensors 2025, 25(23), 7293; https://doi.org/10.3390/s25237293 - 30 Nov 2025
Viewed by 831
Abstract
Newborn immaturity transcends their bodies, immune systems, and communication and perception capabilities, making them vulnerable to the environment. Neonatal jaundice is a common condition, with higher levels of unconjugated bilirubin concentration having neurotoxic effects. Newborns are routinely monitored visually or non-invasively with transcutaneous [...] Read more.
Newborn immaturity transcends their bodies, immune systems, and communication and perception capabilities, making them vulnerable to the environment. Neonatal jaundice is a common condition, with higher levels of unconjugated bilirubin concentration having neurotoxic effects. Newborns are routinely monitored visually or non-invasively with transcutaneous bilirubinometry (TcB) due to their biological immaturity to conjugate bilirubin. Higher levels of bilirubin are a sign that there is either an unusual rate of red blood cells breaking down or that the liver is not able to eliminate bilirubin through bile into the gastrointestinal tract. Actual devices used in bilirubin screening are hand-held and do not allow operation outside the hospital. Based on these factors, a continuous bilirubin monitoring device for newborns was developed, which enables the evaluation of neonatal jaundice inside or outside the hospital. This non-invasive device operates through a mini-spectrometer in the visible range. It was calibrated with phantoms, and its operation was compared with a gold-standard bilirubinometer through in vitro experiments, exploring the practical range of bilirubin variation in newborns and presenting a clinically acceptable deviation of 1 mg/dL. These experiments showed that the continuous bilirubin monitoring device developed has the potential to be used for remote monitoring of jaundice in newborns. Full article
Show Figures

Figure 1

15 pages, 1790 KB  
Article
Rapid On-Demand Point-of-Care Monitoring of Clozapine and Its Metabolite Norclozapine Using Miniature Mass Spectrometry
by Xiaosuo Wang, Wei Yi Lew, Yang Yang, Nan Zhang, Jiexun Bu, Zhentao Li, Michael Fitzpatrick, Paul Bonnitcha, David Sullivan, Wenpeng Zhang, Yu Zheng and John F. O’Sullivan
Pharmaceuticals 2025, 18(10), 1549; https://doi.org/10.3390/ph18101549 - 14 Oct 2025
Cited by 1 | Viewed by 1043
Abstract
Background/Objectives: Clozapine remains the gold standard for treatment-resistant schizophrenia. However, its narrow therapeutic window and risk of severe side effects require close monitoring of both clozapine and its primary metabolite, norclozapine. Existing therapeutic drug monitoring (TDM) methods are limited by delays, high [...] Read more.
Background/Objectives: Clozapine remains the gold standard for treatment-resistant schizophrenia. However, its narrow therapeutic window and risk of severe side effects require close monitoring of both clozapine and its primary metabolite, norclozapine. Existing therapeutic drug monitoring (TDM) methods are limited by delays, high costs, and operational complexity. This study introduces three rapid point-of-care (POC) assays utilizing a miniature mass spectrometer (Mini-MS) to quantify clozapine and norclozapine in plasma, whole blood, and dried blood spots (DBSs), facilitating applications across diverse clinical settings. Methods: The analytical performance of the assay was evaluated for sensitivity, specificity, reproducibility, and correlation with reference methods. Clinical samples from two hospitals were analysed and validated against conventional liquid chromatography tandem mass spectrometry (LC-MS/MS) reference standards at New South Wales Health Pathology (NSWHP) and Tsinghua University laboratories. Results: The Mini-MS assay accurately quantified both analytes within therapeutic ranges across all matrices. Inter-assay coefficients of variation ranged from 7.9 to 14.1% for clozapine and from 1.6 to 14.6% for norclozapine. Accuracy fell between 85 and 117% in plasma and blood extracts. Strong linearity was demonstrated (R2 = 0.98–0.99) over the concentration range of 10–1000 ng/mL. Results from the Mini-MS analysis showed excellent correlations with LC-MS/MS results (r = 0.998). Conclusions: In this proof-of-concept study, the Mini-MS-based POC assays enable rapid, reliable quantification of clozapine and norclozapine, with performance comparable to conventional laboratory methods. This platform supports real-time TDM, facilitating timely dose adjustments, adherence monitoring, and ultimately improving patient outcomes. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Figure 1

