Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (78)

Search Parameters:
Keywords = middle atmosphere dynamics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 3056 KiB  
Article
Analysis of Weather Conditions and Synoptic Systems During Different Stages of Power Grid Icing in Northeastern Yunnan
by Hongwu Wang, Ruidong Zheng, Gang Luo and Guirong Tan
Atmosphere 2025, 16(7), 884; https://doi.org/10.3390/atmos16070884 - 18 Jul 2025
Viewed by 163
Abstract
Various data such as power grid sensors and manual observed icing, CMA (China Meteorological Administration) Land Surface Data Assimilation System (CLDAS) products, and the Fifth Generation Atmospheric Reanalysis of the Global Climate from Europe Center of Middle Range Weather Forecast (ERA5) are adopted [...] Read more.
Various data such as power grid sensors and manual observed icing, CMA (China Meteorological Administration) Land Surface Data Assimilation System (CLDAS) products, and the Fifth Generation Atmospheric Reanalysis of the Global Climate from Europe Center of Middle Range Weather Forecast (ERA5) are adopted to diagnose an icing process under a cold surge during 16–23 December 2023 in northeastern Yunnan Province. The results show that: (1) in the early stage of the process, mainly the freezing types, such as GG (temperature > 0 °C, relative humidity ≥ 75%) and DG (temperature < 0 °C, relative humidity ≥ 75%), occur. At the end of the process, an increase in icing type as GD (temperature > 0 °C, relative humidity < 75%) appears. (2) Significant differences exist in the elements during different stages of icing, and the atmospheric thermal, dynamic, and water vapor conditions are conducive to the occurrence of freezing rain during ice accretion. The main impact weather systems of this process include a strong high ridge in the mid to high latitudes of East Asia, transverse troughs in front of the high ridge south to Lake Baikal, low altitude troughs, and ground fronts. The transverse trough in front of the high ridge can cause cold air to accumulate and then move eastward and southward. The southerly flows, surface fronts, and other low-pressure systems can provide powerful thermodynamic and moisture conditions for ice accumulation. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

12 pages, 1858 KiB  
Article
Botanical Studies Based on Textual Evidence in Eastern Asia and Its Implications for the Ancient Climate
by Haiming Liu, Huijia Song, Fei Duan and Liang Shen
Atmosphere 2025, 16(7), 824; https://doi.org/10.3390/atmos16070824 - 7 Jul 2025
Viewed by 206
Abstract
Understanding morphological descriptions of plants documented by ancient peoples over 1000 years ago and identifying the species they described are critical for reconstructing the natural geographic distribution of plant taxa, tracking taxonomic variations, and inferring historical climate dynamics. Analyzing shifts in plant communities [...] Read more.
Understanding morphological descriptions of plants documented by ancient peoples over 1000 years ago and identifying the species they described are critical for reconstructing the natural geographic distribution of plant taxa, tracking taxonomic variations, and inferring historical climate dynamics. Analyzing shifts in plant communities and climatic conditions during this period is essential to unravel the interplay among floristic composition, climate fluctuations, and anthropogenic impacts. However, research in this field remains limited, with greater emphasis placed on plant taxa from hundreds of millions of years ago. Investigations into flora and climate during the last two millennia are sparse, and pre-millennial climatic conditions remain poorly characterized. In this study, a historical text written 1475 years ago was analyzed to compile plant names and morphological features, followed by taxonomic identification. The research identified three gymnosperm species (one in Pinaceae, two in Cupressaceae), 1 Tamaricaceae species (dicotyledon), and 19 dicotyledon species. However, three plant groups could only be identified at the genus level. Using textual analysis and woody plant coexistence methods, the climate of 1475 years ago in western Henan Province, located in the middle-lower Yellow River basin in East Asia, was reconstructed. Results indicate that the mean temperature of the coldest month (MTCM) was approximately 1.3 °C higher than modern values. In comparison, the mean temperature of the warmest month (MTWM) and mean annual temperature (MAT) were lower than present-day levels. This suggests slightly cooler overall conditions with milder seasonal extremes in ancient Luoyang—a finding supported by contemporaneous studies. Furthermore, annual precipitation (AP), precipitation of the warmest quarter (PWQ), and precipitation of the coldest quarter (PCQ) in the Luoyang region 1475 years ago exceeded modern measurements, despite the area’s monsoonal climate. This suggests significantly higher atmospheric moisture content in ancient air masses compared to today. This study provides floristic and climatic baseline data for advancing our understanding of global climate variability at millennial scales. Full article
(This article belongs to the Section Climatology)
Show Figures

