Controls on the Hydrocarbon Production in Shale Gas Condensate Reservoirs of Rift Lake Basins
Abstract
1. Introduction
- Hydrocarbon phase dynamics. Drilling-induced perturbations of pressure and temperature tend to trigger phase transitions, particularly when reservoir pressures decline below dew-point thresholds near wellbores [17,18,19]. Differential retention mechanisms further complicate the associated analysis. C1–C2 alkanes demonstrate sluggish diffusion kinetics, while volatile light hydrocarbons (C3–C7) and liquid-phase components (C7+) persist in metastable configurations within fracture networks and matrix porosity [6,20,21]. These phenomena limit the efficacy of conventional C1–C7 advanced mud gas logging for quantitative hydrocarbon assessment.
- Lacustrine reservoir heterogeneity. Compared to marine shales, lacustrine systems exhibit amplified variability of lithofacies due to abrupt facies changes [22,23], multiscale beddings [24], and lamina-induced fracture systems [25,26,27] that induce strong anisotropic hydrocarbon distribution and condensate productivity [28,29,30,31]. Additional complexity stems from dynamic phase behavior modulated by thermal maturity gradients, in situ P-T conditions, and near-wellbore condensate banking effects [29,31,32]. Consequently, these factors impede the reliable identification of hydrocarbon sweet spots in continental shale reservoirs.
- High-resolution geochemical profile via systematic sampling and measurement at a 0.5 to 1 m interval (more than 1000 samples) employing multiple methods such as geochemical logging, in situ gas desorption, and electron microscopic mineralogy.
- Phase-specific hydrocarbon characterization using S1 (C7–C33) parameters and total gas content (TGC), with speciation of gaseous (C1–C2) versus volatile (C3–C7) components.
- Lithofacies discrimination through the correlation of total organic carbon content (TOC) and mineral composition, augmented by elemental proxies for paleoenvironmental reconstruction.
- Nanoscale rock fabric analysis utilizing ultra-high-resolution scanning electron microscopes (SEMs) to detect the occurrence of organic matter and mineral particles, elemental migration pathways, and hydrocarbon–bitumen associations.
- Phase behavior modeling via a proxy termed Hybrid Shale Condensate Index (HSCI), incorporating Tmax values to map maturity-controlled phase distributions across C1–C33 hydrocarbons.
- Multivariate statistical integration of HSCI, S1, TGC, Tmax, TOC, and rock compositional datasets to delineate dominant hydrocarbon distribution controls.
2. Geological Background
3. Materials and Methods
3.1. Geochemical Pyrolysis-FID Logging and In Situ Gas Desorption
3.2. X-Ray Fluorescence (XRF) Spectrum Element Logging
3.3. SEM-Based Automated Mineralogy and Petrography
3.4. Hybrid Shale Condensate Index (HSCI)
4. Results
4.1. Lacustrine Shale Components and Lithofacies
- Type I (TOC > 2 wt%): S1 (C7–C33) = 1.8 ± 0.3 mg/g, TGC (C1–C2) = 1.6 ± 0.2 m3/t.
- Type II (0.5–2 wt%): S1 = 0.9 ± 0.2 mg/g, TGC = 1.1 ± 0.3 m3/t.
- Type III (<0.5 wt%): S1 = 0.3 ± 0.1 mg/g, TGC = 0.7 ± 0.2 m3/t.
4.2. Thermal Maturity and Hydrocarbon Phases
4.3. Paleoenvironmental Conditions
4.4. Shale Lamination and Lamina-Induced Fractures
5. Discussion
5.1. Comparison of the Hybrid Sedimentation Model Between Hydrocarbon-Rich Shales and Hydrocarbon-Lean Shales
5.2. The Organic–Mineral Interactions During the Diagenesis of Hydrocarbon-Rich Shales
5.3. The Liquid Hydrocarbon and Solid Bitumen of the Hybrid Shale Gas Condensate Reservoirs
6. Conclusions
- Argillaceous shales (50–75% clay minerals) containing mixed carbonate and clay minerals (MC(C) > 25%) and organic matter (TOC > 2 wt%) exhibit high potential of hydrocarbon storage, achieving S1 > 1.5 ± 0.3 mg/g (C7–C33) and TGC > 1.5 ± 0.2 m3/t (C1–C2). These intervals develop intergranular porosity of 4.8 ± 1.2%, which is higher than illite-dominated zones.
