Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = microwelding

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 12870 KiB  
Article
Direct Glass-to-Metal Welding by Femtosecond Laser Pulse Bursts: I, Conditions for Successful Welding with a Gap
by Qingfeng Li, Gabor Matthäus, David Sohr and Stefan Nolte
Nanomaterials 2025, 15(15), 1202; https://doi.org/10.3390/nano15151202 - 6 Aug 2025
Abstract
We report on the welding of optical borosilicate glass to an unpolished copper substrate (surface Ra of 0.27 µm and Rz of 1.89 µm) using bursts of femtosecond laser pulses. The present paper puts forth the hypothesis that glass–metal welding with a gap [...] Read more.
We report on the welding of optical borosilicate glass to an unpolished copper substrate (surface Ra of 0.27 µm and Rz of 1.89 µm) using bursts of femtosecond laser pulses. The present paper puts forth the hypothesis that glass–metal welding with a gap is contingent upon the ejection of molten jets of glass. We have ascertained the impact of pulse energy and focal position on weldability. This finding serves to substantiate our initial hypothesis and provides a framework for understanding the conditions under which this hypothesis is applicable. Under optimal conditions, but without the assistance of any clamping system, our welded samples maintained a breaking resistance of up to 10.9 MPa. Full article
(This article belongs to the Special Issue Ultrafast Laser Micro-Nano Welding: From Principles to Applications)
Show Figures

Figure 1

32 pages, 13176 KiB  
Review
A Review on Ultrafast Laser Microwelding of Transparent Materials and Transparent Material–Metals
by Jiayi Xu, Qing Jiang, Jin Yang, Jiangmei Cui, Yixuan Zhao, Min Zheng, J. P. Oliveira, Zhi Zeng, Rui Pan and Shujun Chen
Metals 2023, 13(5), 876; https://doi.org/10.3390/met13050876 - 1 May 2023
Cited by 20 | Viewed by 4460
Abstract
Transparent hard and brittle (THB) materials have generated significant interest due to their excellent properties, such as wide spectral transmittance, heat resistance, chemical inactivity and high mechanical strength. To further explore the application of THB materials, it is inevitable to be confronted with [...] Read more.
Transparent hard and brittle (THB) materials have generated significant interest due to their excellent properties, such as wide spectral transmittance, heat resistance, chemical inactivity and high mechanical strength. To further explore the application of THB materials, it is inevitable to be confronted with a range of joining THB materials and THB material–metals. Ultrafast (UF) laser microwelding enables a new means of joining THB materials and THB material–metals, due to a localized energy deposition method, which is dominated by nonlinear absorption. This process can realize high-quality micro-zone direct joining of THB materials or THB material–metals without the assistance of a light-absorbing intermediate layer. In this paper, we review the advances in UF laser microwelding of THB materials and THB material–metals considering the last two decades, from the analysis of the interaction mechanism between UF laser and matter to the key influencing factors and practical applications of this technology. Finally, the existing problems and the future research focus of UF laser microwelding technology of THB materials and THB material–metals are discussed. Full article
(This article belongs to the Special Issue Advanced Welding Technology in Metals II)
Show Figures

Figure 1

14 pages, 32909 KiB  
Article
Magneto-Optical Imaging of Arbitrarily Distributed Defects in Welds under Combined Magnetic Field
by Nvjie Ma, Xiangdong Gao, Meng Tian, Congyi Wang, Yanxi Zhang and Perry P. Gao
Metals 2022, 12(6), 1055; https://doi.org/10.3390/met12061055 - 20 Jun 2022
Cited by 14 | Viewed by 2234
Abstract
Using the traditional magneto-optical detection methods, micro-weld defects parallel with the magnetic field direction may be overlooked. In order to overcome this, a non-destructive testing method based on magneto-optical imaging under a vertical combined magnetic field (VCMF) is proposed. To demonstrate this, the [...] Read more.
Using the traditional magneto-optical detection methods, micro-weld defects parallel with the magnetic field direction may be overlooked. In order to overcome this, a non-destructive testing method based on magneto-optical imaging under a vertical combined magnetic field (VCMF) is proposed. To demonstrate this, the experimental results of the magneto-optical imaging of weld defects excited by a vertical combined magnetic field (VCMF) or parallel combined magnetic field (PCMF) are compared with those of traditional magnetic fields (constant magnetic field (CMF), alternating magnetic field (AMF), and rotating magnetic field (RMF)). It is found that the magneto-optical imaging under a VCMF can accurately detect weld defects of any shape and distribution. In addition, the center difference method is used to eliminate the influence of noise on the defect contour extraction of magneto-optical images, and the active contour of weld defects in the magneto-optical images is extracted. The results show that many noises can be identifiedby the robustness of the level set method, operating in low-pass filtering, so that much information that is usually lost can be retained. Full article
(This article belongs to the Section Welding and Joining)
Show Figures