Figure 1

17 pages, 14349 KiB  
Article
The Western North Pacific Monsoon Dominates Basin-Scale Interannual Variations in Tropical Cyclone Frequency
by Xin Li, Jian Cao, Boyang Wang and Jiawei Feng
Remote Sens. 2025, 17(13), 2317; https://doi.org/10.3390/rs17132317 - 6 Jul 2025
Viewed by 293
Abstract
The monsoon is regarded as a key system influencing tropical cyclone (TC) activity over the Western North Pacific (WNP). However, the relationship between WNP TC frequency (TCF) and the monsoon across different timescales remains incompletely understood. This study explores the interannual-scale relationship between [...] Read more.
The monsoon is regarded as a key system influencing tropical cyclone (TC) activity over the Western North Pacific (WNP). However, the relationship between WNP TC frequency (TCF) and the monsoon across different timescales remains incompletely understood. This study explores the interannual-scale relationship between WNP TCF and the WNP summer monsoon over the period 1982–2020. We found that the interannual variation in basin-scale TCF is dominated by dynamic factors, particularly lower troposphere vorticity and middle troposphere ascending motion, which are driven by the WNP summer monsoon. Enhanced monsoonal precipitation over the WNP intensifies convective heating, which acts as a diabatic heat source and triggers a Rossby wave response to the west. This response generates anomalous lower troposphere cyclonic circulation and ascending motion in the main TC development region. In turn, the strengthened WNP summer monsoon circulation further amplifies precipitation, establishing positive feedback between atmospheric circulation and convection. This mechanism establishes dynamic conditions favorable for TC genesis, thereby dominating the basin-scale interannual variation in TCF. Full article
Show Figures

Figure 1

24 pages, 18914 KiB  
Article
Canopy Chlorophyll Content Inversion of Mountainous Heterogeneous Grasslands Based on the Synergy of Ground Hyperspectral and Sentinel-2 Data: A New Vegetation Index Approach
by Yi Zheng, Yao Wang, Tayir Aziz, Ali Mamtimin, Yang Li and Yan Liu
Remote Sens. 2025, 17(13), 2149; https://doi.org/10.3390/rs17132149 - 23 Jun 2025
Viewed by 414
Abstract
Canopy chlorophyll content (CCC) is a key indicator for assessing the carbon sequestration capacity and material cycling efficiency of ecosystems, and its accurate retrieval holds significant importance for analyzing ecosystem functioning. Although numerous destructive and remote sensing methods have been developed to estimate [...] Read more.
Canopy chlorophyll content (CCC) is a key indicator for assessing the carbon sequestration capacity and material cycling efficiency of ecosystems, and its accurate retrieval holds significant importance for analyzing ecosystem functioning. Although numerous destructive and remote sensing methods have been developed to estimate CCC, the accurate estimation of CCC remains a significant challenge in mountainous regions with complex terrain and heterogeneous vegetation types. Through the synergistic analysis of ground hyperspectral and Sentinel-2 data, this study employed Pearson correlation analysis and spectral resampling techniques to identify Sentinel-2 blue band B1 (443 nm) and red band B4 (665 nm) as chlorophyll-sensitive bands through spectral matching with the hyperspectral reflectance of typical grassland vegetation. Based on this, we developed a new four-band vegetation index (VI), the Dual Red-edge and Coastal Aerosol Vegetation Index (DRECAVI), for estimating the CCC of heterogeneous grasslands in the middle section of the Tianshan Mountains. DRECAVI incorporates red-edge anti-saturation modules (bands B4 and B7) and aerosol correction modules (bands B1 and B8). In order to test the performance of the new index, we compared it with eight commonly used indices and a hybrid model, the Sentinel-2 Biophysical Processor (S2BP). The results indicated the following: (1) DRECAVI demonstrated the highest accuracy in CCC retrieval for mountainous vegetation (R2 = 0.74, RMSE = 16.79, MAE = 12.50) compared to other VIs and hybrid methods, effectively mitigating saturation effects in high biomass areas and capturing a weak bimodal distribution pattern of CCC in the montane meadow. (2) The blue band B1 enhances atmospheric correction robustness by suppressing aerosol scattering, and the red-edge band B7 overcomes the sensitivity limitations of conventional red-edge indices (such as NDVI705, CIred-edge, and NDRE), demonstrating the potential application of the synergy mechanism between the blue band and the red-edge band. (3) Although the S2BP achieved high accuracy (R2 = 0.73, RMSE = 19.83, MAE = 14.71) without saturation effects and detected a bimodal distribution of CCC in the montane meadow of the study area, its algorithmic complexity hindered large-scale operational applications. In contrast, DRECAVI maintained similar precision while reducing algorithmic complexity, making it more suitable for regional-scale grassland dynamic monitoring. This study confirms that the synergistic use of multi-source data effectively overcomes the limitations of the spectral–spatial resolution of a single data source, providing a novel methodology for the precision monitoring of mountain ecosystems. Full article
Show Figures

