Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (124)

Search Parameters:
Keywords = mineralized volcanic systems

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
41 pages, 7932 KiB  
Article
Element Mobility in a Metasomatic System with IOCG Mineralization Metamorphosed at Granulite Facies: The Bondy Gneiss Complex, Grenville Province, Canada
by Olivier Blein and Louise Corriveau
Minerals 2025, 15(8), 803; https://doi.org/10.3390/min15080803 - 30 Jul 2025
Viewed by 155
Abstract
In the absence of appropriate tools and a knowledge base for exploring high-grade metamorphic terrains, felsic gneiss complexes at granulite facies have long been considered barren and have remained undermapped and understudied. This was the case of the Bondy gneiss complex in the [...] Read more.
In the absence of appropriate tools and a knowledge base for exploring high-grade metamorphic terrains, felsic gneiss complexes at granulite facies have long been considered barren and have remained undermapped and understudied. This was the case of the Bondy gneiss complex in the southwestern Grenville Province of Canada which consists of 1.39–1.35 Ga volcanic and plutonic rocks metamorphosed under granulite facies conditions at 1.19 Ga. Iron oxide–apatite and Cu-Ag-Au mineral occurrences occur among gneisses rich in biotite, cordierite, garnet, K-feldspar, orthopyroxene and/or sillimanite-rich gneisses, plagioclase-cordierite-orthopyroxene white gneisses, magnetite-garnet-rich gneisses, garnetites, hyperaluminous sillimanite-pyrite-quartz gneisses, phlogopite-sillimanite gneisses, and tourmalinites. Petrological and geochemical studies indicate that the precursors of these gneisses are altered volcanic and volcaniclastic rocks with attributes of pre-metamorphic Na, Ca-Fe, K-Fe, K, chloritic, argillic, phyllic, advanced argillic and skarn alteration. The nature of these hydrothermal rocks and the ore deposit model that best represents them are further investigated herein through lithogeochemistry. The lithofacies mineralized in Cu (±Au, Ag, Zn) are distinguished by the presence of garnet, magnetite and zircon, and exhibit pronounced enrichment in Fe, Mg, HREE and Zr relative to the least-altered rocks. In discrimination diagrams, the metamorphosed mineral system is demonstrated to exhibit the diagnostic attributes of, and is interpreted as, a metasomatic iron and alkali-calcic (MIAC) mineral system with iron oxide–apatite (IOA) and iron oxide copper–gold (IOCG) mineralization that evolves toward an epithermal cap. This contribution demonstrates that alteration facies diagnostic of MIAC systems and their IOCG and IOA mineralization remain diagnostic even after high-grade metamorphism. Exploration strategies can thus use the lithogeochemical footprint and the distribution and types of alteration facies observed as pathfinders for the facies-specific deposit types of MIAC systems. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

21 pages, 5158 KiB  
Article
Genesis of the Erentaolegai Silver Deposit, Inner Mongolia, Northeast China: Evidence from Fluid Inclusion and H-O-S Isotopes
by Yushan Zuo, Xintong Dong, Zhengxi Gao, Liwen Wu, Zhao Liu, Jiaqi Xu, Shanming Zhang and Wentian Mi
Minerals 2025, 15(7), 748; https://doi.org/10.3390/min15070748 - 17 Jul 2025
Viewed by 311
Abstract
The Erentaolegai silver deposit is located within the Derbugan metallogenic belt in the eastern segment of the Central Asia–Mongolia giant orogenic belt. The ore bodies are primarily hosted in the volcanic rocks of the Middle Jurassic Tamulangou Formation of the Mesozoic. The mineralization [...] Read more.
The Erentaolegai silver deposit is located within the Derbugan metallogenic belt in the eastern segment of the Central Asia–Mongolia giant orogenic belt. The ore bodies are primarily hosted in the volcanic rocks of the Middle Jurassic Tamulangou Formation of the Mesozoic. The mineralization process of the deposit is divided into three stages: Stage I: Pyrite–Quartz Stage; Stage II: Sulfide–Quartz Stage; Stage III: Quartz–Manganese Carbonate Stage. This paper discusses the ore-forming fluids, ore-forming materials, and deposit genesis of the Erentaolegai silver deposits using fluid inclusions microthermometry, laser Raman spectroscopy, and H-O-S isotope analyses. Fluid inclusion microthermometry and laser Raman spectroscopy analyses indicate that the Erentaolegai silver deposit contains exclusively fluid-rich two-phase fluid inclusions, all of which belong to the H2O-NaCl system. Homogenization temperatures of fluid inclusions in the three stages (from early to late) ranged from 257 to 311 °C, 228 to 280 °C, and 194 to 238 °C, corresponding to salinities of 1.91 to 7.86 wt%, 2.07 to 5.41 wt%, and 0.70–3.55 wt% NaCl equivalent, densities of 0.75 to 0.83 g/cm−3, 0.80 to 0.86 g/cm−3 and 0.85 to 0.89 g/cm−3. The mineralization pressure ranged from 12.2 to 29.5 MPa, and the mineralization depth was 0.41 to 0.98 km, indicating low-pressure and shallow-depth mineralization conditions. H-O isotope results indicate that the ore-forming fluid is a mixture of magmatic fluids and meteoric water, with meteoric contribution dominating in the late stage. The δ34S values of metallic sulfides ranged from −1.8 to +4.0‰, indicating that the metallogenic material of the Erentaolegai silver deposit was dominated by a deep magmatic source. This study concludes that meteoric water mixing and subsequent fluid cooling served as the primary mechanism for silver mineral precipitation. The Erentaolegai silver deposit is classified as a low-sulfidation epithermal silver deposit. Full article
(This article belongs to the Special Issue Recent Developments in Rare Metal Mineral Deposits)
Show Figures