Figure 1

10 pages, 5937 KiB  
Communication
State-of-the-Art Technologies in Piezoelectric Deformable Mirror Design
by Vladimir Toporovsky, Alexis Kudryashov, Arkadiy Skvortsov, Alexey Rukosuev, Vadim Samarkin and Ilya Galaktionov
Photonics 2022, 9(5), 321; https://doi.org/10.3390/photonics9050321 - 8 May 2022
Cited by 23 | Viewed by 3615
Abstract
In this work, two advanced technologies were applied for manufacturing a bimorph wavefront corrector: laser ablation, to vaporize conductive silver coating from piezoceramic surface, and parallel-gap resistance microwelding, to provide a reliable electrical contact between the piezodisk surface silver electrodes and copper wires. [...] Read more.
In this work, two advanced technologies were applied for manufacturing a bimorph wavefront corrector: laser ablation, to vaporize conductive silver coating from piezoceramic surface, and parallel-gap resistance microwelding, to provide a reliable electrical contact between the piezodisk surface silver electrodes and copper wires. A step-by-step guide for bimorph mirror production is presented, together with the ‘bottlenecks’. Optimization of the laser ablation technique was carried out using an Nd:YAG laser with an output power of 4 W and a frequency of 20 kHz. A comparison of the ultrasonic welding and parallel-gap resistance microwelding methods was performed. The tensile strength in the first case was in the range of 0.2…0.25 N for the system ‘copper wire–silver coating’. The use of resistance welding made it possible to increase the value of this parameter for the same contact pair by almost two times (0.45…0.5 N). Full article
(This article belongs to the Special Issue Various Applications of Methods and Elements of Adaptive Optics)
Show Figures

Figure 1

15 pages, 7113 KiB  
Article
Manufacturing of Microfluidic Devices with Interchangeable Commercial Fiber Optic Sensors
by Krystian L. Wlodarczyk, William N. MacPherson, Duncan P. Hand and M. Mercedes Maroto-Valer
Sensors 2021, 21(22), 7493; https://doi.org/10.3390/s21227493 - 11 Nov 2021
Cited by 3 | Viewed by 4051
Abstract
In situ measurements are highly desirable in many microfluidic applications because they enable real-time, local monitoring of physical and chemical parameters, providing valuable insight into microscopic events and processes that occur in microfluidic devices. Unfortunately, the manufacturing of microfluidic devices with integrated sensors [...] Read more.
In situ measurements are highly desirable in many microfluidic applications because they enable real-time, local monitoring of physical and chemical parameters, providing valuable insight into microscopic events and processes that occur in microfluidic devices. Unfortunately, the manufacturing of microfluidic devices with integrated sensors can be time-consuming, expensive, and “know-how” demanding. In this article, we describe an easy-to-implement method developed to integrate various “off-the-shelf” fiber optic sensors within microfluidic devices. To demonstrate this, we used commercial pH and pressure sensors (“pH SensorPlugs” and “FOP-MIV”, respectively), which were “reversibly” attached to a glass microfluidic device using custom 3D-printed connectors. The microfluidic device, which serves here as a demonstrator, incorporates a uniform porous structure and was manufactured using a picosecond pulsed laser. The sensors were attached to the inlet and outlet channels of the microfluidic pattern to perform simple experiments, the aim of which was to evaluate the performance of both the connectors and the sensors in a practical microfluidic environment. The bespoke connectors ensured robust and watertight connection, allowing the sensors to be safely disconnected if necessary, without damaging the microfluidic device. The pH SensorPlugs were tested with a pH 7.01 buffer solution. They measured the correct pH values with an accuracy of ±0.05 pH once sufficient contact between the injected fluid and the measuring element (optode) was established. In turn, the FOP-MIV sensors were used to measure local pressure in the inlet and outlet channels during injection and the steady flow of deionized water at different rates. These sensors were calibrated up to 140 mbar and provided pressure measurements with an uncertainty that was less than ±1.5 mbar. Readouts at a rate of 4 Hz allowed us to observe dynamic pressure changes in the device during the displacement of air by water. In the case of steady flow of water, the pressure difference between the two measuring points increased linearly with increasing flow rate, complying with Darcy’s law for incompressible fluids. These data can be used to determine the permeability of the porous structure within the device. Full article
(This article belongs to the Special Issue Sensors and Actuators in Microfluidic Devices for Analysis)
Show Figures