Figure 1

13 pages, 4411 KiB  
Article
Construction of a High-Resolution Temperature Dataset at 40–110 KM over China Utilizing TIMED/SABER and FY-4A Satellite Data
by Qian Ye, Mohan Liu, Dan Du and Xiaoxin Zhang
Atmosphere 2025, 16(7), 758; https://doi.org/10.3390/atmos16070758 - 20 Jun 2025
Viewed by 319
Abstract
This study aims to develop a high-resolution temperature dataset from 40 km to 110 km over China by machine learning techniques, with a horizontal resolution of 0.5° × 0.5° and vertical resolution of 1 km, utilizing measurements from SABER onboard the Thermosphere, Ionosphere, [...] Read more.
This study aims to develop a high-resolution temperature dataset from 40 km to 110 km over China by machine learning techniques, with a horizontal resolution of 0.5° × 0.5° and vertical resolution of 1 km, utilizing measurements from SABER onboard the Thermosphere, Ionosphere, Mesosphere Energetics, and Dynamics (TIMED) and Fengyun 4A (FY-4A) satellites. Accurate temperature profiles play a critical role in understanding the atmospheric dynamics and climate change. However, because of the limitation of traditional detecting methods, the measurements of the upper stratosphere and mesosphere are rare. In this study, a new method is developed to construct a high-resolution temperature dataset over China in the middle atmosphere based on the XGBoost technique. The model’s performance is also validated based on rocket observations and ERA5 reanalysis data. The results indicate that the model effectively captures the characteristics of the vertical and seasonal variations in temperature, which provide a valuable opportunity for further research and improvement of climate models. The model demonstrates the highest accuracy below 80 km with RMSE < 12 K, while its performance decreases above 100 km, where RMSE can exceed 20 K, indicating optimal performance in the upper stratosphere and lower mesosphere regions. Full article
(This article belongs to the Special Issue Feature Papers in Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

22 pages, 11815 KiB  
Article
Climate Change Impacts and Atmospheric Teleconnections on Runoff Dynamics in the Upper-Middle Amu Darya River of Central Asia
by Lingxin Kong, Yizhen Li, Long Ma, Jingjing Zhang, Xuefeng Deng, Jilili Abuduwaili and Majid Gulayozov
Water 2025, 17(5), 721; https://doi.org/10.3390/w17050721 - 1 Mar 2025
Cited by 1 | Viewed by 951
Abstract
In arid regions, water scarcity necessitates reliance on surface runoff as a vital water source. Studying the impact of climate change on surface runoff can provide a scientific basis for optimizing water use and ensuring water security. This study investigated runoff patterns in [...] Read more.
In arid regions, water scarcity necessitates reliance on surface runoff as a vital water source. Studying the impact of climate change on surface runoff can provide a scientific basis for optimizing water use and ensuring water security. This study investigated runoff patterns in the upper-middle Amu Darya River (UADR) from 1960 to 2015. Special emphasis was placed on the effects of climatic factors and the role of major atmospheric circulation indices, such as the Eurasian Zonal Circulation Index (EZI), Niño 3.4, and the Indian Ocean Dipole (IOD). The results show a significant linear decreasing annual trend in runoff at a rate of 2.5 × 108 m3/year, with an abrupt change in 1972. Runoff exhibited periodic characteristics at 8–16 and 32–64 months. At the 8–16-month scale, runoff was primarily influenced by precipitation (PRE), actual evapotranspiration (AET), and snow water equivalent (SWE), and, at the 32–64-month scale, Niño 3.4 guided changes in runoff. In addition, El Niño 3.4 interacted with the EZI and IOD, which, together, influence runoff at the UADR. This study highlights the importance of considering multiple factors and their interactions when predicting runoff variations and developing water resource management strategies in the UADR Basin. The analysis of nonlinear runoff dynamics in conjunction with multiscale climate factors provides a theoretical basis for the management of water, land, and ecosystems in the Amu Darya Basin. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

