Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (513)

Search Parameters:
Keywords = mine water management

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4589 KiB  
Article
Evaluation of Slope Stability and Landslide Prevention in a Closed Open-Pit Mine Used for Water Storage
by Pengjiao Zhang, Yuan Gao, Yachao Liu and Tianhong Yang
Appl. Sci. 2025, 15(15), 8659; https://doi.org/10.3390/app15158659 - 5 Aug 2025
Abstract
To study and quantify the impact of water storage on lake slope stability after the closure of an open-pit mine, we targeted slope control measures by large-scale parallel computing methods and strength reduction theory. This was based on a three-dimensional refined numerical model [...] Read more.
To study and quantify the impact of water storage on lake slope stability after the closure of an open-pit mine, we targeted slope control measures by large-scale parallel computing methods and strength reduction theory. This was based on a three-dimensional refined numerical model to simulate the evolution of slope stability under different water storage levels and backfilling management conditions, and to quantitatively assess the risk of slope instability through the spatial distribution of stability coefficients. This study shows that during the impoundment process, the slope stability has a nonlinear decreasing trend due to the decrease in effective stress caused by the increase in pore water pressure. When the water storage was at 0 m, the instability range is the largest, and the surface range is nearly 200 m from the edge of the pit; when the water level continued to rise to 50 m, the hydrostatic pressure of the pit lake water on the slope support effect began to appear, and the stability was improved, but there is still a wide range of unstable areas at the bottom. In view of the unstable area of the steep slope with soft rock in the north slope during the process of water storage, the management scheme of backfilling the whole bottom to −150 m was proposed, and the slope protection and pressure footing were formed by discharging the soil to −40 m in steps to improve the anti-slip ability of the slope. Full article
(This article belongs to the Special Issue Advances in Slope Stability and Rock Fracture Mechanisms)
Show Figures

Figure 1

25 pages, 2973 KiB  
Article
Application of a DPSIR-Based Causal Framework for Sustainable Urban Riparian Forests: Insights from Text Mining and a Case Study in Seoul
by Taeheon Choi, Sangin Park and Joonsoon Kim
Forests 2025, 16(8), 1276; https://doi.org/10.3390/f16081276 - 4 Aug 2025
Viewed by 171
Abstract
As urbanization accelerates and climate change intensifies, the ecological integrity of urban riparian forests faces growing threats, underscoring the need for a systematic framework to guide their sustainable management. To address this gap, we developed a causal framework by applying text mining and [...] Read more.
As urbanization accelerates and climate change intensifies, the ecological integrity of urban riparian forests faces growing threats, underscoring the need for a systematic framework to guide their sustainable management. To address this gap, we developed a causal framework by applying text mining and sentence classification to 1001 abstracts from previous studies, structured within the DPSIR (Driver–Pressure–State–Impact–Response) model. The analysis identified six dominant thematic clusters—water quality, ecosystem services, basin and land use management, climate-related stressors, anthropogenic impacts, and greenhouse gas emissions—which reflect the multifaceted concerns surrounding urban riparian forest research. These themes were synthesized into a structured causal model that illustrates how urbanization, land use, and pollution contribute to ecological degradation, while also suggesting potential restoration pathways. To validate its applicability, the framework was applied to four major urban streams in Seoul, where indicator-based analysis and correlation mapping revealed meaningful linkages among urban drivers, biodiversity, air quality, and civic engagement. Ultimately, by integrating large-scale text mining with causal inference modeling, this study offers a transferable approach to support adaptive planning and evidence-based decision-making under the uncertainties posed by climate change. Full article
(This article belongs to the Section Forest Economics, Policy, and Social Science)
Show Figures