Figure 1

57 pages, 42873 KiB  
Article
The Mazenod–Sue–Dianne IOCG District of the Great Bear Magmatic Zone Northwest Territories, Canada
by A. Hamid Mumin and Mark Hamilton
Minerals 2025, 15(7), 726; https://doi.org/10.3390/min15070726 - 11 Jul 2025
Viewed by 192
Abstract
The Mazenod Lake region of the southern Great Bear Magmatic Zone (GBMZ) of the Northwest Territories, Canada, comprises the north-central portion of the Faber volcano-plutonic belt. Widespread and abundant surface exposure of several coalescing hydrothermal systems enables this paper to document, without ambiguity, [...] Read more.
The Mazenod Lake region of the southern Great Bear Magmatic Zone (GBMZ) of the Northwest Territories, Canada, comprises the north-central portion of the Faber volcano-plutonic belt. Widespread and abundant surface exposure of several coalescing hydrothermal systems enables this paper to document, without ambiguity, the relationships between geology, structure, alteration, and mineralization in this well exposed iron-oxide–copper–gold (IOCG) mineral system. Mazenod geology comprises rhyodacite to basaltic-andesite ignimbrite sheets with interlayered volcaniclastic sedimentary rocks dominated by fine-grained laminated tuff sequences. Much of the intermediate to mafic nature of volcanic rocks is masked by low-intensity but pervasive metasomatism. The region is affected by a series of coalescing magmatic–hydrothermal systems that host the Sue–Dianne magnetite–hematite IOCG deposit and several related showings including magnetite, skarn, and iron oxide apatite (IOA) styles of alteration ± mineralization. The mid to upper levels of these systems are exposed at surface, with underlying batholith, pluton and stocks exposed along the periphery, as well as locally within volcanic rocks associated with more intense alteration and mineralization. Widespread alteration includes potassic and sodic metasomatism, and silicification with structurally controlled giant quartz complexes. Localized tourmaline, skarn, magnetite–actinolite, and iron-oxide alteration occur within structural breccias, and where most intense formed the Sue–Dianne Cu-Ag-Au diatreme-like breccia deposit. Magmatism, volcanism, hydrothermal alteration, and mineralization formed during a negative tectonic inversion within the Wopmay Orogen. This generated a series of oblique offset rifted basins with continental style arc magmatism and extensional structures unique to GBMZ rifting. All significant hydrothermal centers in the Mazenod region occur along and at the intersections of crustal faults either unique to or put under tension during the GBMZ inversion. Full article
Show Figures

Figure 1

31 pages, 34129 KiB  
Article
Prediction of Buried Cobalt-Bearing Arsenides Using Ionic Leach Geochemistry in the Bou Azzer-El Graara Inlier (Central Anti-Atlas, Morocco): Implications for Mineral Exploration
by Yassine Lmahfoudi, Houssa Ouali, Said Ilmen, Zaineb Hajjar, Ali El-Masoudy, Russell Birrell, Laurent Sapor, Mohamed Zouhair and Lhou Maacha
Minerals 2025, 15(7), 676; https://doi.org/10.3390/min15070676 - 24 Jun 2025
Viewed by 734
Abstract
The Aghbar-Bou Azzer East mining district (ABED) is located between the Bou Azzer East and Aghbar deposits. It is an area of approximately 7 km long towards ENE–WSW and 2 km wide towards N–S. In this barren area, volcano-sedimentary rocks are attributed to [...] Read more.
The Aghbar-Bou Azzer East mining district (ABED) is located between the Bou Azzer East and Aghbar deposits. It is an area of approximately 7 km long towards ENE–WSW and 2 km wide towards N–S. In this barren area, volcano-sedimentary rocks are attributed to the Ouarzazate group outcrop (Ediacarian age): they are composed of volcanic rocks (ignimbrite, andesite, rhyolite, dacite, etc.) covered by the Adoudou detritic formation in angular unconformity. Given the absence of serpentinite outcrops, exploration investigation in this area has been very limited. This paper aims to use ionic leach geochemistry (on samples of soil) to detect the presence of Co-bearing arsenides above hidden ore deposits in this unexplored area of the Bou Azzer inlier. In addition, a detailed structural analysis allowed the identification of four families of faults and fractures with or without filling. Three directional major fault systems of several kilometers in length and variable orientation in both the Cryogenian basement and the Ediacaran cover have been identified: (i) ENE–WSW, (ii) NE–SW, and (iii) NW–SE. Several geochemical anomalies for Co, As, Ni, Ag, and Cu are aligned along three main directions, including NE–SW, NW–SE, and ENE–WSW. They are particularly well-defined in the western zone but are only minor in the central and eastern zones. Some of these anomalies correlate with the primary structural features observed in the studied area. These trends are consistent with those known under mining exploitation in nearby ore deposits, supporting the potential for similar mineralization in the ABED. Based on structural analysis and ionic leach geochemistry, drilling programs were conducted in the study area, confirming the continuity of serpentinites at depth beneath the Ediacaran cover and the presence of Co–Fe-bearing arsenide ores. This validates the ionic geochemistry technique as a reliable method for exploring buried ore deposits. Full article
(This article belongs to the Special Issue Novel Methods and Applications for Mineral Exploration, Volume III)
Show Figures