20 pages, 3037 KB  
Article
An Automated Microfluidic Platform for In Vitro Raman Analysis of Living Cells
by Illya Klyusko, Stefania Scalise, Francesco Guzzi, Luigi Randazzini, Simona Zaccone, Elvira Immacolata Parrotta, Valeria Lucchino, Alessio Merola, Carlo Cosentino, Ulrich Krühne, Isabella Aquila, Giovanni Cuda, Enzo Di Fabrizio, Patrizio Candeloro and Gerardo Perozziello
Biosensors 2025, 15(7), 459; https://doi.org/10.3390/bios15070459 - 16 Jul 2025
Cited by 1 | Viewed by 1787
Abstract
We present a miniaturized, inexpensive, and user-friendly microfluidic platform to support biological applications. The system integrates a mini-incubator providing controlled environmental conditions and housing a microfluidic device for long-term cell culture experiments. The incubator is designed to be compatible with standard inverted optical [...] Read more.
We present a miniaturized, inexpensive, and user-friendly microfluidic platform to support biological applications. The system integrates a mini-incubator providing controlled environmental conditions and housing a microfluidic device for long-term cell culture experiments. The incubator is designed to be compatible with standard inverted optical microscopes and Raman spectrometers, allowing for the non-invasive imaging and spectroscopic analysis of cell cultures in vitro. The microfluidic device, which reproduces a dynamic environment, was optimized to sustain a passive, gravity-driven flow of medium, eliminating the need for an external pumping system and reducing mechanical stress on the cells. The platform was tested using Raman analysis and adherent tumoral cells to assess proliferation prior and subsequent to hydrogen peroxide treatment for oxidative stress induction. The results demonstrated a successful adhesion of cells onto the substrate and their proliferation. Furthermore, the platform is suitable for carrying out optical monitoring of cultures and Raman analysis. In fact, it was possible to discriminate spectra deriving from control and hydrogen peroxide-treated cells in terms of DNA backbone and cellular membrane modification effects provoked by reactive oxygen species (ROS) activity. The 800–1100 cm−1 band highlights the destructive effects of ROS on the DNA backbone’s structure, as its rupture modifies its vibration; moreover, unpaired nucleotides are increased in treated sample, as shown in the 1154–1185 cm−1 band. Protein synthesis deterioration, led by DNA structure damage, is highlighted in the 1257–1341 cm−1, 1440–1450 cm−1, and 1640–1670 cm−1 bands. Furthermore, membrane damage is emphasized in changes in the 1270, 1301, and 1738 cm−1 frequencies, as phospholipid synthesis is accelerated in an attempt to compensate for the membrane damage brought about by the ROS attack. This study highlights the potential use of this platform as an alternative to conventional culturing and analysis procedures, considering that cell culturing, optical imaging, and Raman spectroscopy can be performed simultaneously on living cells with minimal cellular stress and without the need for labeling or fixation. Full article
(This article belongs to the Special Issue Microfluidic Devices for Biological Sample Analysis)
Show Figures