Figure 1

36 pages, 2676 KiB  
Review
Research Activities on Acid Mine Drainage Treatment in South Africa (1998–2025): Trends, Challenges, Bibliometric Analysis and Future Directions
by Tumelo M. Mogashane, Johannes P. Maree, Lebohang Mokoena and James Tshilongo
Water 2025, 17(15), 2286; https://doi.org/10.3390/w17152286 - 31 Jul 2025
Viewed by 286
Abstract
Acid mine drainage (AMD) remains a critical environmental challenge in South Africa due to its severe impact on water quality, ecosystems and public health. Numerous studies on AMD management, treatment and resource recovery have been conducted over the past 20 years. This study [...] Read more.
Acid mine drainage (AMD) remains a critical environmental challenge in South Africa due to its severe impact on water quality, ecosystems and public health. Numerous studies on AMD management, treatment and resource recovery have been conducted over the past 20 years. This study presents a comprehensive review of research activities on AMD in South Africa from 1998 to 2025, highlighting key trends, emerging challenges and future directions. The study reveals a significant focus on passive and active treatment methods, environmental remediation and the recovery of valuable resources, such as iron, rare earth elements (REEs) and gypsum. A bibliometric analysis was conducted to identify the most influential studies and thematic research areas over the years. Bibliometric tools (Biblioshiny and VOSviewer) were used to analyse the data that was extracted from the PubMed database. The findings indicate that research production has increased significantly over time, with substantial contributions from top academics and institutions. Advanced treatment technologies, the use of artificial intelligence and circular economy strategies for resource recovery are among the new research prospects identified in this study. Despite substantial progress, persistent challenges, such as scalability, economic viability and policy implementation, remain. Furthermore, few technologies have moved beyond pilot-scale implementation, underscoring the need for greater investment in field-scale research and technology transfer. This study recommends stronger industry–academic collaboration, the development of standardised treatment protocols and enhanced government policy support to facilitate sustainable AMD management. The study emphasises the necessity of data-driven approaches, sustainable technology and interdisciplinary cooperation to address AMD’s socioeconomic and environmental effects in the ensuing decades. Full article
Show Figures

Figure 1

27 pages, 31400 KiB  
Article
Multi-Scale Analysis of Land Use Transition and Its Impact on Ecological Environment Quality: A Case Study of Zhejiang, China
by Zhiyuan Xu, Fuyan Ke, Jiajie Yu and Haotian Zhang
Land 2025, 14(8), 1569; https://doi.org/10.3390/land14081569 - 31 Jul 2025
Viewed by 315
Abstract
The impacts of land use transition on ecological environment quality (EEQ) during China’s rapid urbanization have attracted growing concern. However, existing studies predominantly focus on single-scale analyses, neglecting scale effects and driving mechanisms of EEQ changes under the coupling of administrative units and [...] Read more.
The impacts of land use transition on ecological environment quality (EEQ) during China’s rapid urbanization have attracted growing concern. However, existing studies predominantly focus on single-scale analyses, neglecting scale effects and driving mechanisms of EEQ changes under the coupling of administrative units and grid scales. Therefore, this study selects Zhejiang Province—a representative rapidly transforming region in China—to establish a “type-process-ecological effect” analytical framework. Utilizing four-period (2005–2020) 30 m resolution land use data alongside natural and socio-economic factors, four spatial scales (city, county, township, and 5 km grid) were selected to systematically evaluate multi-scale impacts of land use transition on EEQ and their driving mechanisms. The research reveals that the spatial distribution, changing trends, and driving factors of EEQ all exhibit significant scale dependence. The county scale demonstrates the strongest spatial agglomeration and heterogeneity, making it the most appropriate core unit for EEQ management and planning. City and county scales generally show degradation trends, while township and grid scales reveal heterogeneous patterns of local improvement, reflecting micro-scale changes obscured at coarse resolutions. Expansive land transition including conversions of forest ecological land (FEL), water ecological land (WEL), and agricultural production land (APL) to industrial and mining land (IML) primarily drove EEQ degradation, whereas restorative ecological transition such as transformation of WEL and IML to grassland ecological land (GEL) significantly enhanced EEQ. Regarding driving mechanisms, natural factors (particularly NDVI and precipitation) dominate across all scales with significant interactive effects, while socio-economic factors primarily operate at macro scales. This study elucidates the scale complexity of land use transition impacts on ecological environments, providing theoretical and empirical support for developing scale-specific, typology-differentiated ecological governance and spatial planning policies. Full article
Show Figures