17 pages, 5098 KiB  
Article
Dynamic Impact of the Southern Annular Mode on the Antarctic Ozone Hole Area
by Jae N. Lee and Dong L. Wu
Remote Sens. 2025, 17(5), 835; https://doi.org/10.3390/rs17050835 - 27 Feb 2025
Viewed by 747
Abstract
This study investigates the impact of dynamic variability of the Southern Hemisphere (SH) polar middle atmosphere on the ozone hole area. We analyze the influence of the southern annular mode (SAM) and planetary waves (PWs) on ozone depletion from 19 years (2005–2023) of [...] Read more.
This study investigates the impact of dynamic variability of the Southern Hemisphere (SH) polar middle atmosphere on the ozone hole area. We analyze the influence of the southern annular mode (SAM) and planetary waves (PWs) on ozone depletion from 19 years (2005–2023) of aura microwave limb sounder (MLS) geopotential height (GPH) measurements. We employ empirical orthogonal function (EOF) analysis to decompose the GPH variability into distinct spatial patterns. EOF analysis reveals a strong relationship between the first EOF (representing the SAM) and the Antarctic ozone hole area (γ = 0.91). A significant negative lag correlation between the August principal component of the second EOF (PC2) and the September SAM index (γ = −0.76) suggests that lower stratospheric wave activity in August can precondition the polar vortex strength in September. The minor sudden stratospheric warming (SSW) event in 2019 is an example of how strong wave activity can disrupt the polar vortex, leading to significant temperature anomalies and reduced ozone depletion. The coupling of PWs is evident in the lag correlation analysis between different altitudes. A “bottom-up” propagation of PWs from the lower stratosphere to the mesosphere and a potential “top-down” influence from the mesosphere to the lower stratosphere are observed with time lags of 21–30 days. These findings highlight the complex dynamics of PW propagation and their potential impact on the SAM and ozone layer. Further analysis of these correlations could improve one-month lead predictions of the SAM and the ozone hole area. Full article
Show Figures

Figure 1

17 pages, 5415 KiB  
Article
Formation and Precipitation Processes of the Southwest Vortex Impacted by the Plateau Vortex
by Aijuan Bai, Jinfeng Bai, Zhao Wang and Chaoyong Tu
Atmosphere 2025, 16(2), 115; https://doi.org/10.3390/atmos16020115 - 22 Jan 2025
Cited by 1 | Viewed by 786
Abstract
This study investigated the source, trajectory, and precipitation of the Southwest (SW) vortex, which was linked with the Plateau (P) vortex. Based on the statistical study of a number of cases, this study showed the following results. The SW vortex tended to originate [...] Read more.
This study investigated the source, trajectory, and precipitation of the Southwest (SW) vortex, which was linked with the Plateau (P) vortex. Based on the statistical study of a number of cases, this study showed the following results. The SW vortex tended to originate at the northeastern and western peripheries of the Sichuan Basin, normally coinciding with the presence of the P vortices in the eastern region of the Tibetan Plateau. Most of the aforementioned vortices exhibited a longer life span, and resulted in severe storms averaging approximately 50 mm of rainfall per day, especially in the cases of more than 100 mm of rainfall per day in eastern and southern China. Furthermore, new findings were obtained: (1) The SW vortex and the P vortex were attributed from an ‘Ω’ circulation pattern from blocking high in middle to high latitudes region. The SW vortex was notably influenced by the convergence of two air currents. In the lower troposphere, the southwesterly jet of the South Asian monsoon flowed over and around the Yungui Plateau, and cold–dry air from the north flowed into the Basin. (2) Both the SW vortex and the P vortex displayed a shallow synoptic system characterized below 500 hPa, and wet–cold cores formed around the sources at low altitudes. (3) The analysis on atmospheric instability and dynamics suggested that the vortices’ eddies generated significant convective instability at lower levels. The circulation pattern and instability conditions facilitated the heavy precipitation associated with the SW vortex, and the ample water vapor and subsequent latent heat intensified the precipitation. Full article
(This article belongs to the Special Issue Data Analysis in Atmospheric Research)
Show Figures