- Six fluid phases of hydrocarbons were identified by the HSCI index, showing that the mature (Tmax = 460–480 °C) and highly mature (Tmax = 480–500 °C) shales are dominated by gas condensates. The production of gaseous and liquid hydrocarbon peaks at Tmax = 490 °C (highest S1 and TGC values), which corresponds to intervals with enhanced preservation of MC(C).
- Volcanic material inputs (Zr/Ti > 40), humid paleoclimate (Al/Ti > 10), saline lake water (Sr/Ba > 0.5 and Ca/(Ca + Fe) > 0.3), and anoxic bottom-water conditions (U/Th > 0.4) promote hybrid silicate and pyrite laminations, elevating TOC to 5.2 ± 0.8 wt%, which is higher than intervals unaffected by volcanism.
- Silicate laminae (S1 = 1.8 ± 0.4 mg/g) and pyrite laminae (porosity θ = 8% ± 3%) jointly form heterogenic seepage networks, promoting hydrocarbon generation in low-porosity shales (porosity θ = 1.2–4.8%). These systems differ from their marine analogs due to significant organic–mineral interactions.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
TOC | Total organic carbon content (wt%) |
TGC | Total gas content (m3/t) |
HSCI | Hybrid Shale Condensate Index |
GOR | Gas-to-oil production ratio (Scf/STB) |
API | American Petroleum Institute gravity (°API) |
References
- Speight, J. Chapter 7—Analysis of gas and condensate from tight formations. In Shale Oil and Gas Production Processes; Speight, J., Ed.; Gulf Professional Publishing: Houston, TX, USA, 2020; pp. 373–450. [Google Scholar]
- Hassan, A.; Mahmoud, M.; Al-Majed, A.; Alawi, M.B.; Elkatatny, S.; BaTaweel, M.; Al-Nakhli, A. Gas condensate treatment: A critical review of materials, methods, field applications, and new solutions. J. Pet. Sci. Eng. 2019, 177, 602–613. [Google Scholar] [CrossRef]
- Hassan, A.M.; Mahmoud, M.A.; Al-Majed, A.A.; Al-Shehri, D.; Al-Nakhli, A.R.; Bataweel, M.A. Gas production from gas condensate reservoirs using sustainable environmentally friendly chemicals. Sustainability 2019, 11, 2838. [Google Scholar] [CrossRef]
- El Diasty, W.S.; Peters, K.E.; Moldowan, J.M.; Essa, G.I.; Hammad, M.M. Organic geochemistry of condensates and natural gases in the northwest Nile Delta offshore Egypt. J. Pet. Sci. Eng. 2020, 187, 106819. [Google Scholar] [CrossRef]
- Clarkson, C.R.; Williams-Kovacs, J.D.; Qanbari, F.; Behmanesh, H.; Heidari Sureshjani, M. History-matching and forecasting tight/shale gas condensate wells using combined analytical, semi-analytical, and empirical methods. J. Nat. Gas Sci. Eng. 2015, 26, 1620–1647. [Google Scholar] [CrossRef]
- Sheng, J.J.; Mody, F.; Griffith, P.J.; Barnes, W.N. Potential to increase condensate oil production by huff-n-puff gas injection in a shale condensate reservoir. J. Nat. Gas Sci. Eng. 2016, 28, 46–51. [Google Scholar] [CrossRef]
- Wang, X.-W.; Xiao, P.; Yang, Z.-M.; Liu, X.-W.; Xia, Z.-Z.; Wang, L.-Q. Laboratory and field-scale parameter optimization of CO2 huff–n–puff with the staged-fracturing horizontal well in tight oil reservoirs. J. Pet. Sci. Eng. 2020, 186, 106703. [Google Scholar]