Figure 1

16 pages, 2460 KiB  
Article
Continuous Chamber Gangue Storage for Sustainable Mining in Coal Mines: Principles, Methods, and Environmental Benefits
by Jinhai Liu, Yuanhang Wang, Jiajie Li, Desire Ntokoma, Zhengxing Yu, Sitao Zhu and Michael Hitch
Sustainability 2025, 17(15), 6865; https://doi.org/10.3390/su17156865 - 28 Jul 2025
Viewed by 277
Abstract
Coal gangue, a major by-product of coal mining, poses significant environmental challenges due to its large-scale accumulation, land occupation, and potential for air and water pollution. This manuscript presents a comprehensive overview of continuous chamber gangue storage technology as a sustainable mining solution [...] Read more.
Coal gangue, a major by-product of coal mining, poses significant environmental challenges due to its large-scale accumulation, land occupation, and potential for air and water pollution. This manuscript presents a comprehensive overview of continuous chamber gangue storage technology as a sustainable mining solution for coal mines. The principles of this approach emphasize minimizing disturbance to overlying strata, enabling uninterrupted mining operations, and reducing both production costs and environmental risks. By storing the surface or underground gangue in continuous chambers, the proposed method ensures the roof stability, maximizes the waste storage, and prevents the interaction between mining and waste management processes. Detailed storage sequences and excavation methods are discussed, including continuous and jump-back excavation strategies tailored to varying roof conditions. The process flows for both underground and ground-based chamber storage are described, highlighting the integration of gangue crushing, paste preparation, and pipeline transport for efficient underground storage. In a case study with annual storage of 500,000 t gangue, the annual economic benefit reached CNY 1,111,425,000. This technology not only addresses the urgent need for sustainable coal gangue management, but also aligns with the goals of resource conservation, ecological protection, and the advancement of green mining practices in the coal industry. Full article
Show Figures

Figure 1

15 pages, 1589 KiB  
Article
Optimising Nature-Based Treatment Systems for Management of Mine Water
by Catherine J. Gandy, Beate Christgen and Adam P. Jarvis
Minerals 2025, 15(7), 765; https://doi.org/10.3390/min15070765 - 21 Jul 2025
Viewed by 205
Abstract
Deployment of nature-based systems for mine water treatment is constrained by system size, and the evidence suggests decreasing hydraulic conductivity (Ksat) of organic substrates over time compromises performance. In lab-scale continuous-flow reactors, we investigated (1) the geochemical and hydraulic performance [...] Read more.
Deployment of nature-based systems for mine water treatment is constrained by system size, and the evidence suggests decreasing hydraulic conductivity (Ksat) of organic substrates over time compromises performance. In lab-scale continuous-flow reactors, we investigated (1) the geochemical and hydraulic performance of organic substrates used in nature-based systems for metals removal (via bacterial sulfate reduction) from mine water, and then (2) the potential to operate systems modestly contaminated with Zn (0.5 mg/L) at reduced hydraulic residence times (HRTs). Bioreactors containing limestone, straw, and wood chips, with and without compost and/or sewage sludge all achieved 88%–90% Zn removal, but those without compost/sludge had higher Ksat (929–1546 m/d). Using a high Ksat substrate, decreasing the HRT from 15 to 9 h had no impact on Zn removal (92.5% to 97.5%). Although the sulfate reduction rate decreased at a shorter HRT, microbial analysis showed high relative abundance (2%–7%) of sulfate reducing bacteria, and geochemical modelling pointed to ZnS(s) precipitation as the main attenuation mechanism (mean ZnS saturation index = 3.91–4.23). High permeability organic substrate treatment systems operated at a short HRT may offer potential for wider deployment of such systems, but pilot-scale testing under ambient environmental conditions is advisable. Full article
(This article belongs to the Special Issue Characterization and Management of Mine Waters)
Show Figures

