
applied  
sciences

Article

Analysis of a Sound Signal for Quality Monitoring in
Laser Microlap Welding

Bo-Si Kuo and Ming-Chyuan Lu *

Department of Mechanical Engineering, National Chung Hsing University, 145 Xingda Rd., South Dist.,
Taichung 402, Taiwan; stanscreechkk@gmail.com
* Correspondence: mclu@dragon.nchu.edu.tw

Received: 15 February 2020; Accepted: 3 March 2020; Published: 12 March 2020
����������
�������

Abstract: This study focused on correlation analysis between welding quality and sound-signal
features collected during microlaser welding. The study provides promising features for developing
a monitoring system that detects low joint strength caused by a gap between metal sheets
after welding. To obtain sound signals for signal analysis and develop the monitoring system,
experiments for laser microlap welding were conducted on a laser microwelding platform by
installing a microelectromechanical system (MEMS) microphone away from the welding point, and an
acoustic emission (AE) sensor on the fixture. The gap between two metal sheet layers was controlled
using clamp force, a pressing bar, and the appropriate installation of a thin piece of paper between
the metal sheets. After sound signals from the microphone were collected, the correlation between
features of time-domain sound signals and of welding quality was analyzed by categorizing the
referred signals into eight sections during welding. After appropriately generating the features after
signal analysis and selecting the most promising features for low-joint-strength monitoring on the
basis of scatter index J, a hidden Markov model (HMM)-based classifier was applied to evaluate the
performance of the selected sound-signal features. Results revealed that three sound-signal features
were closely related to joint-strength variation caused by the gap between two metal-sheet layers:
(1) the root-mean-square (RMS) value of the first section of sound signals, (2) the standard deviation
of the first section of sound signals, and (3) the standard deviation to the RMS ratio of the second
section of sound signals. In system evaluation, a 100% classification rate was obtained for normal and
low-bonding-strength monitoring when the HMM-based classifier was developed on the basis of the
three selected features.
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1. Introduction

Laser welding is a key technology that has been used for decades to fuse various components,
ensuring a low heat-affected zone on components during manufacturing. Due to the continuous
development of the fiber laser system and the reduction of its operational costs, laser microwelding
has been utilized in various applications throughout the past decade. However, the lack of a
quality-monitoring system that confirms joint quality can limit the application of laser microwelding to
some products that require high reliability. In laser microlap welding, the gap between two metal-sheet
layers increases the energy required for joint formation, thus reducing joint quality. Therefore, a gap or
quality-monitoring system is crucial for verifying welding quality, and for extending its industrial
applications to more fields in the industry.

Some studies have reported the monitoring of welding conditions during welding processes.
However, most studies focused on keyhole-mode laser welding with the conventional macroscale of
welding. Shao et al. [1] reviewed various types of sensors adopted for keyhole-mode laser welding,
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such as audible-sound, acoustic-emission (AE), and optical sensors. An audible sound sensor has
the advantage of easy installation, and sound-signal generation is closely correlated to weld-pool
generation. Smith [2] proposed an analytical model to develop a relationship between audible sound
and weld-pool oscillation. Sun [3] studied a correlation between sound-signal features and defects
generated during keyhole-mode welding. Shimada et al. [4] confirmed that the energy level of
a sound signal generated through welding has a close relationship with laser-power density and
welding-penetration condition. Some studies [5–8] considered frequency-domain sound signals as
potential features to identify defects in the arc-welding quality. Luo et al. used audible sound signals
for conduction-mode welding to identify the differences between keyhole and conduction-mode
welding [9]. This study also discusses the effect of the gap between two metal sheets and plate
orientation on sound-signal features. To study systems that monitor the quality of keyhole-mode
welding, we developed a sound-based quality-monitoring system based on a neural network [10–12].
Moreover, Sun [3] and Jin et al. [13] developed sensor-fusion monitoring systems by integrating sound
signals with other AE or optical signals. Noise is a problem encountered while applying a sound
signal to monitor welded-joint quality. A noise-reduction method was proposed by Huang et al. [14] to
reduce the noise effect and to ensure that sound signals can be used in monitoring joint quality during
laser welding.