- Cardott, B.J. Thermal maturity of Woodford Shale gas and oil plays, Oklahoma, USA. Int. J. Coal Geol. 2012, 103, 109–119. [Google Scholar] [CrossRef]
- Gherabati, S.A.; Browning, J.; Male, F.; Ikonnikova, S.A.; McDaid, G. The impact of pressure and fluid property variation on well performance of liquid-rich Eagle Ford shale. J. Nat. Gas Sci. Eng. 2016, 33, 1056–1068. [Google Scholar] [CrossRef]
- Şen, Ş.; Kozlu, H. Impact of maturity on producible shale oil volumes in the Silurian (Llandovery) hot shales of the northern Arabian plate, southeastern Turkey. AAPG Bull. 2020, 104, 507–524. [Google Scholar] [CrossRef]
- Strąpoć, D.; Jacquet, B.; Torres, O.; Khan, S.; Villegas, E.I.; Albrecht, H.; Okoh, B.; McKinney, D. Deep biogenic methane and drilling-associated gas artifacts: Influence on gas-based characterization of petroleum fluids. AAPG Bull. 2020, 104, 887–912. [Google Scholar] [CrossRef]
- Chalmers, G.R.; Bustin, R.M.; Power, I.M. Characterization of gas shale pore systems by porosimetry, pycnometry, surface area, and field emission scanning electron microscopy/transmission electron microscopy image analyses: Examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig units. AAPG Bull. 2012, 96, 1099–1119. [Google Scholar]
- Merkel, A.; Fink, R.; Littke, R. The role of pre-adsorbed water on methane sorption capacity of Bossier and Haynesville shales. Int. J. Coal Geol. 2015, 147–148, 1–8. [Google Scholar] [CrossRef]
- Gou, Q.; Xu, S. The controls of laminae on lacustrine shale oil content in China: A review from generation, retention, and storage. Energies 2023, 16, 1987. [Google Scholar] [CrossRef]
- Chen, G.; Tang, Y.; Nan, Y.; Yang, F.; Wang, D. Paleo-sedimentary environments and controlling factors for enrichment of organic matter in alkaline lake sediments: A case study of the Lower Permian Fengcheng Formation in Well F7 at the western slope of Mahu Sag, Junggar Basin. Processes 2023, 11, 2483. [Google Scholar] [CrossRef]
- Xiao, H.; Hu, T.; Pang, X.; Ding, C.; Xu, Y.; Zhang, S.; Hu, Y.; Li, C.; Xu, T.; Zheng, D.; et al. A novel method for identifying oil content and moveable thresholds in heterogeneous shales. Fuel 2025, 397, 135473. [Google Scholar] [CrossRef]
- Clarkson, C.R.; Haghshenas, B.; Ghanizadeh, A.; Qanbari, F.; Williams-Kovacs, J.D.; Riazi, N.; Debuhr, C.; Deglint, H.J. Nanopores to megafractures: Current challenges and methods for shale gas reservoir and hydraulic fracture characterization. J. Nat. Gas Sci. Eng. 2016, 31, 612–657. [Google Scholar] [CrossRef]
- Middleton, R.S.; Carey, J.W.; Currier, R.P.; Hyman, J.D.; Kang, Q.; Karra, S.; Jiménez-Martínez, J.; Porter, M.L.; Viswanathan, H.S. Shale gas and non-aqueous fracturing fluids: Opportunities and challenges for supercritical CO2. Appl. Energy 2015, 147, 500–509. [Google Scholar] [CrossRef]
- Zhang, C.P.; Cheng, P.; Ranjith, P.G.; Lu, Y.Y.; Zhou, J.P. A comparative study of fracture surface roughness and flow characteristics between CO2 and water fracturing. J. Nat. Gas Sci. Eng. 2020, 76, 103188. [Google Scholar] [CrossRef]