Figure 1

18 pages, 6291 KiB  
Article
Petrological Exploration of Magma Storage and Evolution Conditions at the Eastern Virunga Volcanic Province (Rwanda, East African Rift System)
by Fabio Colle, Teresa Trua, Serena Giacomelli, Massimo D’Orazio and Roberto Valentino
Minerals 2025, 15(7), 666; https://doi.org/10.3390/min15070666 - 20 Jun 2025
Cited by 1 | Viewed by 299
Abstract
The Virunga Volcanic Province (VVP), located in the western branch of the East African Rift System, hosts a variety of alkaline lavas erupted from closely spaced volcanic centers. However, the magmatic system of this region, particularly in its eastern sector, remains insufficiently constrained. [...] Read more.
The Virunga Volcanic Province (VVP), located in the western branch of the East African Rift System, hosts a variety of alkaline lavas erupted from closely spaced volcanic centers. However, the magmatic system of this region, particularly in its eastern sector, remains insufficiently constrained. In this study, we present a petrological and geochemical investigation of basaltic to trachytic lavas from the eastern VVP. Thermobarometric analysis of mineral phases indicates that basalts originated from magma storage zones between 4 and 30 km deep, with crystallization temperatures of ~1200 °C and melt H2O contents lower than 1 wt%. In contrast, more evolved magmas crystallized at similar depths, but at lower temperatures (~1050 °C) and higher H2O contents, ranging from 2 to 4 wt%. Thermodynamic modelling suggests that extensive (up to 70%) fractional crystallization of an assemblage dominated by olivine, clinopyroxene, and plagioclase can produce the more evolved trachytic derivatives from basaltic parental melts. When integrated with previous studies from other VVP volcanoes, our findings deepen the understanding of the architecture of the magmatic system beneath the region, suggesting it resembles a well-developed multi-level plumbing system. Full article
Show Figures

Figure 1

34 pages, 12770 KiB  
Article
Immiscibility in Magma Conduits: Evidence from Granitic Enclaves
by Ya Tian, Guanglai Li, Yongle Yang, Chao Huang, Yinqiu Hu, Kai Xu and Ji Zhang
Minerals 2025, 15(7), 664; https://doi.org/10.3390/min15070664 - 20 Jun 2025
Viewed by 314
Abstract
Many granitic enclaves are developed in the volcanic channel of the Xiangshan volcanic basin. To explore their genesis, this study examined the petrography, geochemistry, LA-ICP-MS zircon U–Pb chronology, and zircon Hf isotopes of the granitic enclaves and compared them with the porphyroclastic lavas. [...] Read more.
Many granitic enclaves are developed in the volcanic channel of the Xiangshan volcanic basin. To explore their genesis, this study examined the petrography, geochemistry, LA-ICP-MS zircon U–Pb chronology, and zircon Hf isotopes of the granitic enclaves and compared them with the porphyroclastic lavas. In general, the granitic enclaves and porphyroclastic lavas have similar structures, and the rock-forming minerals and accessory minerals have relatively close compositions. In terms of rock geochemical characteristics, the granitic enclaves are richer in silicon and alkalis but have lower abundances of aluminum, magnesium, iron, and calcium than the porphyroclastic lavas. Rb, Th, K, Sm, and other elements are more enriched, whereas Ba, Ti, Nb, P, and other elements are more depleted. The granitic enclaves have lower rare earth contents (195.53 × 10−6–271.06 × 10−6) than the porphyroclastic lavas (246.67 × 10−6–314.27 × 10−6). The rare earth element distribution curves of the two are generally consistent, both right-leaning, and enriched with light rare earth patterns. The weighted average zircon U–Pb ages of two granitic enclave samples were 135.45 ± 0.54 Ma (MSWD = 0.62, n = 17) and 135.81 ± 0.60 Ma (MSWD = 0.40, n = 20), respectively, which are consistent with the weighted average age of a single porphyroclastic lava sample of 134.01 ± 0.53 Ma (MSWD = 2.0, n = 20). The zircons of the two kinds of rocks crystallize at almost the same temperature. The consistent trend of the rare earth element distribution curve of zircons in the granitic enclaves and the porphyroclastic lava samples indicates that the zircons of the two samples were formed in the same stage. The formation process of granitic enclaves may be that the lower crustal melt is induced to rise, and the crystallization differentiation occurs in the magma reservoir and is stored in the form of crystal mush, forming a shallow crystal mush reservoir. The crystal mush reservoir is composed of a large number of rock-forming minerals such as quartz, feldspar, and biotite, as well as accessory mineral crystals such as zircon and flowable intergranular melt. In the later stage of magma high evolution, a small and short-time magmatic activity caused a large amount of crystalline granitic crystal mush to pour into the volcanic pipeline. In the closed system of volcanic pipeline, the pressure and temperature decreased rapidly, and the supercooling degree increased, and the immiscibility finally formed pale granitic enclaves. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