Figure 1

11 pages, 2330 KB  
Article
Separations of Strategic Metals from Spent Electronic Waste Using “Green Methods”
by Urszula Domańska, Anna Wiśniewska and Zbigniew Dąbrowski
Separations 2025, 12(6), 167; https://doi.org/10.3390/separations12060167 - 18 Jun 2025
Viewed by 1092
Abstract
Next-generation recycling technologies must be urgently innovated to tackle huge volumes of spent batteries, photovoltaic panels or printed circuit boards (WPCBs). Current e-waste recycling industrial technology is dominated by traditional recycling technologies. Herein, ionic liquids (ILs), deep eutectic solvents (DESs) and promising oxidizing [...] Read more.
Next-generation recycling technologies must be urgently innovated to tackle huge volumes of spent batteries, photovoltaic panels or printed circuit boards (WPCBs). Current e-waste recycling industrial technology is dominated by traditional recycling technologies. Herein, ionic liquids (ILs), deep eutectic solvents (DESs) and promising oxidizing additives that can overcome some traditional recycling methods of metal ions from e-waste, used in our works from last year, are presented. The unique chemical environments of ILs and DESs, with the application of low-temperature extraction procedures, are important environmental aspects known as “Green Methods”. A closed-loop system for recycling zinc and manganese from the “black mass” (BM) of waste, Zn-MnO2 batteries, is presented. The leaching process achieves a high efficiency and distribution ratio using the composition of two solvents (Cyanex 272 + diethyl phosphite (DPh)) for Zn(II) extraction. High extraction efficiency with 100% zinc and manganese recovery is also achieved using DESs (cholinum chloride/lactic acid, 1:2, DES 1, and cholinum chloride/malonic acid, 1:1, DES 2). New, greener recycling approaches to metal extraction from the BM of spent Li-ion batteries are presented with ILs ([N8,8,8,1][Cl], (Aliquat 336), [P6,6,6,14][Cl], [P6,6,6,14][SCN] and [Benzet][TCM]) eight DESs, Cyanex 272 and D2EHPA. A high extraction efficiency of Li(I) (41–92 wt%) and Ni(II) (37–52 wt%) using (Cyanex 272 + DPh) is obtained. The recovery of Ni(II) and Cd(II) from the BM of spent Ni-Cd batteries is also demonstrated. The extraction efficiency of DES 1 and DES 2, contrary to ILs ([P6,6,6,14][Cl] and [P6,6,6,14][SCN]), is at the level of 30 wt% for Ni(II) and 100 wt% for Cd(II). In this mini-review, the option to use ILs, DESs and Cyanex 272 for the recovery of valuable metals from end-of-life WPCBs is presented. Next-generation recycling technologies, in contrast to the extraction of metals from acidic leachate preceded by thermal pre-treatment or from solid material only after thermal pre-treatment, have been developed with ILs and DESs using the ABS method, as well as Cyanex 272 (only after the thermal pre-treatment of WPCBs), with a process efficiency of 60–100 wt%. In this process, four new ILs are used: didecyldimethylammonium propionate, [N10,10,1,1][C2H5COO], didecylmethylammonium hydrogen sulphate, [N10,10,1,H][HSO4], didecyldimethylammonium dihydrogen phosphate, [N10,10,1,1][H2PO4], and tetrabutylphosphonium dihydrogen phosphate, [P4,4,4,4][H2PO4]. The extraction of Cu(II), Ag(I) and other metals such as Al(III), Fe(II) and Zn(II) from solid WPCBs is demonstrated. Various additives are used during the extraction processes. The Analyst 800 atomic absorption spectrometer (FAAS) is used for the determination of metal content in the solid BM. The ICP-OES method is used for metal analysis. The obtained results describe the possible application of ILs and DESs as environmental media for upcycling spent electronic wastes. Full article
(This article belongs to the Section Materials in Separation Science)
Show Figures

Graphical abstract

29 pages, 7198 KB  
Article
Meridiani Planum Mineralogy Along Part of the Opportunity Rover Track Based on the Mini-TES Spectrum
by Zalewska Natalia and Leszek Czechowski
Remote Sens. 2025, 17(12), 1981; https://doi.org/10.3390/rs17121981 - 7 Jun 2025
Viewed by 1710
Abstract
The research uses data from the Mini-TES infrared spectrometer of an Opportunity rover taken at selected locations along its route in Meridiani Planum on Mars. Using emissivity data, the corresponding mineralogical compositions were calculated. Generally, the results are consistent with previous works, in [...] Read more.
The research uses data from the Mini-TES infrared spectrometer of an Opportunity rover taken at selected locations along its route in Meridiani Planum on Mars. Using emissivity data, the corresponding mineralogical compositions were calculated. Generally, the results are consistent with previous works, in particular they indicate the widespread occurrence of clay minerals and minerals from basaltic rocks. However, several interesting facts were also noted. Among other things, clear changes in the hematite content were found, suggesting that certain area spherical concretions (known as blueberries) may be devoid of hematite. A similar phenomenon is known from studies of terrestrial concretions. Moreover, the possibility of pyrite existence was found on a certain section of the route. On Earth, pyrite often occurs with economically valuable minerals. Full article
Show Figures