- Jiang, J.; Younis, R.M. Compositional modeling of enhanced hydrocarbons recovery for fractured shale gas-condensate reservoirs with the effects of capillary pressure and multicomponent mechanisms. J. Nat. Gas Sci. Eng. 2016, 34, 1262–1275. [Google Scholar] [CrossRef]
- Sheng, J.J. Increase liquid oil production by huff-n-puff of produced gas in shale gas condensate reservoirs. J. Unconv. Oil Gas Resour. 2015, 11, 19–26. [Google Scholar] [CrossRef]
- Wang, Q.; Li, Y.; Sanei, H.; Gardner, J.; Rudra, A.; Utley, J.E.P.; Worden, R.H. Lacustrine and fan-delta sediments in syn-rift lake basins. Depos. Rec. 2025, 11. [Google Scholar] [CrossRef]
- Yang, W.; Wang, Q.; Wang, Y.; Jiang, Z.; Song, Y.; Li, Y.; Liu, D.; Zuo, R.; Gu, X.; Zhang, F. Pore characteristic responses to categories of depositional microfacies of delta-lacustrine tight reservoirs in the Upper Triassic Yanchang Formation, Ordos Basin, NW China. Mar. Pet. Geol. 2020, 118, 104423. [Google Scholar] [CrossRef]
- Wang, Q.; Li, Y.; Yang, W.; Jiang, Z.; Song, Y.; Jiang, S.; Luo, Q.; Liu, D. Finite element simulation of multi-scale bedding fractures in tight sandstone oil reservoir. Energies 2020, 13, 131. [Google Scholar] [CrossRef]
- Li, Y.; Song, Y.; Jiang, Z.; Yin, L.; Chen, M.; Liu, D. Major factors controlling lamina induced fractures in the Upper Triassic Yanchang formation tight oil reservoir, Ordos basin, China. J. Asian Earth Sci. 2018, 166, 107–119. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Q.; Xu, X.; Jiang, S.; Zhang, F. Permeability evolution of the lamina induced fractures (LFs) during the triaxial compression rupture phase. J. Pet. Sci. Eng. 2020, 188, 106870. [Google Scholar] [CrossRef]
- Liu, D.; Li, Y.; Luo, Q.; Wang, Q.; Meng, X.; Ge, Y.; Luo, J.; Feng, H.; Li, Y.; Zhang, X. Dynamic mechanisms of lamina-induced fracture propagation in tight oil-sand formations. Interpretation 2019, 7, T179–T193. [Google Scholar] [CrossRef]
- Li, Y.; Song, Y.; Jiang, S.; Jiang, Z.; Yang, W.; Wang, Q.; Liu, D. Tight reservoir oiliness numerical simulation based on a Markov chain Monte Carlo (MCMC) method: A case study of the upper Triassic Yanchang-6 formation (T3ch6 Fm.) outcrop of Ordos Basin. J. Pet. Sci. Eng. 2019, 175, 1150–1159. [Google Scholar] [CrossRef]
- Li, Y.; Song, Y.; Jiang, S.; Wang, Q.; Jiang, Z.; Zhang, F. Influence of gas and oil state on oil mobility and sweet-spot distribution in tight oil reservoirs from the perspective of capillary force. SPE Reserv. Eval. Eng. 2019, 23, 824–842. [Google Scholar] [CrossRef]
- Li, Y.; Song, Y.; Jiang, Z.; Yin, L.; Luo, Q.; Ge, Y.; Liu, D. Two episodes of structural fractures: Numerical simulation of Yanchang Oilfield in the Ordos basin, northern China. Mar. Pet. Geol. 2018, 97, 223–240. [Google Scholar] [CrossRef]
- Wang, Q.; Yang, W.; Li, Y.; Jiang, Z.; Wen, M.; Zuo, R.; Wang, X.; Xue, Z.; Wang, Y. In-situ fluid phase variation along the thermal maturation gradient in shale petroleum systems and its impact on well production performance. J. Earth Sci. 2023, 34, 985–1001. [Google Scholar] [CrossRef]