19 pages, 7532 KiB  
Article
Controls on the Hydrocarbon Production in Shale Gas Condensate Reservoirs of Rift Lake Basins
by Yaohua Li, Caiqin Bi, Chao Fu, Yinbo Xu, Yuan Yuan, Lihua Tong, Yue Tang and Qianyou Wang
Processes 2025, 13(6), 1868; https://doi.org/10.3390/pr13061868 - 13 Jun 2025
Viewed by 493
Abstract
The production of gas and condensate from liquid-rich shale reservoirs, particularly within heterogeneous lacustrine systems, remains a critical challenge in unconventional hydrocarbon exploration due to intricate multiphase hydrocarbon partitioning, including gases (C1–C2), volatile liquids (C3–C7), [...] Read more.
The production of gas and condensate from liquid-rich shale reservoirs, particularly within heterogeneous lacustrine systems, remains a critical challenge in unconventional hydrocarbon exploration due to intricate multiphase hydrocarbon partitioning, including gases (C1–C2), volatile liquids (C3–C7), and heavier liquids (C7+). This study investigates a 120-meter-thick interval dominated by lacustrine deposits from the Lower Cretaceous Shahezi Formation (K1sh) in the Songliao Basin. This interval, characterized by high clay mineral content and silicate–pyrite laminations, was examined to identify the factors controlling hybrid shale gas condensate systems. We proposed the Hybrid Shale Condensate Index (HSCI), defined as the molar ratios of (C1–C7)/C7+, to categorize fluid phases and address shortcomings in traditional GOR/API ratios. Over 1000 samples were treated by geochemical pyrolysis logging, X-ray fluorescence (XRF) spectrum element logging, SEM-based automated mineralogy, and in situ gas desorption, revealing four primary controls: (1) Thermal maturity thresholds. Mature to highly mature shales exhibit peak condensate production and the highest total gas content (TGC), with maximum gaseous and liquid hydrocarbons at Tmax = 490 °C. (2) Lithofacies assemblage. Argillaceous shales rich in mixed carbonate and clay minerals exhibit an intergranular porosity of 4.8 ± 1.2% and store 83 ± 7% of gas in intercrystalline pore spaces. (3) Paleoenvironmental settings. Conditions such as humid climate, saline water geochemistry, anoxic bottom waters, and significant input of volcanic materials promoted organic carbon accumulation (TOC reaching up to 5.2 wt%) and the preservation of organic-rich lamination. (4) Laminae and fracture systems. Silicate laminae account for 78% of total pore space, and pyrite laminations form interconnected pore networks conducive to gas storage. These findings delineate the “sweet spots” for unconventional hydrocarbon reservoirs, thereby enhancing exploration for gas condensate in lacustrine shale systems. Full article
(This article belongs to the Special Issue Recent Advances in Hydrocarbon Production Processes from Geoenergy)
Show Figures