Figure 1

16 pages, 4066 KB  
Article
Development of a Reliable Device for ‘Fluorokinetic’ Analysis Based on a Portable Diode Array MEMS Fluorimeter
by Domingo González-Arjona and Germán López-Pérez
Chemosensors 2025, 13(4), 128; https://doi.org/10.3390/chemosensors13040128 - 3 Apr 2025
Viewed by 2912
Abstract
A device was developed to study the evolution of fluorescence spectra as a function of time. A previously designed fluorimeter based on the diode array mini-spectrometer CM12880MA was used. The control and measurement were carried out by programming a SAM21D microcontroller. Considerations regarding [...] Read more.
A device was developed to study the evolution of fluorescence spectra as a function of time. A previously designed fluorimeter based on the diode array mini-spectrometer CM12880MA was used. The control and measurement were carried out by programming a SAM21D microcontroller. Considerations regarding the optimization of acquisition speed, memory, and computer interface have been analyzed and optimized. As a result, a very versatile device with great adaptability, reduced dimensions, portability, and a low budget (under EUR 500) has been built. The sensitivity, controlled by the integration time of the photodiodes, can be adjusted between 10 µs and 20 s, thus allowing sampling times ranging from 10 ms to more than 10 h. Under these conditions, chemical rate constants from 20 s−1 to 10−8 s−1 can be experimentally determined. It has a very wide operating range for the kinetic rate constant determination, over six orders of magnitude. As proof of the system performance, the oxidation reaction of Thiamine in a basic medium to form fluorescent Thiochrome has been employed. The evolution of the emission spectrum has been followed, and the decomposition rate constant has been measured at 2.1 × 10−3 s−1, a value which matches those values reported in the literature for this system. A Thiochrome calibration curve has also been performed, obtaining a detection limit of 13 nM, consistent with literature data. Additionally, the stability of Thiochrome has been tested, being the photo-decomposition rate constants 1.8 × 10−4 s−1 and 3.0 × 10−7 s−1, in the presence and absence of UV light (365 nm), respectively. Finally, experiments have been designed to obtain, in a single measurement, the values of both rate constants: the formation of Thiochrome from Thiamine and its photo-decomposition under UV light to a non-fluorescent product. The rate constant values obtained are in good agreement with those previously obtained through independent experiments under the same experimental conditions. These results show that, under these conditions, Thiochrome can be considered an unstable intermediate in a chemical reaction with successive stages. Full article
Show Figures

Graphical abstract

40 pages, 14878 KB  
Article
Selection of Landing Sites for the Chang’E-7 Mission Using Multi-Source Remote Sensing Data
by Fei Zhao, Pingping Lu, Tingyu Meng, Yanan Dang, Yao Gao, Zihan Xu, Robert Wang and Yirong Wu
Remote Sens. 2025, 17(7), 1121; https://doi.org/10.3390/rs17071121 - 21 Mar 2025
Cited by 3 | Viewed by 5967
Abstract
The Chinese Chang’E-7 (CE-7) mission is planned to land in the lunar south polar region, and then deploy a mini-flying probe to fly into the cold trap to detect the water ice. The selection of a landing site is crucial for ensuring both [...] Read more.
The Chinese Chang’E-7 (CE-7) mission is planned to land in the lunar south polar region, and then deploy a mini-flying probe to fly into the cold trap to detect the water ice. The selection of a landing site is crucial for ensuring both a safe landing and the successful achievement of its scientific objectives. This study presents a method for landing site selection in the challenging environment of the lunar south pole, utilizing multi-source remote sensing data. First, the likelihood of water ice in all cold traps within 85°S is assessed and prioritized using neutron spectrometer and hyperspectral data, with the most promising cold traps selected for sampling by CE-7’s mini-flying probe. Slope and illumination data are then used to screen feasible landing sites in the south polar region. Feasible landing sites near cold traps are aggregated into larger landing regions. Finally, high-resolution illumination maps, along with optical and radar images, are employed to refine the selection and identify the optimal landing sites. Six potential landing sites around the de Gerlache crater, an unnamed cold trap at (167.10°E, 88.71°S), Faustini crater, and Shackleton crater are proposed. It would be beneficial for CE-7 to prioritize mapping these sites post-launch using its high-resolution optical camera and radar for further detailed landing site investigation and evaluation. Full article
(This article belongs to the Special Issue Remote Sensing and Photogrammetry Applied to Deep Space Exploration)
Show Figures