Few studies conducted welded-joint quality monitoring in conduction-mode welding.
Chien et al. [15] developed a quality-monitoring system on the basis of audible-sound signals
for thin-plate butt welding. The present study focused on analysis of the correlation between the
low bonding strength of welding and sound-signal features. A hidden Markov model (HMM)-based
monitoring system was applied to evaluate the quality-monitoring performance of the selected
sound features.

2. Experiment Setup

2.1. Equipment and Sensors

To analyze sound signals obtained from laser microlap welding of joints with various qualities,
a number of experiments were conducted on a laser-microwelding research platform integrated with a
microelectromechanical system microphone (SPM0408LE5H-TB, Knowles, Itasca, IL, USA) that had a
frequency range of 100–10 kHz, and an AE sensor (8152B121, Kistler, Winterthur, Switzerland) that
had a frequency range of 50–400 kHz. For data acquisition, a PCI NI 6132 was used to collect AE and
sound signals at a sampling rate of 2 MHz.

2.2. Experiment Design

Welding parameters in this study are listed in Table 1. To quantify the joint condition in microlap
welding, a peeling test was conducted for each welded sample. Moreover, peeling force was obtained
by breaking the joint with self-designed equipment, as displayed in Figure 1. The peeling force required
to break the joint was measured using a Kistler 9217A load cell, and the level was recorded during the
entire testing process.

Table 1. Welding parameters.

Laser Power(W) 105

Scan Speed(mm/s) 200

Pulse Frequency (kHz) 0.01

Processing Time (ms) 2
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Figure 1. Peeling test.

In a practical welding situation, the loss of appropriate contact between two layers of welded
metal sheets might be due to the deformation of thin workpieces or the lack of clamping force caused
by improper clamper design. Partial loss in contact reduces joint strength or does not form a joint.
To simulate the aforementioned conditions, welding location, the implementation of a central clamp,
and the installation of thin paper between two metal-sheet layers were controlled to generate different
contact conditions between the metal-sheet layers. Welding quality was then confirmed by conducting
the peeling test before signal analysis. Figure 2 displays the fixture design used for generating proper
and improper contacts. To generate improper contact between two metal sheets, the central clamp bar
was removed, and low-value torque was applied to the screw. Moreover, the welding location was
chosen to be close to the central part of the fixture, and a paper sheet that did not cover the welding
point was installed between the metal sheets to increase the chance of gap generation. Conversely, to
generate proper contact between the metal sheets, the welding location was moved close to the clamp
screw, high-value screw torque was applied, and a central clamp bar was implemented. The summary
of torque and setup is presented in Table 2.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 3 of 13 

 

 

Figure 1. Peeling test. 

In a practical welding situation, the loss of appropriate contact between two layers of welded 
metal sheets might be due to the deformation of thin workpieces or the lack of clamping force caused 
by improper clamper design. Partial loss in contact reduces joint strength or does not form a joint. To 
simulate the aforementioned conditions, welding location, the implementation of a central clamp, 
and the installation of thin paper between two metal-sheet layers were controlled to generate 
different contact conditions between the metal-sheet layers. Welding quality was then confirmed by 
conducting the peeling test before signal analysis. Figure 2 displays the fixture design used for 
generating proper and improper contacts. To generate improper contact between two metal sheets, 
the central clamp bar was removed, and low-value torque was applied to the screw. Moreover, the 
welding location was chosen to be close to the central part of the fixture, and a paper sheet that did 
not cover the welding point was installed between the metal sheets to increase the chance of gap 
generation. Conversely, to generate proper contact between the metal sheets, the welding location 
was moved close to the clamp screw, high-value screw torque was applied, and a central clamp bar 
was implemented. The summary of torque and setup is presented in Table 2. 

  

(a) (b) 

Figure 2. Setup for various contact conditions during welding: (a) proper contact; (b) contact with a 
gap between metal sheet layers. 

Table 2. Parameter design for generating proper and improper contacts. 