Figure 1

23 pages, 28101 KiB  
Article
Quantifying Time-Lag and Time-Accumulation Effects of Climate Change and Human Activities on Vegetation Dynamics in the Yarlung Zangbo River Basin of the Tibetan Plateau
by Ning Li and Di Wang
Remote Sens. 2025, 17(1), 160; https://doi.org/10.3390/rs17010160 - 5 Jan 2025
Viewed by 1183
Abstract
Vegetation, as a fundamental component of terrestrial ecosystems, plays a pivotal role in the flux of water, heat, and nutrients between the lithosphere, biosphere, and atmosphere. Assessing the impacts of climate change and human activities on vegetation dynamics is essential for maintaining the [...] Read more.
Vegetation, as a fundamental component of terrestrial ecosystems, plays a pivotal role in the flux of water, heat, and nutrients between the lithosphere, biosphere, and atmosphere. Assessing the impacts of climate change and human activities on vegetation dynamics is essential for maintaining the health and stability of fragile ecosystems, such as the Yarlung Zangbo River (YZR) basin of the Tibetan Plateau, the highest-elevation river basin in the world. Vegetation responses to climate change are inherently asymmetric, characterized by distinct temporal effects. However, these temporal effects remain poorly understood, particularly in high-altitude ecosystems. Here, we examine the spatiotemporal changes in leaf area index (LAI) and four climatic factors—air temperature, precipitation, potential evapotranspiration, and solar radiation—in the YZR basin over the period 2000–2019. We further explore the time-lag and time-accumulation impacts of these climatic factors on LAI dynamics and apply an enhanced residual trend analysis to disentangle the relative contributions of climate change and human activities. Results indicated that (1) a modest increase in annual LAI at a rate of 0.02 m2 m−2 dec−1 was detected across the YZR basin. Spatially, LAI increased in 66% of vegetated areas, with significant increases (p < 0.05) in 10% of the basin. (2) Temperature, precipitation, and potential evapotranspiration exhibited minimal time-lag (<0.5 months) but pronounced notable time-accumulation effects on LAI variations, with accumulation periods ranging from 1 to 2 months. In contrast, solar radiation demonstrated significant time-lag impacts, with an average lag period of 2.4 months, while its accumulation effects were relatively weaker. (3) Climate change and human activities contributed 0.023 ± 0.092 and –0.005 ± 0.109 m2 m−2 dec−1 to LAI changes, respectively, accounting for 60% and 40% on the observed variability. Spatially, climate change accounted for 85% of the changes in LAI in the upper YZR basin, while vegetation dynamics in the lower basin was primarily driven by human activities, contributing 63%. In the middle basin, vegetation dynamics were influenced by the combined effects of climate change and human activities. Our findings deepen insights into the drivers of vegetation dynamics and provide critical guidance for formulating adaptive management strategies in alpine ecosystems. Full article
Show Figures