Figure 1

16 pages, 8780 KB  
Article
Soil Mapping of Small Fields with Limited Number of Samples by Coupling EMI and NIR Spectroscopy
by Leonardo Pace, Simone Priori, Monica Zanini and Valerio Cristofori
Soil Syst. 2024, 8(4), 128; https://doi.org/10.3390/soilsystems8040128 - 7 Dec 2024
Viewed by 1845
Abstract
Precision agriculture relies on highly detailed soil maps to optimize resource use. Proximal sensing methods, such as EMI, require a certain number of soil samples and laboratory analysis to interpolate the characteristics of the soil. NIR diffuse reflectance spectroscopy offers a rapid, low-cost [...] Read more.
Precision agriculture relies on highly detailed soil maps to optimize resource use. Proximal sensing methods, such as EMI, require a certain number of soil samples and laboratory analysis to interpolate the characteristics of the soil. NIR diffuse reflectance spectroscopy offers a rapid, low-cost alternative that increases datapoints and map accuracy. This study tests and optimizes a methodology for high-detail soil mapping in a 2.5 ha hazelnut grove in Grosseto, Southern Tuscany, Italy, using both EMI sensors (GF Mini Explorer, Brno, Czech Republic) and a handheld NIR spectrometer (Neospectra Scanner, Si-Ware Systems, Menlo Park, CA, USA). In addition to two profiles selected by clustering, another 35 topsoil augerings (0–30 cm) were added. Laboratory analyses were performed on only five samples (two profiles + three samples from the augerings). Partial least square regression (PLSR) with a national spectral library, augmented by the five local samples, predicted clay, sand, organic carbon (SOC), total nitrogen (TN), and cation exchange capacity (CEC). The 37 predicted datapoints were used for spatial interpolation, using the ECa map, elevation, and DEM derivatives as covariates. Kriging with external drift (KED) was used to spatialize the results. The errors of the predictive maps were calculated using five additional validation points analyzed by conventional methods. The validation showed good accuracy of the predictive maps, particularly for SOC and TN. Full article
Show Figures

Figure 1

11 pages, 1106 KB  
Article
Changes in Morphometric and Physiological Parameters of Oat (Avena sativa L.) Caused by Fluoride Contamination
by Eugenia Krasavtseva and Dmitriy Makarov
Int. J. Plant Biol. 2024, 15(4), 1277-1287; https://doi.org/10.3390/ijpb15040088 - 4 Dec 2024
Viewed by 1171
Abstract
The article presents the results of the study of the effect of fluoride on the morphometric and physiological parameters of higher plants. The test culture was the seeds of oat Avena sativa L. Phytotesting was carried out according to standard methods in eluate [...] Read more.
The article presents the results of the study of the effect of fluoride on the morphometric and physiological parameters of higher plants. The test culture was the seeds of oat Avena sativa L. Phytotesting was carried out according to standard methods in eluate and contact versions. Four different levels (0.09, 0.9, 9 and 90 mgF/L) of NaF solution for eluate phytotesting and five levels (10, 100, 500, 1000 and 2000 mgF⸱kg−1 dry soil) for contact phytotesting were applied. The decrease in root length, plant height and biomass at the maximum pollution level (90 mgF/L and 2000 mgF⸱kg−1 dry soil, respectively) relative to the control was 35.5, 23.86 and 62.47%, respectively. Statistical data processing was conducted. In addition, using a portable mini-spectrometer for leaves CI-710S, indices characterizing changes in chlorophyll content in plants were determined: Chlorophyll Content Index, Green Chlorophyll Index, Red-Edge Chlorophyll Index, Leaf Chlorophyll Index, Soil–Plant Analysis Development. The decrease in CCI, CI Green, CI Red, LCI, and SPAD indices at the maximum pollution level (2000 mgF⸱kg−1 dry soil) relative to the control was 86.2, 42.0, 57.9, 32.8 and 70.4%, respectively. Correlation analysis using the Pearson coefficient made it possible to establish a significant relationship between individual morphometric and physiological indicators. It was found that high levels of soil fluoride contamination cause significant changes in the morphometric and physiological parameters of Avena sativa L. The results of the study may have implications for agriculture or environmental protection in areas exposed to fluoride. Full article
(This article belongs to the Section Plant Response to Stresses)
Show Figures