 Proper Contact Loss of Contact 
Torque for screw 6N 1.5N 

Extra Central Clamp Yes No 
Thin paper between 

workpiece No Yes 

Welding Location Close to the corner of 
clamp 

Close to central 
Line 

3. System Development and Verification 

Test 
sample

Moving 
Head

Sample 
Holder

Force 
Transducer

9217A

Moving Table Fixed Structure

Fixture 
Base

Bar for Clamp

Welding
Location

Welding 
Location

Workpiece

Screw for 
Clamp

Clamp

Welding 
Hole on Clamp

Fixture 
Base

Welding
Location

Welding 
Location

Workpiece

Screw for 
Clamp

Clamp

Welding 
Hole on Clamp

Figure 2. Setup for various contact conditions during welding: (a) proper contact; (b) contact with a
gap between metal sheet layers.

Table 2. Parameter design for generating proper and improper contacts.

Proper Contact Loss of Contact

Torque for screw 6N 1.5N

Extra Central Clamp Yes No

Thin paper between workpiece No Yes

Welding Location Close to the corner of clamp Close to central Line
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3. System Development and Verification

Scatter index J = Rc(k,k)
R(k,k) that estimates the between-class to within-class scatter ratio was used to

analyze the correlation between selected features and bonding quality. Between-class scatter Rc and
within-class scatter R are defined as follows [16]. The feature mean for each class Yi(k) was obtained
using individual features Yi j(k):

Yi(k) =
1

Mi

Mi∑
j=1

Yi j(k), (1)

where
i = ith class
j = jth pattern in a class
k = kth feature
Mi = the number of patterns in class Ci.
The overall system mean Y is determined as follows:

Y(k) =
C∑

i=1

piYi(k), (2)

where
pi = a priori probability of class Ci
C = number of classes.
Within-class scatter is obtained by calculating covariance for each feature as follows:

Ri(k) =
1

Mi

Mi∑
j=1

(
Yi j(k) −Yi j(k)

)(
Yi j(k) −Yi j(k)

)T

(3)

Moreover, the individual-class scatter is defined as follows:

Rc(k) =
C∑

i=1

pi
(
Yi(k) −Y(k)

)(
Yi(k) −Y(k)

)T

(4)

From Equations (3) and (4), the feature-selection criterion, a cost function, is defined as follows:

J(k) =
Rc(k)
R(k)

, (5)

where R(k) =
C∑

i=1
Ri(k).

The HMMs for determining welding quality were developed using collected training sound signals.
Once the models were developed, the unknown condition of welding quality was determined using
collected sound signals and developed models with selected features. The schematic of determining
the unknown quality condition by using the developed model is illustrated in Figure 3. In this method,
signals collected from events other than those used for model development served as input data.
Moreover, quality state Sn based on selected features was determined by referring to the model with a
large probability value based on the Viterbi algorithm. By using a combination of results obtained
from various selected features, the final decision pertaining to the quality state was determined by
fusing all decisions.
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Figure 3. Schematic of determining unknown quality condition by using developed model [17].