Figure 1

18 pages, 6433 KiB  
Article
Dual-Wavelength Interferometric Detection Technology for Wind and Temperature Fields in the Martian Middle and Upper Atmosphere Based on LCTF
by Yanqiang Wang, Biyun Zhang, Chunmin Zhang, Shiping Guo, Tingyu Yan, Yifan He and William Ward
Remote Sens. 2024, 16(19), 3591; https://doi.org/10.3390/rs16193591 - 26 Sep 2024
Viewed by 996
Abstract
A dual-wavelength spaceborne Martian polarized wind imaging Michelson interferometer based on liquid crystal tunable filters (LCTF-MPWIMI) has been proposed for the remote sensing detection of dynamic parameters such as wind speed and temperature in the middle and upper atmosphere of Mars. Using the [...] Read more.
A dual-wavelength spaceborne Martian polarized wind imaging Michelson interferometer based on liquid crystal tunable filters (LCTF-MPWIMI) has been proposed for the remote sensing detection of dynamic parameters such as wind speed and temperature in the middle and upper atmosphere of Mars. Using the detected Martian oxygen atom emission lines at 557.7 nm and 630.0 nm as observation spectral lines, this technology extends the detection altitude range for Martian atmospheric wind speed and temperature to 60–180 km. By leveraging the different spectral line visibility of the interferograms at the two wavelengths, a novel method for measuring Martian atmospheric temperature is proposed: the dual-wavelength spectral line visibility product method. This new approach reduces the uncertainty of temperature detection compared to traditional single spectral line visibility methods, while maintaining the precision of wind speed measurements. The feasibility of the LCTF-MPWIMI for measuring wind and temperature fields in the Martian middle and upper atmosphere has been validated through theoretical modeling and computer simulations. The interferometer, as a key component of the system, has been designed and analyzed. The proposed LCTF-MPWIMI instrument is free of mechanical moving parts, offering flexible wavelength selection and facilitating miniaturization. The dual-wavelength temperature measurement method introduced in this work provides superior temperature measurement precision compared to any single spectral line when the signal-to-noise ratio (SNR) of the interferograms is comparable. Moreover, this method does not impose specific requirements on the atomic state of the spectral lines, making it broadly applicable to similar interferometric wind measurement instruments. These innovations offer advanced tools and methodologies for measuring wind speeds and temperatures in the atmospheres of Mars and other planets. Full article
Show Figures

Figure 1

19 pages, 20697 KiB  
Article
Hydrological Cycle in the Arabian Sea Region from GRACE/GRACE-FO Missions and ERA5 Data
by Ahmed Kamel Boulahia, David García-García, Mario Trottini, Juan-Manuel Sayol and M. Isabel Vigo
Remote Sens. 2024, 16(19), 3577; https://doi.org/10.3390/rs16193577 - 25 Sep 2024
Cited by 2 | Viewed by 2112
Abstract
The Arabian Gulf, a semi-enclosed basin in the Middle East, connects to the Indian Ocean through the Strait of Hormuz and is surrounded by seven arid countries. This study examines the water cycle of the Gulf and its surrounding areas using data from [...] Read more.
The Arabian Gulf, a semi-enclosed basin in the Middle East, connects to the Indian Ocean through the Strait of Hormuz and is surrounded by seven arid countries. This study examines the water cycle of the Gulf and its surrounding areas using data from the GRACE and GRACE Follow-On missions, along with ERA5 atmospheric reanalysis data, from 05/2002 to 05/2017 and from 07/2018 to 12/2023. Our findings reveal a persistent water deficit due to high evaporation rates, averaging 370 ± 3 km3/year, greatly surpassing precipitation, which accounts for only 15% of the evaporative loss. Continental runoff provides one-fifth of the needed water, while the remaining deficit, approximately 274 ± 10 km3/year, is balanced by net inflow of saltwater from the Indian Ocean. Seasonal variations show the lowest net inflow of 26 ± 49 km3/year in March and the highest of 586 ± 53 km3/year in November, driven by net evaporation, continental input, and changes in the Gulf’s water budget. This study highlights the complex hydrological dynamics influenced by climate patterns and provides a baseline for future research in the region, which will be needed to quantify the expected changes in the hydrological cycle due to climate change. Full article
(This article belongs to the Special Issue Applications of Satellite Geodesy for Sea-Level Change Observation)
Show Figures