Figure 1

23 pages, 7669 KiB  
Article
Classification Evaluation and Genetic Analysis of Source Rocks of Lower Permian Fengcheng Formation in Hashan Area, Junggar Basin, China
by Zhongliang Sun, Zhiming Li, Kuihua Zhang, Zhenxiang Song, Hongzhou Yu, Bin Wang, Meiyuan Song and Tingting Cao
Minerals 2025, 15(6), 606; https://doi.org/10.3390/min15060606 - 4 Jun 2025
Viewed by 347
Abstract
The exploration of shale oil in the Fengcheng Formation of the Permian system in the Hashan area shows considerable promise, with breakthroughs in a number of shale oil exploration wells. This study evaluates the source rocks in the Fengcheng Formation in the Hashan [...] Read more.
The exploration of shale oil in the Fengcheng Formation of the Permian system in the Hashan area shows considerable promise, with breakthroughs in a number of shale oil exploration wells. This study evaluates the source rocks in the Fengcheng Formation in the Hashan area to determine their types, clarify the quality and hydrocarbon potentials of the different types, and analyze the main factors affecting their quality and generation potential based on lithofacies classification. The results indicate that the Fengcheng Formation in the Hashan area contains four types of lithofacies: terrigenous clastic lithofacies, dolomitic mixed lithofacies, tephra-bearing mixed lithofacies, and alkaline mineral-bearing mixed lithofacies. The tephra-bearing mixed lithofacies source rocks have the best source rock quality, followed by terrigenous clastic lithofacies and dolomitic mixed lithofacies. The quality of the source rocks is mainly controlled by their sedimentary environment (including paleoenvironment, alkaline minerals, and volcanic activity), the hydrocarbon-generating properties of the source material, and maturity. Organic matter in the dolomitic mixed lithofacies and the alkaline mineral-bearing mixed lithofacies is more concentrated in deepwater-reducing environments with medium to high salinity and arid conditions. The main biological source material is green algae (Dunaliella), which is characterized by early hydrocarbon generation and the high transformation ratio of oil, allowing for rapid hydrocarbon generation at low maturity. However, as the maturity increases, the hydrocarbon-generating potential of the source rocks decreases rapidly. Organic matter in terrigenous clastic lithofacies is more concentrated in relatively shallow water in oxygen-depleted, low-salinity, arid to semi-arid environments, with cyanobacteria being the main biological source. Cyanobacteria have the characteristics of long hydrocarbon generation periods and high hydrocarbon potential, with the peak of hydrocarbon generation occurring later than green algae (Dunaliella). Therefore, even at a relatively high maturity level, the source rocks still maintain a relatively high hydrocarbon-generating potential. Moderate volcanic activity provides favorable conditions for organic matter accumulation. Full article
(This article belongs to the Special Issue Distribution and Development of Faults and Fractures in Shales)
Show Figures

Figure 1

19 pages, 2222 KiB  
Review
Volcanic Rejuvenation and Hydrothermal Systems: Implications for Conservation and Resource Assessment in the Southeastern Tyrrhenian Sea
by Salvatore Passaro, Mattia Vallefuoco, Stella Tamburrino, Riccardo De Ritis and Mario Sprovieri
Appl. Sci. 2025, 15(11), 6174; https://doi.org/10.3390/app15116174 - 30 May 2025
Viewed by 553
Abstract
The Southeastern Tyrrhenian Sea is a back-arc basin characterized by the onset of volcanism over the past ~11 million years and the development of numerous volcanic seamounts. Hydrothermal venting is predominantly concentrated in the southeastern sector, encompassing the Aeolian volcanic arc and major [...] Read more.
The Southeastern Tyrrhenian Sea is a back-arc basin characterized by the onset of volcanism over the past ~11 million years and the development of numerous volcanic seamounts. Hydrothermal venting is predominantly concentrated in the southeastern sector, encompassing the Aeolian volcanic arc and major volcanic edifices, such as Palinuro and Marsili. These systems frequently exhibit zones of localized magnetic depletion (demagnetization) within otherwise magnetized volcanic structures, often linked to hydrothermal alteration. Notably, volcanic rejuvenation phases are commonly associated with active hydrothermal circulation. In response to mounting ecological concerns, the Italian government has delineated extensive Ecological Protection Zones (EPZs), including those in the Eastern Tyrrhenian sector. These EPZs encompass a series of prominent seamounts—Palinuro, Marsili, Vercelli, Vavilov, Magnaghi, Enarete, and Anchise—that exhibit morphological evidence of rejuvenation and magnetic anomalies consistent with hydrothermal modification. Such features are indicative of potentially mineralized systems, relevant for future resource exploration. A comprehensive evaluation of both the ecological significance and the mineral potential of these areas is now imperative. Balancing environmental conservation with the strategic assessment of deep-sea mining prospects will be essential to mitigate biodiversity loss while promoting the sustainable use of marine mineral resources. Full article
(This article belongs to the Special Issue Advances in Geophysical Approaches in Volcanic and Geothermal Areas)
Show Figures