Figure 1

21 pages, 997 KiB  
Review
Development of an Intelligent Quality Management System for Micro Laser Welding: An Innovative Framework and Its Implementation Perspectives
by José Luis Velázquez de la Hoz and Kai Cheng
Machines 2021, 9(11), 252; https://doi.org/10.3390/machines9110252 - 26 Oct 2021
Cited by 11 | Viewed by 7229
Abstract
Laser micro-welding manufacturers face substantial challenges in verifying weldment quality, as the industry and applications are requiring increasingly the miniaturization and compactness of products. The problem is compounded by new stringent demands for personalized products at competitive, low costs and the highest quality [...] Read more.
Laser micro-welding manufacturers face substantial challenges in verifying weldment quality, as the industry and applications are requiring increasingly the miniaturization and compactness of products. The problem is compounded by new stringent demands for personalized products at competitive, low costs and the highest quality levels. High-pressure equipment manufacturers, in particular, rely on ISO 3834:2021 to assure and demonstrate best welding practices but also to manage risks associated with liability issues. ISO 3834:2021, like all conventional quality management systems, offers a one-dimensional, quasi-static overview of welding quality that may fail to deal with these new challenges and underlying complexities required to deal effectively with process variability. This paper presents a framework for welding companies to integrate horizontally their suppliers and customers with their processes and products, which are also integrated vertically in the context of Smart Manufacturing or Industry 4.0. It is focused on the development of a smart quality management system for intelligent digitization of all company manufacturing and business processes. Furthermore, an innovative data-based welding quality management framework is described for laser micro-welding applications and their implementation perspectives. The research is driven by an inductive methodology and based on a seamless integration of engineering-oriented heuristic and empirical approaches that is appropriate for intelligent and autonomous quality management, given the lack of research in this niche, but increasingly important topic area. Full article
(This article belongs to the Special Issue Advanced Autonomous Machines and Designs)
Show Figures

Figure 1

13 pages, 4710 KiB  
Article
Analysis of Acoustic Emission (AE) Signals for Quality Monitoring of Laser Lap Microwelding
by Ming-Chyuan Lu, Shean-Juinn Chiou, Bo-Si Kuo and Ming-Zong Chen
Appl. Sci. 2021, 11(15), 7045; https://doi.org/10.3390/app11157045 - 30 Jul 2021
Cited by 14 | Viewed by 2950
Abstract
In this study, the correlation between welding quality and features of acoustic emission (AE) signals collected during laser microwelding of stainless-steel sheets was analyzed. The performance of selected AE features for detecting low joint bonding strength was tested using a developed monitoring system. [...] Read more.
In this study, the correlation between welding quality and features of acoustic emission (AE) signals collected during laser microwelding of stainless-steel sheets was analyzed. The performance of selected AE features for detecting low joint bonding strength was tested using a developed monitoring system. To obtain the AE signal for analysis and develop the monitoring system, lap welding experiments were conducted on a laser microwelding platform with an attached AE sensor. A gap between the two layers of stainless-steel sheets was simulated using clamp force, a pressing bar, and a thin piece of paper. After the collection of raw signals from the AE sensor, the correlations of welding quality with the time and frequency domain features of the AE signals were analyzed by segmenting the signals into ten 1 ms intervals. After selection of appropriate AE signal features based on a scatter index, a hidden Markov model (HMM) classifier was employed to evaluate the performance of the selected features. Three AE signal features, namely the root mean square (RMS) of the AE signal, gradient of the first 1 ms of AE signals, and 300 kHz frequency feature, were closely related to the quality variation caused by the gap between the two layers of stainless-steel sheets. Classification accuracy of 100% was obtained using the HMM classifier with the gradient of the signal from the first 1 ms interval and with the combination of the 300 kHz frequency domain signal and the RMS of the signal from the first 1 ms interval. Full article
(This article belongs to the Special Issue Quality Control in Welding)
Show Figures