Figure 1

21 pages, 3268 KB  
Article
Comparison of Free Flavonoids and the Polyphenol Content in the Bran of a Newly Developed Sorghum Variety and Two Commercially Available Sorghum Varieties
by Mariely Cristine Dos Santos, Naoki Tanaka, Shigemitsu Kasuga, Kazuhiro Tanabe, Chihiro Hayashi, Masahiro Mizuno and Yoshihiko Amano
Metabolites 2024, 14(11), 628; https://doi.org/10.3390/metabo14110628 - 15 Nov 2024
Cited by 2 | Viewed by 1564
Abstract
Background/Objectives: Sorghum bicolor is a source of many bioactive components, such as polyphenols. Those components are present mainly in its bran, often removed in industrial processes through decortication. In that sense, this work aimed to analyze the polyphenol content, especially free flavonoids, [...] Read more.
Background/Objectives: Sorghum bicolor is a source of many bioactive components, such as polyphenols. Those components are present mainly in its bran, often removed in industrial processes through decortication. In that sense, this work aimed to analyze the polyphenol content, especially free flavonoids, from the bran of a newly developed variety compared to other commercially available varieties. Methods: The samples were white sorghum TDN® Sorgho, red sorghum Mini Sorgho, and the newly developed red sorghum RILN-156. First, decortication was conducted to obtain the bran samples, which were triturated and then sieved. The use of colorimetric methods allowed the general quantification of the polyphenolic components. First, the polyphenol content was extracted using 70% methanol. Then, the samples’ total phenolic content, total flavonoid content, total tannin content, total anthocyanin content, and antioxidant potential were determined. To analyze the different components and identify the free flavonoids, an untargeted metabolomics analysis (with liquid chromatography coupled with mass spectrometer (LC/MS) and capillary electrophoresis coupled with a mass spectrometer (CE/MS)) was performed. Results: The results have shown that apart from anthocyanin and tannin, the newly developed variety, RILN-156, presented the highest concentration of polyphenolic content, including a higher antioxidant capacity. The exploratory analysis identified 19 flavonoids within the samples, with galangin and daidzein being the most abundant ones. Conclusions: These results show a promising finding for using this newly developed sorghum variety (RILN-156) industrially and further investigating its health benefits. They also elucidate the differences between colored sorghum within themselves and with white sorghum varieties. Full article
(This article belongs to the Section Plant Metabolism)
Show Figures