Graphical abstract

21 pages, 2430 KiB  
Article
Mechanisms and Genesis of Acidic Goaf Water in Abandoned Coal Mines: Insights from Mine Water–Surrounding Rock Interaction
by Zhanhui Wu, Xubo Gao, Chengcheng Li, Hucheng Huang, Xuefeng Bai, Lihong Zheng, Wanpeng Shi, Jiaxin Han, Ting Tan, Siyuan Chen, Siyuan Ma, Siyu Li, Mengyun Zhu and Jiale Li
Minerals 2025, 15(7), 753; https://doi.org/10.3390/min15070753 - 18 Jul 2025
Viewed by 233
Abstract
The formation of acidic goaf water in abandoned coal mines poses significant environmental threats, especially in karst regions where the risk of groundwater contamination is heightened. This study investigates the geochemical processes responsible for the generation of acidic water through batch and column [...] Read more.
The formation of acidic goaf water in abandoned coal mines poses significant environmental threats, especially in karst regions where the risk of groundwater contamination is heightened. This study investigates the geochemical processes responsible for the generation of acidic water through batch and column leaching experiments using coal mine surrounding rocks (CMSR) from Yangquan, China. The coal-bearing strata, primarily composed of sandstone, mudstone, shale, and limestone, contain high concentrations of pyrite (up to 12.26 wt%), which oxidizes to produce sulfuric acid, leading to a drastic reduction in pH (approximately 2.5) and the mobilization of toxic elements. The CMSR samples exhibit elevated levels of arsenic (11.0 mg/kg to 18.1 mg/kg), lead (69.5 mg/kg to 113.5 mg/kg), and cadmium (0.6 mg/kg to 2.6 mg/kg), all of which exceed natural crustal averages and present significant contamination risks. The fluorine content varies widely (106.1 mg/kg to 1885 mg/kg), with the highest concentrations found in sandstone. Sequential extraction analyses indicate that over 80% of fluorine is bound in residual phases, which limits its immediate release but poses long-term leaching hazards. The leaching experiments reveal a three-stage release mechanism: first, the initial oxidation of sulfides rapidly lowers the pH (to between 2.35 and 2.80), dissolving heavy metals and fluorides; second, slower weathering of aluminosilicates and adsorption by iron and aluminum hydroxides reduce the concentrations of dissolved elements; and third, concentrations stabilize as adsorption and slow silicate weathering regulate the long-term release of contaminants. The resulting acidic goaf water contains extremely high levels of metals (with aluminum at 191.4 mg/L and iron at 412.0 mg/L), which severely threaten groundwater, particularly in karst areas where rapid cross-layer contamination can occur. These findings provide crucial insights into the processes that drive the acidity of goaf water and the release of contaminants, which can aid in the development of effective mitigation strategies for abandoned mines. Targeted management is essential to safeguard water resources and ecological health in regions affected by mining activities. Full article
Show Figures

Graphical abstract

16 pages, 2085 KiB  
Article
Multivariate Analysis and Geostatistics of the Physicochemical Quality Waters Study from the Complex Lake Togo-Lagoon of Aneho (Southern Togo)
by Kamilou Ouro-Sama, Hodabalo Dheoulaba Solitoke, Gnon Tanouayi, Narcis Barsan, Emilian Mosnegutu, Sadikou Agbere, Fègbawè Badanaro, Valentin Nedeff, Kissao Gnandi, Florin-Marian Nedeff, Mirela Panainte-Lehadus and Dana Chitimus
Appl. Sci. 2025, 15(14), 7940; https://doi.org/10.3390/app15147940 - 16 Jul 2025
Viewed by 352
Abstract
The hydrosystem composed of Lake Togo, Lagoon of Togoville, and Lagoon of Aného is located in the coastal zone of Togo and receives important and different kinds of mining waste that cause its degradation. This study aims to evaluate the physicochemical and metallic [...] Read more.
The hydrosystem composed of Lake Togo, Lagoon of Togoville, and Lagoon of Aného is located in the coastal zone of Togo and receives important and different kinds of mining waste that cause its degradation. This study aims to evaluate the physicochemical and metallic quality of these waters and determine the possible sources of these contaminants using geostatistical, multivariate, and special analysis methods. These waters were very mineralized according to the average conductivity (15.51 mS/cm). Average contents (μg/L) in trace elements varied from 2.46 μg/L for As to 141.63 μg/L for Pb. Average levels of Cd, Pb, Cr, and Ni were significantly higher than the WHO standards. Trace elements and physicochemical parameters showed strong spatial variations with the highest values recorded downstream of the hydrosystem. The main possible source of trace element pollution was the intrusion of seawater loaded with phosphate effluent, followed by atmospheric deposition and soil leaching. This hydrosystem, therefore, deserves special attention for better planning its management. Full article
Show Figures