Figure 1

16 pages, 6534 KiB  
Article
Macro-Modelling of Laser Micro-Joints for Understanding Joint Strength in Electric Vehicle Battery Interconnects
by Abhishek Das, Richard Beaumont, Iain Masters and Paul Haney
Materials 2021, 14(13), 3552; https://doi.org/10.3390/ma14133552 - 25 Jun 2021
Cited by 11 | Viewed by 3033
Abstract
Laser micro-welding is increasingly being used to produce electrically conductive joints within a battery module of an automotive battery pack. To understand the joint strength of these laser welds at an early design stage, micro-joints are required to be modelled. Additionally, structural modelling [...] Read more.
Laser micro-welding is increasingly being used to produce electrically conductive joints within a battery module of an automotive battery pack. To understand the joint strength of these laser welds at an early design stage, micro-joints are required to be modelled. Additionally, structural modelling of the battery module along with the electrical interconnects is important for understanding the crash safety of electric vehicles. Fusion zone based micro-modelling of laser welding is not a suitable approach for structural modelling due to the computational inefficiency and the difficulty of integrating with the module model. Instead, a macro-model which computationally efficient and easy to integrate with the structural model can be useful to replicate the behaviour of the laser weld. A macro-modelling approach was adopted in this paper to model the mechanical behaviour of laser micro-weld. The simulations were based on 5 mm diameter circular laser weld and developed from the experimental data for both the lap shear and T-peel tests. This modelling approach was extended to obtain the joint strengths for 3 mm diameter circular seams, 5 mm and 10 mm linear seams. The predicted load–displacement curves showed a close agreement with the test data. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Graphical abstract

16 pages, 5568 KiB  
Article
Technology and Properties of Peripheral Laser-Welded Micro-Joints
by Szymon Tofil, Hubert Danielewski, Grzegorz Witkowski, Krystian Mulczyk and Bogdan Antoszewski
Materials 2021, 14(12), 3213; https://doi.org/10.3390/ma14123213 - 10 Jun 2021
Cited by 6 | Viewed by 2935
Abstract
This article presents the results of research on the technology and peripheral properties of laser-welded micro-couplings. The aim of this research was to determine the characteristics of properly made joints and to indicate the range of optimal parameters of the welding process. Thin-walled [...] Read more.
This article presents the results of research on the technology and peripheral properties of laser-welded micro-couplings. The aim of this research was to determine the characteristics of properly made joints and to indicate the range of optimal parameters of the welding process. Thin-walled AISI 316L steel pipes with diameters of 1.5 and 2 mm used in medical equipment were tested. The micro-welding process was carried out on a SISMA LM-D210 Nd:YAG laser. The research methods used were macroscopic and microscopic analyses of the samples, and assessment of the distribution of elements in the weld, the distribution of microhardness and the tear strength of the joint. As a result of the tests, the following welding parameters are recommended: a pulse energy of 2.05 J, pulse duration of 4 ms and frequency of 2 Hz, beam focusing to a diameter of 0.4 mm and a rotation speed of 0.157 rad/s. In addition, the tests show good joint properties with a strength of more than 75% of the thinner pipe, uniform distribution of alloying elements and a complex dendritic structure characteristic of pulse welding. Full article
(This article belongs to the Special Issue Development of Laser Welding and Surface Treatment of Metals)
Show Figures