Figure 1

12 pages, 9339 KiB  
Article
Correlation between Peak Height of Polar Mesospheric Clouds and Mesopause Temperature
by Yuxin Li, Haiyang Gao, Shaoyang Sun and Xiang Li
Atmosphere 2024, 15(10), 1149; https://doi.org/10.3390/atmos15101149 - 25 Sep 2024
Cited by 1 | Viewed by 1007
Abstract
Polar mesospheric clouds (PMCs) are ice crystal clouds formed in the mesosphere of high-latitude regions in both the northern (NH) and southern hemispheres (SH). Peak height is an important physical characteristic of PMCs. Satellite observation data from solar occultation for ice experiments (SOFIE) [...] Read more.
Polar mesospheric clouds (PMCs) are ice crystal clouds formed in the mesosphere of high-latitude regions in both the northern (NH) and southern hemispheres (SH). Peak height is an important physical characteristic of PMCs. Satellite observation data from solar occultation for ice experiments (SOFIE) during seven PMC seasons from 2007 to 2014 show that the difference between the height of the mesopause and the peak height of the PMCs (Zmes-Zmax) were inversely correlated with the atmospheric mesopause temperature. The Zmes-Zmax averages for all seasons for the NH and SH were 3.54 km and 2.66 km, respectively. They were smaller at the starting and ending stages of each PMC season and larger in the middle stages. Analysis of the individual cases and statistical results simulated by the PMCs 0-D model also revealed the inverse correlations between the Zmes-Zmax and mesopause temperature, with correlation coefficients of −0.71 and −0.62 for the NH and SH, respectively. The corresponding rates of change of Zmes-Zmax with respect to mesopause temperature were found to be −0.21 km/K and −0.14 km/K, respectively. The formation mechanism of PMCs suggests that a lower temperature around the mesopause can lead to a greater distance and longer time for ice crystals to condense and grow in clouds. Thus, ice crystals sediment to a lower height, making the peak height of the PMCs further away from the mesopause. In addition, disturbances in small-scale dynamic processes tend to weaken the impact of temperature on the peak height of PMCs. Full article
(This article belongs to the Special Issue The 15th Anniversary of Atmosphere)
Show Figures

Figure 1

17 pages, 4856 KiB  
Article
Investigate the Spatiotemporal Evolution of Drought and Its Interaction with Atmospheric Circulation in the Yellow River Middle Basin
by Yuanxin Dai, Jinlong Dong, Yingnan Wei, Mengyuan Xu, Tehseen Javed, Olusola Olaitan Ayantobo, Ning Yao and Bao Hu
Water 2024, 16(13), 1786; https://doi.org/10.3390/w16131786 - 24 Jun 2024
Cited by 1 | Viewed by 1196
Abstract
Global warming contributes to an increased frequency and severity of droughts. Drought emerges as a highly prevalent natural calamity, distinguished by its formidable disruptive impact and the capacity to trigger considerable economic setbacks. Understanding the spatiotemporal characteristics of droughts and clarifying the driving [...] Read more.
Global warming contributes to an increased frequency and severity of droughts. Drought emerges as a highly prevalent natural calamity, distinguished by its formidable disruptive impact and the capacity to trigger considerable economic setbacks. Understanding the spatiotemporal characteristics of droughts and clarifying the driving role of atmospheric circulation on droughts is vital for agricultural, hydrological, ecological, and socio-economic systems. Leveraging meteorological data from 36 stations in the middle reaches of the Yellow River Basin from 1961 to 2020, we employed the Standardized Precipitation Evapotranspiration Index (SPEI) to calculate drought occurrence. Concurrently, we explored the influence of atmospheric circulation on the SPEI. The findings of our study underscore a concerning trend of worsening drought conditions within the study area. We discovered a significant correlation between the duration and severity of drought (R = 0.83, p < 0.001); longer durations often corresponded to higher levels of severity. Turning our attention to atmospheric dynamics, the Nino Eastern Pacific index (NE) emerged as a critical driver of SPEI dynamics (the contribution of NE to SPEI was 0.22), significantly impacting drought patterns. In conclusion, the study significantly contributes to our comprehension of the evolving drought patterns under the influence of global warming. The findings can provide valuable information for water resource management and drought disaster control. Full article
(This article belongs to the Section Water Resources Management, Policy and Governance)
Show Figures