Figure 1

21 pages, 28944 KiB  
Article
Tracing Sulfate Sources of Surface Water and Groundwater in Liuyang River Basin Based on Hydrochemistry and Environmental Isotopes
by Lei Wang, Yi Li, Yanpeng Zhang, Wei Liu and Hongxin Zhang
Water 2025, 17(14), 2105; https://doi.org/10.3390/w17142105 - 15 Jul 2025
Viewed by 267
Abstract
Sulfate as a potential pollution source in the water environment of the basin, identifying sulfate sources and migration mechanisms is essential for protecting the water environment and ensuring sustainable water management. Liuyang River is a primary tributary of the Xiangjiang River. It has [...] Read more.
Sulfate as a potential pollution source in the water environment of the basin, identifying sulfate sources and migration mechanisms is essential for protecting the water environment and ensuring sustainable water management. Liuyang River is a primary tributary of the Xiangjiang River. It has experienced progressively intensifying anthropogenic influences in recent decades, manifested by sustained sulfate concentration increases. However, the sulfate sources and their contributions were not clear. This study used hydrochemistry and multi-isotopes methods combined with Simmr model to study the hydrochemical characteristics, sulfate sources, and migration–transformation processes of surface water and groundwater. The results showed that the hydrochemical types of surface water were HCO3-Ca and HCO3·SO4-Ca·Mg, and groundwater were HCO3-Ca, HCO3-Ca·Mg, and HCO3·SO4-Ca. Ions in the water primarily originated from carbonate and silicate rocks dissolution and sulfide oxidation, augmented by mining operations, sewage discharge, and chemical production. The analyses of hydrochemistry, isotopes, and Simmr model revealed that surface water sulfate originated from soil sulfate (35.70%), sulfide oxidation (26.56%), sewage (16.58%), and atmospheric precipitation (12.45%). Groundwater sulfate was derived predominantly from sewage (34.96%), followed by soil sulfate (28.09%), atmospheric precipitation (17.35%), and sulfide oxidation (12.25%). Sulfate migration and transformation were controlled by the natural environment and anthropogenic impacts. When unaffected by human activities, sulfate mainly originated from soil and atmospheric precipitation, relating to topography, geological conditions, agricultural activities, and precipitation intensity. However, in regions with intense human activities, contributions from sewage and sulfide oxidation significantly increased due to the influences of mining and industrial activities. Full article
(This article belongs to the Special Issue Groundwater Quality and Contamination at Regional Scales)
Show Figures

Figure 1

28 pages, 4718 KiB  
Article
Analysis and Prospective Use of Local Mineral Raw Materials to Increase the Aesthetic and Recreational Value of the Vyzhyvka River (Western Ukraine)
by Yuliia Trach, Tetiana Tkachenko, Maryna Kravchenko, Viktor Mileikovskyi, Oksana Tsos, Mariia Boiaryn, Olha Biedunkova, Roman Trach and Ihor Statnyk
Environments 2025, 12(7), 235; https://doi.org/10.3390/environments12070235 - 10 Jul 2025
Viewed by 629
Abstract
Macrophytes are important components of aquatic ecosystems performing essential ecological functions. Their species composition and density reflect the ecological status of water bodies. The optimal ratio of morphological types of macrophytes is an important condition for preventing eutrophication. The aim of the study [...] Read more.
Macrophytes are important components of aquatic ecosystems performing essential ecological functions. Their species composition and density reflect the ecological status of water bodies. The optimal ratio of morphological types of macrophytes is an important condition for preventing eutrophication. The aim of the study is to analyse the species composition, distribution, and density of macrophytes in the Vyzhyvka River (Ukraine) in a seasonal aspect (2023–2024) under constant physical and chemical characteristics of water. To assess the seasonal dynamics of water quality, changes in indicators in three representative areas were analysed. The MIR method of environmental indexation of watercourses was used to assess the ecological state of the river. The water quality in the Vyzhyvka River at all test sites corresponds to the second class of the “good” category with the trophic status of “mesotrophic”. This is confirmed by the identified species diversity, which includes 64 species of higher aquatic and riparian plants. Among the various morphological types of macrophytes, submerged rooted forms account for only 10.56% of the total species composition. To ensure a functional balance between submerged and other forms of macrophytes, a scientifically based approach is proposed, which involves the use of mineral raw materials of local origin, in particular, mining and quarrying wastes rich in silicon, calcium and other mineral components. The results obtained are of practical value for water management, environmental protection, and ecological reclamation and can be used to develop effective measures to restore river ecosystems. Full article
Show Figures