Figure 1

31 pages, 4555 KiB  
Article
The Roles of Transcrustal Magma- and Fluid-Conducting Faults in the Formation of Mineral Deposits
by Farida Issatayeva, Auez Abetov, Gulzada Umirova, Aigerim Abdullina, Zhanibek Mustafin and Oleksii Karpenko
Geosciences 2025, 15(6), 190; https://doi.org/10.3390/geosciences15060190 - 22 May 2025
Viewed by 606
Abstract
In this article, we consider the roles of transcrustal magma- and fluid-conducting faults (TCMFCFs) in the formation of mineral deposits, showing the importance of deep sources of heat and hydrothermal solutions in the genesis and history of deposit formation. As a result of [...] Read more.
In this article, we consider the roles of transcrustal magma- and fluid-conducting faults (TCMFCFs) in the formation of mineral deposits, showing the importance of deep sources of heat and hydrothermal solutions in the genesis and history of deposit formation. As a result of the impact on the lithosphere of mantle plumes rising along TCMFCFs, intense block deformations and tectonic movements are generated; rift systems, and volcanic–plutonic belts spatially combined with them, are formed; and intrusive bodies are introduced. These processes cause epithermal ore formation as a consequence of the impact of mantle plumes rising along TCMFCF to the lithosphere. At hydrocarbon fields, they play extremely important roles in conductive and convective heat, as well as in mass transfer to the area of hydrocarbon generation, determining the relationship between the processes of lithogenesis and tectogenesis, and activating the generation of hydrocarbons from oil and gas source rock. Detection of TCMFCFs was carried out using MMSS (the method of microseismic sounding) and MTSM (the magnetotelluric sounding method), in combination with other geological and geophysical data. Practical examples are provided for mineral deposits where subvertical transcrustal columns of increased permeability, traced to considerable depths, have been found; the nature of these unique structures is related to faults of pre-Paleozoic emplacement, which determined the fragmentation of the sub-crystalline structure of the Earth and later, while developing, inherited the conditions of volumetric fluid dynamics, where the residual forms of functioning of fluid-conducting thermohydrocolumns are granitoid batholiths and other magmatic bodies. Experimental modeling of deep processes allowed us to identify the quantum character of crystal structure interactions of minerals with “inert” gases under elevated thermobaric conditions. The roles of helium, nitrogen, and hydrogen in changing the physical properties of rocks, in accordance with their intrastructural diffusion, has been clarified; as a result of low-energy impact, stress fields are formed in the solid rock skeleton, the structures and textures of rocks are rearranged, and general porosity develops. As the pressure increases, energetic interactions intensify, leading to deformations, phase transitions, and the formation of chemical bonds under the conditions of an unstable geological environment, instability which grows with increasing gas saturation, pressure, and temperature. The processes of heat and mass transfer through TCMFCFs to the Earth’s surface occur in stages, accompanied by a release of energy that can manifest as explosions on the surface, in coal and ore mines, and during earthquakes and volcanic eruptions. Full article
(This article belongs to the Section Geophysics)
Show Figures

Figure 1

23 pages, 24961 KiB  
Article
Characteristics of Ore-Bearing Tectono-Stratigraphic Zones of the Shyngys-Tarbagatai Folded System at the Current Stage of Study
by Eleonora Y. Seitmuratova, Yalkunzhan K. Arshamov, Diyas O. Dautbekov, Moldir A. Mashrapova, Nurgali S. Shadiyev, Ansagan Dauletuly, Saltanat Bakdauletkyzy and Tauassar K. Karimbekov
Minerals 2025, 15(5), 519; https://doi.org/10.3390/min15050519 - 14 May 2025
Viewed by 377
Abstract
This study analyzes the ore potential of the tectono-stratigraphic zones in the Shyngys-Tarbagatai folded system using metallogenic diagrams. These diagrams condense extensive geological and metallogenic data, illustrating stratified and intrusive formations, formation types, depositional environments, and ore loads in chronological sequence. The analysis [...] Read more.
This study analyzes the ore potential of the tectono-stratigraphic zones in the Shyngys-Tarbagatai folded system using metallogenic diagrams. These diagrams condense extensive geological and metallogenic data, illustrating stratified and intrusive formations, formation types, depositional environments, and ore loads in chronological sequence. The analysis highlights variations in ore mineralization intensity across the zones, identifying both highly and less ore-bearing areas. Most zones show polymetallic mineralization with 2 to 12 types of minerals; gold and copper are present in all zones. Temporal analysis identified key productive levels in the Late Ordovician, Early Silurian, and Early Devonian, corresponding to active stages of island arcs, forearc and backarc basins, and the Devonian volcanic–plutonic belt. The structures of the Shyngys-Tarbagatai folded system are classified as island-arc structures of active continental margins. Comparing the ore potential of its tectono-stratigraphic zones with similar modern structures shows that, except for the Maikain zone, all others have significantly lower ore potential. The obtained data is most likely a result of the region’s poor exploration coverage. As such, future efforts should prioritize further investigation of the identified mineralization zones. This is evident from the dominance of small, medium, and large deposits, and ore occurrences in all tectono-stratigraphic zones when assessing their ore potential. Preliminary analysis of the ore potential in the tectono-stratigraphic zones of the Shyngys-Tarbagatai folded system, based on metallogenic diagrams, clearly supports the need for regional and exploration studies. These should focus on poorly explored stratigraphic levels, ore-bearing geological formations, and geodynamic settings that are favorable for deposit formation. This will provide a more accurate assessment of the potential in these zones. Full article
(This article belongs to the Section Mineral Exploration Methods and Applications)
Show Figures