Figure 1

16 pages, 6211 KiB  
Article
Laser Spot Micro-Welding of Ultra-Thin Steel Sheet
by Quanhong Li, Zhongyan Mu, Manlelan Luo, Anguo Huang and Shengyong Pang
Micromachines 2021, 12(3), 342; https://doi.org/10.3390/mi12030342 - 23 Mar 2021
Cited by 7 | Viewed by 4869
Abstract
This paper reports a mechanism understanding how to reduce the solder joint failure phenomenon in the laser spot micro-welding process of ultra-thin steel sheets. An optimization method to improve solder joint service life is proposed. In this study, the time-dependent dynamic behaviors of [...] Read more.
This paper reports a mechanism understanding how to reduce the solder joint failure phenomenon in the laser spot micro-welding process of ultra-thin steel sheets. An optimization method to improve solder joint service life is proposed. In this study, the time-dependent dynamic behaviors of the keyhole and the weld pool are simulated, and the temperatures in the keyhole of two different laser pulse waveforms are compared. The results show that laser energy attenuation mode (LEAM) can only obtain shallow weld depth because of the premature decay of the laser power of waveform, resulting in the laser beam that cannot be concentrated in the keyhole. The temperature inside the keyhole of LEAM fluctuates significantly, which shows a downward trend. Due to the existence of the peak power of waveform in laser energy continuous mode (LECM), the large angle of inclination of the wall of the keyhole inside the melt pool is more conducive to the multiple reflections of the laser beam in the keyhole and increases the absorption rate of the laser energy by the base material, resulting in the “keyhole effect”. But the temperature in the keyhole gradually rises, close to the evaporation temperature. A method combining LEAM and LECM to improve the solder joint service life by optimizing the temperature in the keyhole indirectly by adjusting the peak power of the laser pulse waveform is proposed in this study. The experimental results show that the weld depth can be optimized from 0.135 mm to 0.291 mm, and the tensile strength can be optimized from 88 MPa to 288 MPa. The bonding performance between the upper and lower plates is effectively improved. It can reach the required weld depth in a short time and improve the welding efficiency of the laser spot micro-welding process. The simulation results show that the temperature inside the keyhole is well optimized below the evaporation temperature of the material, which can avoid the violent evaporation of the welding process and keep the whole welding process in a stable state. By optimizing the laser pulse waveform, the temperature inside the keyhole can reach 3300 K, and it is always in a stable state than before optimization. The stable temperature inside the keyhole can help to reduce violent oscillation and spattering of the molten pool and improve welding efficiency and joint life. The research can help provide effective process guidance for the optimization of different laser pulse waveforms in the micro-welding process. Full article
Show Figures

Figure 1

16 pages, 7516 KiB  
Article
A Connection Method between Ultrahard PtW8 Wire and a Au Thick Film Based on Parallel-Gap Resistance Microwelding
by Mingqiang Pan, Minghui Tu and Jizhu Liu
Materials 2020, 13(13), 2911; https://doi.org/10.3390/ma13132911 - 29 Jun 2020
Cited by 1 | Viewed by 2709
Abstract
To meet the application requirements of a thermal gas sensor, it is necessary to realize a bond connection between PtW8 wire with a Au thick film. However, the physical properties, such as the melting point and hardness, of the two materials differ greatly. [...] Read more.
To meet the application requirements of a thermal gas sensor, it is necessary to realize a bond connection between PtW8 wire with a Au thick film. However, the physical properties, such as the melting point and hardness, of the two materials differ greatly. In this study, the parallel-gap resistance microwelding was introduced into the bonding connection between PtW8 wire and a Au thick film in the thermal gas sensor. The feasibility of the method was analyzed theoretically and the experimental system was established and studied. A scanning electron microscope (SEM) was used to analyze the morphology of the cross-section of the welded joint. The results showed that there was no obvious transition layer at the interface region but there were relatively dense welds. At the same time, it was found that the melted Au wetted and climbed on the surface of the platinum-tungsten alloy, which may have been the key to forming the joint. Elements were observed to have a spatial distribution gradient within the cross-section of the welding line, revealing that mutual diffusion occurred in the parallel-gap resistance microwelding, where this diffusion behavior may be the basic condition for forming the joint. Finally, the influence of the welding voltage, time, and force on the joint strength was also studied, where the joint strength could be up to 5 cN. Full article
Show Figures