Figure 1

16 pages, 1818 KiB  
Article
Compressibility and Rheology of Clay Tailings: Effects of Sodium Polyacrylate in Presence of Divalent Cations
by Steven Nieto, Eder Piceros, Yanko Castañeda, Pedro Robles, Williams Leiva, Gonzalo R. Quezada and Ricardo I. Jeldres
Polymers 2025, 17(14), 1903; https://doi.org/10.3390/polym17141903 - 9 Jul 2025
Viewed by 435
Abstract
Increasing water scarcity in arid regions has prompted the mining industry to develop strategies to maximize water recovery and reuse, especially in tailings treatment processes. In this context, the present investigation evaluated the effects of sodium polyacrylate (NaPA) on the compressibility and viscoelasticity [...] Read more.
Increasing water scarcity in arid regions has prompted the mining industry to develop strategies to maximize water recovery and reuse, especially in tailings treatment processes. In this context, the present investigation evaluated the effects of sodium polyacrylate (NaPA) on the compressibility and viscoelasticity of clayey tailings in the presence of hard water containing calcium and magnesium. To this end, clayey slurries were analyzed using rheological tests (rheograms and oscillatory viscoelasticity), zeta potential measurements, and compressibility tests using batch centrifugation. The yield stress was determined using the Herschel–Bulkley model, while the compressive yield stress (Py(Φ)) was calculated as a key indicator to characterize the degree of sediment consolidation. The results showed that NaPA, due to its anionic nature and high degree of ionization at pH 8, induces effective particle dispersion by increasing electrostatic repulsion and decreasing the interaction force between particles, which reduces both rheological parameters and compressive yield stress. For the 70/30 quartz/kaolin mixture, the yield stress decreased from 70.54 to 61.64 Pa in CaCl2 and from 57.51 to 52.95 Pa in MgCl2 in the presence of NaPA. It was also observed that suspensions in the presence of magnesium ions presented greater compressibility than those with calcium, attributable to the greater hydration radius of magnesium (10.8 Å), which favors less dense and more easily deformable network structures. Furthermore, a higher proportion of kaolin in the mixture resulted in higher yield stresses, a product of the clay’s laminar structure, colloidal size, and high surface area, both in the absence and presence of NaPA. Overall, the results show that incorporating NaPA significantly improves the compressibility and rheology of clayey tailings in hard water, offering a promising alternative for optimizing water recovery and improving tailings management efficiency in the context of water restrictions. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