Figure 1

24 pages, 13891 KiB  
Article
Fertility of Gabbroic Intrusions in the Paleoproterozoic Lynn Lake Greenstone Belt, Manitoba, Canada: Insights from Field Relationships, Geochemical and Metallogenic Characteristics
by Xue-Ming Yang
Minerals 2025, 15(5), 448; https://doi.org/10.3390/min15050448 - 26 Apr 2025
Viewed by 617
Abstract
Magmatic nickel–copper–platinum group element (PGE) deposits hosted in mafic–ultramafic intrusions within volcanic arc systems are highly attractive targets for mineral exploration, yet their genesis remains poorly understood. This study investigates metagabbroic intrusions in the Paleoproterozoic Lynn Lake greenstone belt of the Trans-Hudson Orogen [...] Read more.
Magmatic nickel–copper–platinum group element (PGE) deposits hosted in mafic–ultramafic intrusions within volcanic arc systems are highly attractive targets for mineral exploration, yet their genesis remains poorly understood. This study investigates metagabbroic intrusions in the Paleoproterozoic Lynn Lake greenstone belt of the Trans-Hudson Orogen to identify the key factors, in the original gabbros, that control the formation of magmatic Ni-Cu-PGE deposits in volcanic arc systems. By examining the field relationships, geochemical and sulfur and oxygen stable isotope compositions, mineralogy, and structural fabrics, this study aims to explain why some intrusions host mineralization (e.g., Lynn Lake and Fraser Lake intrusions), whereas others remain barren (e.g., Ralph Lake, Cartwright Lake, and Snake Lake intrusions). Although both the fertile and barren gabbroic, likewise original, intrusions exhibit metaluminous, tholeiitic to calc-alkaline affinity with volcanic arc geochemical signatures, they differ significantly in shape, ranging from vertical and tube-like to tabular forms, reflecting distinct geological settings and magma dynamics. The gabbroic rocks of fertile intrusions exhibit erratic trace element profiles, lower (Nb/Th)N and higher (Cu/Zr)N ratios, as well as a larger range of δ34S values than those in barren intrusions. Key factors influencing Ni-Cu-PGE mineralization include the degree of partial melting of the mantle, early sulfide segregation, and crustal contamination, particularly from volcanogenic massive sulfide deposits. These processes likely triggered sulfide saturation in the mafic magmas. Geochemical proxies, such as PGE concentrations and sulfur and oxygen stable isotopes, provide critical insights into these controlling factors. The results of this study enhance our understanding of the metallogenic processes responsible for the formation of magmatic Ni-Cu-PGE deposits in the gabbroic intrusions emplaced in an extensional setting due to slab rollback, during the geological evolution of the Lynn Lake greenstone belt, offering valuable guidance for mineral exploration efforts. Full article
(This article belongs to the Special Issue Novel Methods and Applications for Mineral Exploration, Volume III)
Show Figures

Figure 1

22 pages, 17789 KiB  
Article
Mafic Enclaves Reveal Multi-Magma Storage and Feeding of Shangri-La Lavas at the Nevados de Chillán Volcanic Complex
by Camila Pineda, Gloria Arancibia, Valentina Mura, Diego Morata, Santiago Maza and John Browning
Minerals 2025, 15(4), 418; https://doi.org/10.3390/min15040418 - 17 Apr 2025
Cited by 1 | Viewed by 730
Abstract
The Nevados de Chillán Volcanic Complex is one of the most active of the Southern Volcanic Zone. It is formed by NW-SE-aligned eruptive centers divided into two subcomplexes, namely Cerro Blanco (basaltic andesitic) and Las Termas (dacitic), and two satellite cones (to the [...] Read more.
The Nevados de Chillán Volcanic Complex is one of the most active of the Southern Volcanic Zone. It is formed by NW-SE-aligned eruptive centers divided into two subcomplexes, namely Cerro Blanco (basaltic andesitic) and Las Termas (dacitic), and two satellite cones (to the SW and NE of the main alignment). Our study of the Shangri-La volcano, which is located between the two subcomplexes, in alignment with the satellite cones, and which produced dacitic lavas with basaltic andesitic enclaves, sheds light on the compositional and structural diversity of the volcanic complex. Detailed petrography along with mineral chemistry allows us to suggest partial hybridization between the enclaves and the host lavas and that mixing processes are related to the generation of the Shangri-La volcano and to other volcanic products generated in the complex. This is supported by mixing trends between the enclaves and the most differentiated units from Las Termas. We argue the presence of two main magma storage areas genetically related to crustal structures. A dacitic reservoir (~950 °C) is fed along NW-SE structures, whereas a deeper mafic reservoir (>1100 °C) utilizes predominantly NE-SW structures. We suggest that the intersection between these sets of structures facilitates magma ascent and controls the Nevados de Chillán plumbing system dynamics. Full article
Show Figures