- Li, P.; Hao, F.; Zhang, B.; Zou, H.; Yu, X.; Wang, G. Heterogeneous distribution of pyrobitumen attributable to oil cracking and its effect on carbonate reservoirs: Feixianguan Formation in the Jiannan gas field, China. AAPG Bull. 2015, 99, 763–789. [Google Scholar] [CrossRef]
- Wang, Q.; Li, Y.; Utley, J.E.P.; Gardner, J.; Liu, B.; Hu, J.; Shao, L.; Wang, X.; Gao, F.; Liu, D.; et al. Terrestrial dominance of organic carbon in an early cretaceous syn-rift lake and its correlation with depositional sequences and paleoclimate. Sediment. Geol. 2023, 455, 106472. [Google Scholar] [CrossRef]
- Wang, P.-J.; Mattern, F.; Didenko, N.A.; Zhu, D.-F.; Singer, B.; Sun, X.-M. Tectonics and cycle system of the Cretaceous Songliao Basin: An inverted active continental margin basin. Earth Sci. Rev. 2016, 159, 82–102. [Google Scholar] [CrossRef]
- Espitalié, J.; Marquis, F.; Barsony, I. 9—Geochemical Logging. In Analytical Pyrolysis; Voorhees, K.J., Ed.; Butterworth-Heinemann: Oxford, UK, 1984; pp. 276–304. [Google Scholar]
- Wang, Q.; Li, Y.; Sanei, H.; Rudra, A.; Yuan, M.; Wang, Y.; Huang, Y.; Worden, R.H. Restoration of buried organic carbon for catagenesis-affected rocks using Rock-Eval thermal analysis: Assumptions, performance, and uncertainty analysis. Earth Sci. Rev. 2025, 267, 105155. [Google Scholar] [CrossRef]
- Ashton, T.; Ly, C.V.; Spence, G.; Oliver, G. Portable technology puts real-time automated mineralogy on the well site. In Proceedings of the SPE Unconventional Resources Conference and Exhibition-Asia Pacific, Brisbane, Australia, 11–13 November 2013. [Google Scholar]
- Oliver, G.M.; Ly, C.V.; Spence, G.; Rael, H. A new approach to measuring rock properties data from cores & cuttings for reservoir & completions characterization: An example from the Bakken Formation. In Proceedings of the SPE Unconventional Resources Conference and Exhibition-Asia Pacific, Brisbane, Australia, 11–13 November 2013. [Google Scholar]
- Parian, M.; Lamberg, P.; Möckel, R.; Rosenkranz, J. Analysis of mineral grades for geometallurgy: Combined element-to-mineral conversion and quantitative X-ray diffraction. Miner. Eng. 2015, 82, 25–35. [Google Scholar] [CrossRef]
- Shi, X.; Jiang, S.; Lu, S.; He, Z.; Li, D.; Wang, Z.; Xiao, D. Investigation of mechanical properties of bedded shale by nanoindentation tests: A case study on Lower Silurian Longmaxi Formation of Youyang area in southeast Chongqing, China. Pet. Explor. Dev. 2019, 46, 163–172. [Google Scholar] [CrossRef]
- Zhai, G.; Li, J.; Jiao, Y.; Wang, Y.; Liu, G.; Xu, Q.; Wang, C.; Chen, R.; Guo, X. Applications of chemostratigraphy in a characterization of shale gas Sedimentary Microfacies and predictions of sweet spots—Taking the Cambrian black shales in Western Hubei as an example. Mar. Pet. Geol. 2019, 109, 547–560. [Google Scholar] [CrossRef]