Graphical abstract

22 pages, 9737 KiB  
Article
Bio-Optical Properties near a Coastal Convergence Zone Derived from Aircraft Remote Sensing Imagery and Modeling
by Mark David Lewis, Stephanie Cayula, Richard W. Gould, William David Miller, Igor Shulman, Geoffrey B. Smith, Travis A. Smith, David Wang and Hemantha Wijesekera
Remote Sens. 2024, 16(11), 1965; https://doi.org/10.3390/rs16111965 - 30 May 2024
Viewed by 913
Abstract
Bio-optical and physical measurements were collected in the Mississippi Sound (Northern Gulf of Mexico) during the spring of 2018 as part of the Integrated Coastal Bio-Optical Dynamics project. The goal was to examine the impact of atmospheric and tidal fronts on fine-scale physical [...] Read more.
Bio-optical and physical measurements were collected in the Mississippi Sound (Northern Gulf of Mexico) during the spring of 2018 as part of the Integrated Coastal Bio-Optical Dynamics project. The goal was to examine the impact of atmospheric and tidal fronts on fine-scale physical and bio-optical property distributions in a shallow, dynamic, coastal environment. During a 25-day experiment, eight moorings were deployed in the vicinity of a frontal zone. For a one-week period in the middle of the mooring deployment, focused ship sampling was conducted with aircraft and unmanned aerial vehicle overflights, acquiring hyperspectral optical and thermal data. The personnel in the aircraft located visible color fronts indicating the convergence of two water masses and directed the ship to the front. Dye releases were performed on opposite sides of a front, and coincident aircraft and unmanned aerial vehicle overflights were collected to facilitate visualization of advection/mixing/dispersion processes. Radiometric calibration of the optical hyperspectral sensor was performed. Empirical Line Calibration was also performed to atmospherically correct the aircraft imagery using in situ remote sensing reflectance measurements as calibration sources. Bio-optical properties were subsequently derived from the atmospherically corrected aircraft and unmanned aerial vehicle imagery using the Naval Research Laboratory Automated Processing System. Full article
Show Figures

Figure 1

18 pages, 4423 KiB  
Article
Restoration Strategies in the Heidaigou Open-Pit Mine Dump Based on Water Sources and Plant Water Utilization
by Jing Wang, Long Li, Liang Zhang, Qiang Li and Kun Liu
Forests 2024, 15(6), 906; https://doi.org/10.3390/f15060906 - 23 May 2024
Cited by 2 | Viewed by 1069
Abstract
In this study, three typical plants capable of restoring in the Heidaigou open-pit mine dump, namely, Pinus sylvestris var. mongolica, Caragana korshinskii, and Medicago sativa, were taken as the research objects. The δ2H and δ18O values [...] Read more.
In this study, three typical plants capable of restoring in the Heidaigou open-pit mine dump, namely, Pinus sylvestris var. mongolica, Caragana korshinskii, and Medicago sativa, were taken as the research objects. The δ2H and δ18O values of atmospheric precipitation, soil water, stem water, and leaf water were measured using the stable isotope technique, and the distribution characteristics of the δ2H and δ18O values of different water sources were identified. The IsoSource model (version1.3.1) was used to calculate the contribution rate of different water sources to the plants, and the differences and dynamic changes in the water sources for P. sylvestris var. mongolica, C. korshinskii, and M. sativa during the rainy season were examined. Results showed that the water source of the three plants was found to be mainly soil water, and the utilization of each potential water source varied in different periods of the rainy season. In June, when SWC was sufficient, P. sylvestris var. mongolica and M. sativa primarily absorbed and utilized shallow and middle soil water, with relative utilization ratios of 55.5% and 59%, respectively, while C. korshinskii has a more balanced utilization ratio of soil water in each layer, with shallow soil water utilization at 33.7%, middle soil water at 34.2%, and deep soil water at 32.2%. In August, when SWC decreased, P. sylvestris var. mongolica, C. korshinskii, and M. sativa were all transferred to deep soil water, with utilization ratios of 75.8%, 78.8%, and 71.1%, respectively. The values showed that these three typical plants are capable of restoring can respond to external water changes through the plastic transformation of water absorption sources. Among them, C. korshinskii can flexibly use soil water in each layer, has stronger survival competitiveness in drought, and can better adapt to the fragile ecological environment of a mining dump. Full article
(This article belongs to the Special Issue Advances in Vegetation Succession with Soil Erosion)
Show Figures

Figure 1

Back to TopTop