Graphical abstract

14 pages, 5946 KB  
Technical Note
Characterizing and Implementing the Hamamatsu C12880MA Mini-Spectrometer for Near-Surface Reflectance Measurements of Inland Waters
by Andreas Jechow, Jan Bumberger, Bert Palm, Paul Remmler, Günter Schreck, Igor Ogashawara, Christine Kiel, Katrin Kohnert, Hans-Peter Grossart, Gabriel A. Singer, Jens C. Nejstgaard, Sabine Wollrab, Stella A. Berger and Franz Hölker
Sensors 2024, 24(19), 6445; https://doi.org/10.3390/s24196445 - 5 Oct 2024
Cited by 2 | Viewed by 7015
Abstract
In recent decades, inland water remote sensing has seen growing interest and very strong development. This includes improved spatial resolution, increased revisiting times, advanced multispectral sensors and recently even hyperspectral sensors. However, inland waters are more challenging than oceanic waters due to their [...] Read more.
In recent decades, inland water remote sensing has seen growing interest and very strong development. This includes improved spatial resolution, increased revisiting times, advanced multispectral sensors and recently even hyperspectral sensors. However, inland waters are more challenging than oceanic waters due to their higher complexity of optically active constituents and stronger adjacency effects due to their small size and nearby vegetation and built structures. Thus, bio-optical modeling of inland waters requires higher ground-truthing efforts. Large-scale ground-based sensor networks that are robust, self-sufficient, non-maintenance-intensive and low-cost could assist this otherwise labor-intensive task. Furthermore, most existing sensor systems are rather expensive, precluding their employability. Recently, low-cost mini-spectrometers have become widely available, which could potentially solve this issue. In this study, we analyze the characteristics of such a mini-spectrometer, the Hamamatsu C12880MA, and test it regarding its application in measuring water-leaving radiance near the surface. Overall, the measurements performed in the laboratory and in the field show that the system is very suitable for the targeted application. Full article
(This article belongs to the Special Issue Feature Papers in Remote Sensors 2024–2025)
Show Figures

Figure 1

14 pages, 3811 KB  
Article
Signal Quality in Continuous Transcutaneous Bilirubinometry
by Fernando Crivellaro, Anselmo Costa and Pedro Vieira
Sensors 2024, 24(18), 6154; https://doi.org/10.3390/s24186154 - 23 Sep 2024
Cited by 1 | Viewed by 2274
Abstract
Bilirubin is a product of the metabolism of hemoglobin from red blood cells. Higher levels of bilirubin are a sign that either there is an unusual breaking down rate of red blood cells or the liver is not able to eliminate bilirubin, through [...] Read more.
Bilirubin is a product of the metabolism of hemoglobin from red blood cells. Higher levels of bilirubin are a sign that either there is an unusual breaking down rate of red blood cells or the liver is not able to eliminate bilirubin, through bile, into the gastrointestinal tract. For adults, bilirubin is occasionally monitored through urine or invasive blood sampling, whilst all newborns are routinely monitored visually, or non-invasively with transcutaneous measurements (TcBs), due to their biological immaturity to conjugate bilirubin. Neonatal jaundice is a common condition, with higher levels of unconjugated bilirubin concentration having neurotoxic effects. Actual devices used in TcBs are focused on newborn populations, are hand-held, and, in some cases, operate in only two wavelengths, which does not necessarily guarantee reliable results over all skin tones. The same occurs with visual inspections. Based on that, a continuous bilirubin monitoring device for newborns is being developed to overcome visual inspection errors and to reduce invasive procedures. This device, operating optically with a mini-spectrometer in the visible range, is susceptible to patient movements and, consequently, to situations with a lower signal quality for reliable bilirubin concentration estimates on different types of skin. Therefore, as an intermediate development step and, based on skin spectra measurements from adults, this work addresses the device’s placement status prediction as a signal quality indication index. This was implemented by using machine learning (ML), with the best performances being achieved by support vector machine (SVM) models, based on the spectra acquired on the arm and forehead areas. Full article
(This article belongs to the Special Issue Wearable Sensors for Continuous Health Monitoring and Analysis)
Show Figures