Figure 1

14 pages, 1555 KiB  
Article
Effect of Agricultural Management Intensity on the Organic Carbon Fractions and Biological Properties of a Volcanic-Ash-Derived Soil
by Camila Aravena, Susana R. Valle, Rodrigo Vergara, Mauricio González Chang, Oscar Martínez, John Clunes, Belén Caurapán and Joel Asenjo
Sustainability 2025, 17(6), 2704; https://doi.org/10.3390/su17062704 - 18 Mar 2025
Cited by 2 | Viewed by 659
Abstract
Intensive agricultural management affects the physical, chemical, and biological properties of soil, potentially contributing to a decrease in soil carbon storage. In this study, the effects of soil management intensity on soil organic carbon (SOC) content and its labile fractions, i.e., water-soluble organic [...] Read more.
Intensive agricultural management affects the physical, chemical, and biological properties of soil, potentially contributing to a decrease in soil carbon storage. In this study, the effects of soil management intensity on soil organic carbon (SOC) content and its labile fractions, i.e., water-soluble organic carbon (OC-sol) and permanganate oxidizable carbon (POXC), were evaluated in a volcanic-ash-derived soil (Andisol) with a very high soil organic matter (SOM) content (>20%). These indicators were associated with water-stable aggregates (WSAs) and biological indicators, namely, earthworm density, cellulase activity, and autoclaved-citrate-extractable (ACE) proteins, related to the decomposition of SOM and its physical protection. The conditions evaluated were secondary native forest (SF), naturalized grassland (NG), no-till (NT), and conventional tillage (CT), considering the last item to be representative of a higher agriculture management intensity. Soil samples were collected by horizon. The SF and NG soil showed higher contents of SOC, OC-sol, and POXC. When comparing the evaluated annual cropping systems, NT showed higher values than CT (p < 0.05) in the first horizon (Hz1), while similar values were found at deeper horizons. The highest cellulase activity, ACE protein levels, and earthworm densities were found in NG and SF. NT also showed significantly higher levels of the aforementioned factors than CT (p < 0.05). A positive and significant relationship was found between the SOC content and WSA (R2 = 0.76; p < 0.05) in the whole profile and between POXC and WSA for Hz1 (R2 = 0.67; p < 0.05). Soil C storage was affected by the intensity of agricultural management, mainly because of the effect of tillage on structural stability, considering that biological activity synthesizes compounds such as enzymes and proteins that react and adhere to the mineral fraction affecting aggregate stability. The C content stored in the soil is consequently a key indicator with which to regulate SOM and protect SOC. Full article
(This article belongs to the Section Soil Conservation and Sustainability)
Show Figures

Figure 1

21 pages, 10583 KiB  
Article
Calcareous Skarn-like Mineral Paragenesis from Unaltered Basalt of the Alaid Volcano (Kuril–Kamchatka Island Arc)
by Elena S. Zhitova, Anton A. Nuzhdaev, Vesta O. Davydova, Rezeda M. Sheveleva, Pavel S. Zhegunov, Ruslan A. Kuznetsov, Anton V. Kutyrev, Maria A. Khokhlova and Natalia S. Vlasenko
Minerals 2025, 15(3), 237; https://doi.org/10.3390/min15030237 - 26 Feb 2025
Viewed by 632
Abstract
Conditions of high-temperature volcano-related mineral formation are a source of the new and rare minerals and their associations; they are rather fragmentarily described for volcanic systems as a whole, except for several objects characterized in this regard. The study aim is to present [...] Read more.
Conditions of high-temperature volcano-related mineral formation are a source of the new and rare minerals and their associations; they are rather fragmentarily described for volcanic systems as a whole, except for several objects characterized in this regard. The study aim is to present the first results of the mineralogical study of atypical suprasubduction zone neoformation encountered from the Taketomi flank eruption (1933–1934) of the Alaid volcano (Kuril Islands), which has been studied through electron microprobe analyses and powder and single-crystal X-ray diffraction. The following mineral paragenesis is described: diopside, andradite, anorthite, wollastonite, esseneite, wadalite, rhönite-like mineral, fluorite, calcite, apatite, and atacamite. The parageneses of calcium silicates found in volcanic systems are usually interpreted as reworked crustal xenoliths and commonly associated with volcanoes that have a carbonate basement. However, carbonates have not been previously described at the base of the Alaid volcano. Even though the skarn nature of such a mineral paragenesis is possible, we suggest the important role of high-temperature volcanic gases along with the pyrometamorphic effect in the mineral-forming process at depth or in near-surface conditions (fumarole-like type in the form of a system of cracks and burrows). The described mineral paragenesis has not been previously documented, at least for the North Kuril Islands. A detailed mineralogical study of such formations is one of the important steps in understanding the functioning of magmatic systems, the circulation and transformation of natural matter, and mineral-forming processes. Full article
(This article belongs to the Special Issue Submarine Volcanism, Related Hydrothermal Systems and Mineralizations)
Show Figures

Graphical abstract

Back to TopTop