Figure 1

13 pages, 3781 KiB  
Article
Analysis of a Sound Signal for Quality Monitoring in Laser Microlap Welding
by Bo-Si Kuo and Ming-Chyuan Lu
Appl. Sci. 2020, 10(6), 1934; https://doi.org/10.3390/app10061934 - 12 Mar 2020
Cited by 12 | Viewed by 3161
Abstract
This study focused on correlation analysis between welding quality and sound-signal features collected during microlaser welding. The study provides promising features for developing a monitoring system that detects low joint strength caused by a gap between metal sheets after welding. To obtain sound [...] Read more.
This study focused on correlation analysis between welding quality and sound-signal features collected during microlaser welding. The study provides promising features for developing a monitoring system that detects low joint strength caused by a gap between metal sheets after welding. To obtain sound signals for signal analysis and develop the monitoring system, experiments for laser microlap welding were conducted on a laser microwelding platform by installing a microelectromechanical system (MEMS) microphone away from the welding point, and an acoustic emission (AE) sensor on the fixture. The gap between two metal sheet layers was controlled using clamp force, a pressing bar, and the appropriate installation of a thin piece of paper between the metal sheets. After sound signals from the microphone were collected, the correlation between features of time-domain sound signals and of welding quality was analyzed by categorizing the referred signals into eight sections during welding. After appropriately generating the features after signal analysis and selecting the most promising features for low-joint-strength monitoring on the basis of scatter index J, a hidden Markov model (HMM)-based classifier was applied to evaluate the performance of the selected sound-signal features. Results revealed that three sound-signal features were closely related to joint-strength variation caused by the gap between two metal-sheet layers: (1) the root-mean-square (RMS) value of the first section of sound signals, (2) the standard deviation of the first section of sound signals, and (3) the standard deviation to the RMS ratio of the second section of sound signals. In system evaluation, a 100% classification rate was obtained for normal and low-bonding-strength monitoring when the HMM-based classifier was developed on the basis of the three selected features. Full article
(This article belongs to the Special Issue Micro/Nano Manufacturing II)
Show Figures

Figure 1

13 pages, 2658 KiB  
Article
Characteristics of an Implantable Blood Pressure Sensor Packaged by Ultrafast Laser Microwelding
by Sungil Kim, Jaesoon Park, Sangkyun So, Sanghoon Ahn, Jiyeon Choi, Chiwan Koo and Yeun-Ho Joung
Sensors 2019, 19(8), 1801; https://doi.org/10.3390/s19081801 - 15 Apr 2019
Cited by 36 | Viewed by 5719
Abstract
We propose a new packaging process for an implantable blood pressure sensor using ultrafast laser micro-welding. The sensor is a membrane type, passive device that uses the change in the capacitance caused by the membrane deformation due to applied pressure. Components of the [...] Read more.
We propose a new packaging process for an implantable blood pressure sensor using ultrafast laser micro-welding. The sensor is a membrane type, passive device that uses the change in the capacitance caused by the membrane deformation due to applied pressure. Components of the sensor such as inductors and capacitors were fabricated on two glass (quartz) wafers and the two wafers were bonded into a single package. Conventional bonding methods such as adhesive bonding, thermal bonding, and anodic bonding require considerable effort and cost. Therefore CO2 laser cutting was used due to its fast and easy operation providing melting and bonding of the interface at the same time. However, a severe heat process leading to a large temperature gradient by rapid heating and quenching at the interface causes microcracks in brittle glass and results in low durability and production yield. In this paper, we introduce an ultrafast laser process for glass bonding because it can optimize the heat accumulation inside the glass by a short pulse width within a few picoseconds and a high pulse repetition rate. As a result, the ultrafast laser welding provides microscale bonding for glass pressure sensor packaging. The packaging process was performed with a minimized welding seam width of 100 μm with a minute. The minimized welding seam allows a drastic reduction of the sensor size, which is a significant benefit for implantable sensors. The fabricated pressure sensor was operated with resonance frequencies corresponding to applied pressures and there was no air leakage through the welded interface. In addition, in vitro cytotoxicity tests with the sensor showed that there was no elution of inner components and the ultrafast laser packaged sensor is non-toxic. The ultrafast laser welding provides a fast and robust glass chip packaging, which has advantages in hermeticity, bio-compatibility, and cost-effectiveness in the manufacturing of compact implantable sensors. Full article
(This article belongs to the Special Issue Wearable and Implantable Sensors and Electronics Circuits)
Show Figures