19 pages, 3923 KiB  
Article
Evaluative Potential for Reclaimed Mine Soils Under Four Revegetation Types Using Integrated Soil Quality Index and PLS-SEM
by Yan Mou, Bo Lu, Haoyu Wang, Xuan Wang, Xin Sui, Shijing Di and Jin Yuan
Sustainability 2025, 17(13), 6130; https://doi.org/10.3390/su17136130 - 4 Jul 2025
Viewed by 325
Abstract
Anthropogenic revegetation allows effective and timely soil development in mine restoration areas. The evaluation of soil quality is one of the most important criteria for measuring reclamation effectiveness, providing scientific reference for the subsequent management of ecological restoration projects. The aim of this [...] Read more.
Anthropogenic revegetation allows effective and timely soil development in mine restoration areas. The evaluation of soil quality is one of the most important criteria for measuring reclamation effectiveness, providing scientific reference for the subsequent management of ecological restoration projects. The aim of this research was to further investigate the influence of revegetation on mine-reclaimed soils in a semi-arid region. Thus, a coal-gangue dump within the afforestation chronosequence of 1 and 19 years in Shanxi Province, China, was selected as the study area. We assessed the physicochemical properties and nutrient stock of topsoils under four revegetation species, i.e., Pinus tabuliformis (PT), Medicago sativa (MS), Styphnolobium japonicum (SJ), and Robinia pseudoacaciaIdaho’ (RP). A two-way ANOVA revealed that reclamation age significantly affected SOC, TN, EC, moisture, and BD (p < 0.05), while the interaction effects of revegetation type and age were also significant for TN and moisture. In addition, SOC and TN stocks at 0–30 cm topsoil at the RP site performed the best among 19-year reclaimed sites, with an accumulation of 62.09 t ha−1 and 4.23 t ha−1, respectively. After one year of restoration, the MS site showed the highest level of SOC and TN accumulation, which increased by 186.8% and 88.5%, respectively, compared to bare soil in the 0–30 cm interval, but exhibited declining stocks during the 19-year restoration, possibly due to species invasion and water stress. In addition, an integrated soil quality index (ISQI) and the partial least squares structural equation model (PLS-SEM) were used to estimate comprehensive soil quality along with the interrelationship among influencing factors. The reclaimed sites with an ISQI value > 0 were 19-RP (3.906) and 19-SJ (0.165). In conclusion, the restoration effect of the PR site after 19 years of remediation was the most pronounced, with soil quality approaching that of the undisturbed site, especially in terms of soil carbon and nitrogen accumulation. These findings clearly revealed the soil dynamics after afforestation, further providing a scientific basis for choosing mining reclamation species in the semi-arid regions. Full article
Show Figures

Figure 1

18 pages, 3775 KiB  
Article
Water Storage Capacity of Ordovician Limestone Aquifer and Hydrogeological Response Mechanism of Deep Reinjection in North China
by Jianguo Fan, Weixiao Chen, Xianfeng Tan, Jiancai Sui, Qi Liu, Hongnian Chen, Feng Zhang, Ge Chen and Zhimin Xu
Water 2025, 17(13), 1982; https://doi.org/10.3390/w17131982 - 1 Jul 2025
Viewed by 315
Abstract
Mine water treatment and emissions have become important factors that restrict the comprehensive benefits of coal enterprises and local economic development, and the use of the deep well recharge method can address the specific conditions of mine surge water. This paper takes the [...] Read more.
Mine water treatment and emissions have become important factors that restrict the comprehensive benefits of coal enterprises and local economic development, and the use of the deep well recharge method can address the specific conditions of mine surge water. This paper takes the actual situation of coal mine water treatment as an example and innovatively carries out dynamic tests for the Ordovician limestone aquifers deep in the mine. Intermittent reinjection test shows that under the same reinjection time, the water level recovery rate during the intermittent period is fast at first and then slow. Moreover, the recovery speed of the water level buried depth slows down with the increase in the reinjection time, which reveals the characteristics of the water level rising rapidly and recovering quickly during the reinjection of the reservoir. The average formation water absorption index is 420.81 m3/h·MPa. The water level buried depth of the long-term reinjection test showed three stages (rapid rise, slow rise, and stable stages), and the water level buried depth was raised to 1.52 m at its highest. Monitoring data from the surrounding 5 km area showed that reinjection did not affect aquifer water levels, verifying the excellent storage capacity of the deep Ordovician fissure-karst aquifer. The variability of well loss under pumping and injection conditions was comparatively analyzed, and the well loss produced by the recharge test was 4.06 times higher than that of the pumping test, which provided theoretical support for the calculation of hydrogeological parameters to eliminate the influence of well loss. This study deepens the understanding of Ordovician limestone aquifers in deep mine water, providing a reference for cheap mine water treatment and sustainable groundwater management in similar mine areas. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