- Johnson, C.; Pownceby, M.I.; Wilson, N.C. The application of automated electron beam mapping techniques to the characterisation of low grade, fine-grained mineralisation; potential problems and recommendations. Miner. Eng. 2015, 79, 68–83. [Google Scholar] [CrossRef]
- Li, G.; Li, G.; Wang, Y.; Qi, S.; Yang, J. A rock physics model for estimating elastic properties of upper Ordovician-lower Silurian mudrocks in the Sichuan Basin, China. Eng. Geol. 2020, 266, 105460. [Google Scholar] [CrossRef]
- Arouri, K.R.; Jenden, P.D.; Al-Hajji, A.A. Petroleum inclusions atop Unayzah gas condensate reservoir: Signpost for an undocumented chapter of the Arabian Basin filling history? Org. Geochem. 2010, 41, 698–705. [Google Scholar] [CrossRef]
- Cesar, J.; Eiler, J.; Dallas, B.; Chimiak, L.; Grice, K. Isotope heterogeneity in ethyltoluenes from Australian condensates, and their stable carbon site-specific isotope analysis. Org. Geochem. 2019, 135, 32–37. [Google Scholar] [CrossRef]
- Huang, S.; Liu, D.; Wang, Z.; Feng, Z.; Huang, T. Genetic origin of gas condensate in Permian and Triassic strata in the southern Sichuan Basin, SW China. Org. Geochem. 2015, 85, 54–65. [Google Scholar] [CrossRef]
- Huang, S.; Wang, Z.; Lv, Z.; Gong, D.; Yu, C.; Wu, W. Geochemical identification of marine and terrigenous condensates—A case study from the Sichuan Basin, SW China. Org. Geochem. 2014, 74, 44–58. [Google Scholar] [CrossRef]
- Mei, M.; Bissada, K.K.; Malloy, T.B.; Darnell, L.M.; Liu, Z. Origin of condensates and natural gases in the Almond Formation reservoirs in southwestern Wyoming, USA. Org. Geochem. 2018, 124, 164–179. [Google Scholar] [CrossRef]
- Milkov, A.V.; Faiz, M.; Etiope, G. Geochemistry of shale gases from around the world: Composition, origins, isotope reversals and rollovers, and implications for the exploration of shale plays. Org. Geochem. 2020, 143, 103997. [Google Scholar] [CrossRef]
- Li, Y.; Xu, X.; Zhang, J.; Chen, S.; Bai, J.; Liu, W.; Wang, Q. Hybrid sedimentary conditions of organic-rich shales in faulted lacustrine basin during volcanic eruption episode: A case study of Shahezi Formation (K1sh Fm.), Lishu Faulted Depression, south Songliao Basin. Earth Sci. 2022, 47, 1728–1747, (In Chinese with English Abstract). [Google Scholar]
- Hara, H.; Kurihara, T.; Kuroda, J.; Adachi, Y.; Kurita, H.; Wakita, K.; Hisada, K.-I.; Charusiri, P.; Charoentitirat, T.; Chaodumrong, P. Geological and geochemical aspects of a Devonian siliceous succession in northern Thailand: Implications for the opening of the Paleo-Tethys. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2010, 297, 452–464. [Google Scholar] [CrossRef]
- Hu, C.; Zhang, Y.; Tian, J.; Wang, W.; Han, C.; Wang, H.; Li, X.; Feng, S.; Han, C.; Algeo, T.J. Influence of paleo-Trade Winds on facies patterns of the Cambrian Shanganning Carbonate Platform, North China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2020, 552, 109556. [Google Scholar] [CrossRef]
- Li, Y.; Yang, W.; Wang, Q.; Song, Y.; Jiang, Z.; Guo, L.; Zhang, Y.; Wang, J. Influence of the actively migrated diagenetic elements on the hydrocarbon generation potential in tuffaceous shale. Fuel 2019, 256, 115795. [Google Scholar] [CrossRef]