Figure 1

15 pages, 6938 KiB  
Article
Influence of Numerical Aperture on Molten Area Formation in Fusion Micro-Welding of Glass by Picosecond Pulsed Laser
by Zhiyong Ouyang, Yasuhiro Okamoto, Yuta Ogino, Tomokazu Sakagawa and Akira Okada
Appl. Sci. 2019, 9(7), 1412; https://doi.org/10.3390/app9071412 - 3 Apr 2019
Cited by 11 | Viewed by 4000
Abstract
Focusing condition such as numerical aperture (N.A.) has a great influence on the creation of molten area and the stable welding process in fusion micro-welding of glass. In this study, a picosecond pulsed laser of 1064 nm in wavelength and 12.5 ps in [...] Read more.
Focusing condition such as numerical aperture (N.A.) has a great influence on the creation of molten area and the stable welding process in fusion micro-welding of glass. In this study, a picosecond pulsed laser of 1064 nm in wavelength and 12.5 ps in pulse duration was tightly focused inside a borosilicate glass using objective lenses of numerical apertures 0.45, 0.65, and 0.85 with spherical aberration correction. Influence of numerical aperture on molten area formation was experimentally investigated through analysis of focusing situation in glass, and movement of absorption point, and then molten area characteristics were discussed. It is concluded that N.A. of 0.65 with superior focusing characteristics can form a large and continuous molten area without cracks, which enables achievement of stable joining of glass material by picosecond pulsed laser. Full article
(This article belongs to the Section Applied Physics General)
Show Figures

Figure 1

13 pages, 5244 KiB  
Article
Influence of Surface State in Micro-Welding of Copper by Nd:YAG Laser
by Martin Ruthandi Maina, Yasuhiro Okamoto, Reiki Inoue, Shin-ichi Nakashiba, Akira Okada and Tomokazu Sakagawa
Appl. Sci. 2018, 8(12), 2364; https://doi.org/10.3390/app8122364 - 23 Nov 2018
Cited by 28 | Viewed by 6160
Abstract
Laser welding of copper is characterized by low and unstable light absorption around 1000 nm wavelength. Combination of high thermal conductivity and low melting point makes it difficult to obtain good welding quality and leads to low energy utilization. To improve efficiency and [...] Read more.
Laser welding of copper is characterized by low and unstable light absorption around 1000 nm wavelength. Combination of high thermal conductivity and low melting point makes it difficult to obtain good welding quality and leads to low energy utilization. To improve efficiency and welding quality, a technique to enhance process stability using 1064 nm wavelength Nd:YAG laser has been proposed, and absorption rate and molten volume in laser micro-welding were discussed. Since the surface state of specimen affects absorption phenomena, effects of surface shape and surface roughness were investigated. Absorption rate and molten volume were increased by creating appropriate concave holes and by controlled surface roughness. Stable micro-welding process with deep penetration and good surface quality was achieved for transitional processing condition between heat conduction and keyhole welding, by enhanced absorption rate. Full article
(This article belongs to the Special Issue New Frontiers of Laser Welding Technology)
Show Figures

Figure 1

Back to TopTop