24 pages, 18983 KiB  
Article
Multi-Factor Analysis and Graded Remediation Strategy for Goaf Stability in Underground Metal Mines: Fluid–Solid Coupling Simulation and Genetic Algorithm-Based Optimization Approach
by Xuzhao Yuan, Xiaoquan Li, Xuefeng Li, Tianlong Su, Han Du and Danhua Zhu
Symmetry 2025, 17(7), 1024; https://doi.org/10.3390/sym17071024 - 30 Jun 2025
Viewed by 287
Abstract
To ensure the green, safe, and efficient extraction of mineral resources and promote sustainability, the stability of mined-out areas has become a critical factor affecting safe production and ecological restoration in underground metal mines. The instability of underground goafs poses a significant threat [...] Read more.
To ensure the green, safe, and efficient extraction of mineral resources and promote sustainability, the stability of mined-out areas has become a critical factor affecting safe production and ecological restoration in underground metal mines. The instability of underground goafs poses a significant threat to mine safety, especially when irregular excavation patterns interact with high ground stress, exacerbating instability risks. Most existing studies lack a systematic and multidisciplinary integrated framework for comprehensive evaluation and management. This paper proposes a trinity research system of “assessment–optimization–governance”, integrating theoretical analysis, three-dimensional fluid–solid coupling numerical simulation, and a filling sequence optimization method based on genetic algorithms. An analysis of data measured from 243 pillars and 49 goafs indicates that approximately 20–30% of the pillars have a factor of safety (FoS) below 1.0, signaling immediate instability risks; additionally, 58% do not meet the threshold for long-term stability (FoS ≥ 1.5). Statistical and spatial analyses highlight that pillar width-to-height ratio (W/H) and cross-sectional area significantly influence stability; when W/H exceeds 1.5, FoS typically surpasses 2.0. Numerical simulations reveal pore water pressures of 1.4–1.8 MPa in deeper goafs, substantially reducing effective stress and accelerating plastic zone expansion. Stability classification categorizes the 49 goafs into 7 “poor”, 37 “moderate”, and 5 “good” zones. A genetic algorithm-optimized filling sequence prioritizes high-risk area remediation, reducing maximum principal stress by 60.96% and pore pressure by 28.6%. Cemented waste rock filling applied in high-risk areas, complemented by general waste rock filling in moderate-risk areas, significantly enhances overall stability. This integrated method provides a scientific foundation for stability assessment and dynamic remediation planning under complex hydrogeological conditions, offering a risk-informed and scenario-specific application of existing tools that improves engineering applicability. Full article
(This article belongs to the Section Mathematics)
Show Figures

Figure 1

18 pages, 1849 KiB  
Article
Composting as a Sustainable Approach for Managing Mercury-Contaminated Aquatic Biomass
by María José Caraballo-Laza, Diana Marcela Ossa-Henao, Iván Urango-Cardenas, Mauricio Rosso-Pinto, Jean Remy Davée Guimarães, Roberth Paternina-Uribe, Yuber Palacios-Torres and José Marrugo-Negrete
Toxics 2025, 13(7), 553; https://doi.org/10.3390/toxics13070553 - 29 Jun 2025
Viewed by 337
Abstract
In this study, composting as an alternative approach for managing mercury-contaminated biomass in water bodies affected by gold mining in the Choco department was evaluated. A single-factor experiment with three treatments containing varying amounts of Eleocharis interstincta biomass sourced from mercury-contaminated sites was [...] Read more.
In this study, composting as an alternative approach for managing mercury-contaminated biomass in water bodies affected by gold mining in the Choco department was evaluated. A single-factor experiment with three treatments containing varying amounts of Eleocharis interstincta biomass sourced from mercury-contaminated sites was designed. During the composting process, physicochemical parameters were monitored such as temperature, pH, and electrical conductivity, while analyzing the behavior of mercury through mass balance assessments. Additionally, we determined the bioavailability of mercury in the final compost and characterized the physicochemical parameters of each compost sample. The mercury mass balance indicated a decrease in the total mercury content in the initial biomass over the composting period of 170 days. However, the total mercury concentration in the final compost increased due to the transformation and subsequent reduction of the original biomass. Mercury speciation analysis revealed that mercury was predominantly associated with the less bioavailable fractions (F4 and F5), suggesting its stabilization and low availability to biota. Therefore, the final compost has the potential to restore degraded soils by improving moisture retention, porosity, and soil fertility, thereby promoting plant growth. However, it does not fully meet the national and international technical standards for solid organic fertilizers or compost. Full article
(This article belongs to the Special Issue Mercury Cycling and Health Effects—2nd Edition)
Show Figures

Graphical abstract

Back to TopTop