- Schenk, B.; Gebhardt, H.; Wolfgring, E.; Zorn, I. Cyclic paleo-salinity changes inferred from benthic foraminiferal assemblages in the Upper Burdigalian (Lower Miocene) Korneuburg Basin, Austria. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2018, 490, 473–487. [Google Scholar] [CrossRef]
- Toyoda, K. Geochemical history of ancient Lake Biwa in Japan—Chemical indicators of sedimentary paleo-environments in a drilled core. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1993, 101, 169–184. [Google Scholar] [CrossRef]
- Wu, Y.; Tian, H.; Gong, D.; Li, T.; Zhou, Q. Paleo-environmental variation and its control on organic matter enrichment of black shales from shallow shelf to slope regions on the Upper Yangtze Platform during Cambrian Stage 3. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2020, 545, 109653. [Google Scholar] [CrossRef]
- Li, W.; Cao, J.; Shi, C.; Xu, T.; Zhang, H.; Zhang, Y. Shale oil in saline lacustrine systems: A perspective of complex lithologies of fine-grained rocks. Mar. Pet. Geol. 2020, 116, 104351. [Google Scholar] [CrossRef]
- Algeo, T.J.; Liu, J. A re-assessment of elemental proxies for paleoredox analysis. Chem. Geol. 2020, 540, 119549. [Google Scholar] [CrossRef]
- Breit, G.N.; Wanty, R.B. Vanadium accumulation in carbonaceous rocks: A review of geochemical controls during deposition and diagenesis. Chem. Geol. 1991, 91, 83–97. [Google Scholar] [CrossRef]
- Tribovillard, N.; Algeo, T.J.; Lyons, T.; Riboulleau, A. Trace metals as paleoredox and paleoproductivity proxies: An update. Chem. Geol. 2006, 232, 12–32. [Google Scholar] [CrossRef]
- Ji, Z.; Meng, Q.; Wan, C.; Ge, W.; Yang, H.; Zhang, Y.; Dong, Y.; Jin, X. Early Cretaceous adakitic lavas and A-type rhyolites in the Songliao Basin, NE China: Implications for the mechanism of lithospheric extension. Gondwana Res. 2019, 71, 28–48. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, C.; Wignall, P.B.; Kluge, T.; Wan, X.; Wang, Q.; Gao, Y. Deccan volcanism caused coupled pCO2 and terrestrial temperature rises, and pre-impact extinctions in northern China. Geology 2018, 46, 271–274. [Google Scholar] [CrossRef]
- Zou, C.; Zhu, R.; Chen, Z.-Q.; Ogg, J.G.; Wu, S.; Dong, D.; Qiu, Z.; Wang, Y.; Wang, L.; Lin, S.; et al. Organic-matter-rich shales of China. Earth Sci. Rev. 2019, 189, 51–78. [Google Scholar] [CrossRef]
- Lerch, B.; Karlsen, D.A.; Abay, T.B.; Duggan, D.; Seland, R.; Backer-Owe, K. Regional petroleum alteration trends in Barents Sea oils and condensates as a clue to migration regimes and processes. AAPG Bull. 2016, 100, 165–190. [Google Scholar] [CrossRef]
- Liu, Y.; Qiu, N.; Hu, W.; Li, H.; Shen, F.; Yao, Q. Temperature and pressure characteristics of Ordovician gas condensate reservoirs in the Tazhong area, Tarim Basin, northwestern China. AAPG Bull. 2019, 103, 1351–1381. [Google Scholar] [CrossRef]