Figure 1

10 pages, 837 KB  
Article
Effect of Different Post-Curing Methods on the Degree of Conversion of 3D-Printed Resin for Models in Dentistry
by Scott Kirby, Igor Pesun, Anthony Nowakowski and Rodrigo França
Polymers 2024, 16(4), 549; https://doi.org/10.3390/polym16040549 - 18 Feb 2024
Cited by 38 | Viewed by 6639
Abstract
The aim was to investigate the effects of different post-curing units on the chemical properties (degree of conversion) of 3D-printed resins for producing models in dentistry. The goal is to determine whether less-expensive post-curing units can be a viable alternative to the manufacturer’s [...] Read more.
The aim was to investigate the effects of different post-curing units on the chemical properties (degree of conversion) of 3D-printed resins for producing models in dentistry. The goal is to determine whether less-expensive post-curing units can be a viable alternative to the manufacturer’s recommended units. Forty-five samples were fabricated with an LCD printer (Phrozen Sonic Mini, Phrozen 3D, Hsinchu City, Taiwan) using MSLA Dental Modeling Resin (Apply Lab Work, Torrance, CA, USA). These samples were divided randomly into four different groups for post-curing using four distinct curing units: Phrozen Cure V2 (Phrozen 3D, Hsinchu City, Taiwan), a commercial acrylic nail UV LED curing unit (SUNUV, Shenzhen, China), a homemade curing unit created from a readily available UV LED light produced (Shenzhen, China), and the Triad® 2000™ tungsten halogen light source (Dentsply Sirona, York, PA, USA). The degree of conversion was measured with FTIR spectroscopy using a Nicolet 6700 FTIR Spectrometer (Thermo Fisher Scientific, Waltham, MA, USA). Phrozen Cure V2 had the highest overall mean degree of conversion (69.6% with a 45 min curing time). The Triad® 2000 VLC Curing Unit had the lowest mean degree of conversion value at the 15 min interval (66.2%) and the lowest mean degree of conversion at the 45 min interval with the homemade curing unit (68.2%). The type of light-curing unit did not yield statistically significant differences in the degree of conversion values. There was a statistically significant difference in the degree of conversion values between the 15 min and 45 min curing intervals. When comparing individual light-curing units, there was a statistically significant difference in the degree of conversion for the post-curing units between the 15 min and 45 min curing time (p = 0.029). Full article
(This article belongs to the Special Issue 3D Printing Polymer: Processing and Fabrication)
Show Figures

Figure 1

13 pages, 3181 KB  
Article
Passive Solid Chemosensor as Saliva Point of Need Analysis for Ammonium Determination by Using a Smartphone
by Belén Monforte-Gómez, Lusine Hakobyan, Carmen Molins-Legua and Pilar Campíns-Falcó
Chemosensors 2023, 11(7), 387; https://doi.org/10.3390/chemosensors11070387 - 12 Jul 2023
Cited by 3 | Viewed by 2126
Abstract
Point-of-need analysis is of great interest nowadays. It refers to the timely analysis or detection of a specific parameter or substance at the location or moment it is needed, often with the aim of providing rapid and on-site results for informed decision-making or [...] Read more.
Point-of-need analysis is of great interest nowadays. It refers to the timely analysis or detection of a specific parameter or substance at the location or moment it is needed, often with the aim of providing rapid and on-site results for informed decision-making or immediate interventions. This approach has gained interest in various fields but has not been extensively explored in bioanalytical chemistry. In order to contribute in this way, the analysis of ammonium in saliva as a biological fluid is proposed here. For that purpose, a passive solid sensor of 1,2-naphthoquinone-4-sulfonic acid sodium salt (NQS) embedded in polydimethylsiloxane (PDMS) doped with silica nanoparticles and an ionic liquid was proposed. The assay was developed by delivering ammonia from saliva in a confined atmosphere containing the sensor for 20 to 45 min. Measurements were carried out by absorbance from a benchtop diffuse reflectance spectrophotometer and a fiber optic miniaturized portable spectrometer coupled to a smartphone for point-of-need analysis. Another option for this kind of analysis was the use of the color intensity from digitalized images obtained by a smartphone by isolating the intensity in the color planes R (red), G (green), and B (blue). Good figures of merit were obtained for all three types of instruments, bearing in mind the ammonium content in saliva. Results for 30 samples of male and female volunteers (n = 30) demonstrated the usefulness of the assay, values of mg NH4+/mL saliva between 0.02 and 0.27 were found, and no matrix effect was present. Recoveries for spiked samples were around 100% for all methodologies. Selectivity was demonstrated from spectra obtained from benchtop instruments and the fiber optic mini spectrometer. Two applications were applied for directly determining the ammonium concentration in saliva. Full article
(This article belongs to the Special Issue Chemosensors in Biological Challenges)
Show Figures

Figure 1

Back to TopTop