- Su, J.; Zhang, S.; Huang, H.; Wang, Y.; Wang, H.; He, K.; Wang, X.; Zhang, B.; Wang, H. New insights into the formation mechanism of high hydrogen sulfide–bearing gas condensates: Case study of Lower Ordovician dolomite reservoirs in the Tazhong uplift, Tarim Basin. AAPG Bull. 2016, 100, 893–916. [Google Scholar] [CrossRef]
- Huang, R.; Li, J.; Xie, Z.; Li, J. Formation and distribution of condensate gas pools in China. Oil Gas Geol. 1996, 17, 237–242, (In Chinese with English Abstract). [Google Scholar]
- Varela, S.; Lobo, J.M.; Hortal, J. Using species distribution models in paleobiogeography: A matter of data, predictors and concepts. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2011, 310, 451–463. [Google Scholar] [CrossRef]
- Cao, J.; Xia, L.; Wang, T.; Zhi, D.; Tang, Y.; Li, W. An alkaline lake in the Late Paleozoic Ice Age (LPIA): A review and new insights into paleoenvironment and petroleum geology. Earth Sci. Rev. 2020, 202, 103091. [Google Scholar] [CrossRef]
- Kolker, A. Minor element distribution in iron disulfides in coal: A geochemical review. Int. J. Coal Geol. 2012, 94, 32–43. [Google Scholar] [CrossRef]
- Kwiecińska, B.; Pusz, S.; Valentine, B.J. Application of electron microscopy TEM and SEM for analysis of coals, organic-rich shales and carbonaceous matter. Int. J. Coal Geol. 2019, 211, 103203. [Google Scholar] [CrossRef]
GOR (scf/STB) 1 | 3000–4000 | 4000–5000 | 5000–8000 | 8000–15,000 | 15,000–50,000 |
---|---|---|---|---|---|
Specific gravity (°API) | 52.1 | 55.5 | N/A 2 | 54.58 | N/A |
Reservoir pressure (psi) | 11,025 | 10,630 | 10,000 | 9300 | N/A |
Reservoir temperature (°F) | 321 | 328 | 300 | 290 | 275 |
Dew point (psi) | 4312 | 4165 | 4050 | 3892 | 3310 |
CO2 | 1.07 | 0.69 | 1.57 | 1.971 | 1.10 |
N2 | 0.15 | 0.07 | 0.09 | 0.092 | 0.10 |
C1 | 61.88 | 64.17 | 67.97 | 69.722 | 72.60 |
C2 | 11.64 | 11.22 | 11.61 | 11.791 | 12.95 |
C3 | 5.58 | 5.46 | 4.57 | 4.165 | 3.79 |
I-C4 | 1.32 | 1.53 | 1.38 | 1.316 | 1.25 |
N-C4 | 2.35 | 2.39 | 1.90 | 1.67 | 1.46 |
I-C5 | 1.20 | 1.35 | 1.24 | 1.188 | 1.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Bi, C.; Fu, C.; Xu, Y.; Yuan, Y.; Tong, L.; Tang, Y.; Wang, Q. Controls on the Hydrocarbon Production in Shale Gas Condensate Reservoirs of Rift Lake Basins. Processes 2025, 13, 1868. https://doi.org/10.3390/pr13061868
Li Y, Bi C, Fu C, Xu Y, Yuan Y, Tong L, Tang Y, Wang Q. Controls on the Hydrocarbon Production in Shale Gas Condensate Reservoirs of Rift Lake Basins. Processes. 2025; 13(6):1868. https://doi.org/10.3390/pr13061868
Chicago/Turabian StyleLi, Yaohua, Caiqin Bi, Chao Fu, Yinbo Xu, Yuan Yuan, Lihua Tong, Yue Tang, and Qianyou Wang. 2025. "Controls on the Hydrocarbon Production in Shale Gas Condensate Reservoirs of Rift Lake Basins" Processes 13, no. 6: 1868. https://doi.org/10.3390/pr13061868
APA StyleLi, Y., Bi, C., Fu, C., Xu, Y., Yuan, Y., Tong, L., Tang, Y., & Wang, Q. (2025). Controls on the Hydrocarbon Production in Shale Gas Condensate Reservoirs of Rift Lake Basins. Processes, 13(6), 1868. https://doi.org/10.3390/pr13061868