4. Results and Discussion

To verify the joint strength of each welded sample, a peeling test was conducted. Moreover, the
surface condition of a broken joint was examined using an optical microscope. Surface conditions
pertaining to the top and bottom surfaces of both metal-sheet layers after the peeling test are shown in
Figure 4. The surface condition presented in Figure 4a was obtained from the case in which the peeling
force was higher than 15 N, and that involved proper contact between layers. The surface condition
presented in Figure 4b was obtained from the case with very low peeling force that involved improper
contact between layers. The clear tearing of the material on the bottom layer is shown in Figure 4a,
and the separated part of the material was observed to be joined together on the bottom surface of the
top layer of the sample. Conversely, no material separation can be observed in Figure 4b from the
bottom layer of the sample. Only heat-effect zoom was observed at the bottom surface of the top layer
and the top surface of the bottom layer. This finding suggests that no significant joint was created
between the two metal-sheet layers. Peeling forces in the proper contact cases were in the range of
12–17 N in this study. No peeling force was available for low-strength-bonding cases because complete
peeling occurred abruptly when the peeling test was implemented.
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Because the AE signal was generated immediately when the laser beam and samples came into
contact, AE signals were collected simultaneously with audible sound (Figure 5) to verify the starting
point of the laser application to the metal sheets. Both AE and sound signals presented different
characteristics when welding was conducted. Sound signals collected from cases with normal and
low-joint-bonding strengths are shown in Figure 6. Different patterns were observed between the
two cases (Figure 6a,c), and signal energy seemed to be a good feature to identify the case with
low-bonding-strength joint. However, by reviewing the sound-signal pattern obtained from 20 samples
in the case with normal-joint-bonding strength, and 20 samples in the case with low-joint-bonding
strength, the variation of signal energy in the same case was observed. Low signal energy was observed
for some samples with high-joint-bonding strength (Figure 6b). On the other hand, high signal energy
was observed for some samples with low-joint-bonding strength (Figure 6d). After calculating the
root-mean-square (RMS) values of full-length sound signals for 20 samples in the normal-joint-bonding
strength case, and 20 samples in the low-joint-bonding strength case (Figure 7), a mixture zone of RMS
values of full-length sound signals for both cases was observed. Therefore, by only adopting RMS
values of full-length sound signals as the feature in monitoring-system development, this may lead to
failure in identifying joint-bonding strength. Based on above discussions, other signal features should
be studied and extracted to improve system robustness in monitoring joint-bonding strength in laser
microlap welding.
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1; (b) normal joint strength—Nsample 2; (c) low joint strength—Lsample 1; (d) low joint
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To analyze time-domain features and extract features closely related to the change of bonding
strength, the signal correlated to the entire welding process was divided into eight sections (Figure 8) for
feature analysis. The time-domain signals for each selected section are shown in Figure 9. The mixture
of obtained signals from both cases can be observed in each section. To extract valuable features for
joint-bonding-strength monitoring, RMS and standard deviation (STD) for each section were calculated
first. Average values of RMS and STD were obtained from 20 samples for each section (Figure 10).
The difference between the cases with high- and low-joint-bonding strengths was observed for both
RMS and STD features. Sections 6 and 7 had the highest level of difference. However, on analyzing the
level difference of these two features for each sample (Figure 11) in each section, we found that the
results were not in agreement with the presented observations in Figure 10. For Sections 2, 6, and 7,
presented in Figure 11, the RMS feature level refers to two joint-bonding strengths tangled with each
other from sample to sample. This means that these three features cannot be considered proper features
for developing a monitoring system, although the average of the RMS feature from all samples had the
potential to separate different joint strengths at the feature level. The RMS value of the first section was
considered the better choice for identifying low joint strengths. By investigating STD features on the
sample base (Figure 12), data from Sections 6 and 7 revealed no promising capabilities in identifying
low-joint-bonding strength. Conversely, the STD feature of the first section demonstrated the capability
of distinguishing between the high- and low-joint-bonding strength cases. To extract more reliable
features from the aforementioned analysis, the STD of each section was divided using RMS values
to create a new feature. Values of created STD/RMS ratio features for each section are illustrated
in Figure 13. The STD-to-RMS ratio in the second section is a promising feature for identifying the
joint-bonding condition.
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Figure 13. STD-to-RMS ratio for a selected section with high- and low-joint-bonding strengths: (a) first
section; (b) second section; (c) third section; (d) fourth section; (e) fifth section; (f) sixth section;
(g) seventh section; (h) eighth section.

To quantify the capability level of each feature for identifying the joint condition, scatter index J was
calculated on the basis of the ratio of between-class to in-class distribution for the three aforementioned
features for each section. Results presented in Figure 14 showed that RMS values and STDs in the
first section, and the STD-to-RMS ratio in the second section had the highest J values and could be
considered optimal candidates as inputs for the classifier. To evaluate selected features for monitoring
the low joint strength caused by the gap generated between metal sheets in laser microlap welding,
an HMM-based classifier was implemented with selected features [17]. Observation sequence levels
are listed in Table 3. The model was developed using 10 sets of data that were obtained from 10
samples and evaluated by 10 other sets of data. A 100% classification rate was obtained with the three
selected features.
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Table 3. Selected features for hidden Markov model (HMM)-based classifier.

Features Observation Level Assignment

Section 1

RMS
<0.09 1

0.09–0.18 2

>0.18 3

Standard Deviation

<0.04 1

0.04–0.08 2

0.08–0.12 3

0.12–0.16 4

0.16–0.2 5

Section 2 Ratio of RMS to STD
<0.75 1

>0.75 2

5. Conclusions

In this study, analysis of the correlation between sound signals and joint strength in laser lap
microwelding was conducted by dividing sound signals into eight sections. Results revealed that RMS
and STD values of the first section of signals, and the STD-to-RMS ratio of the second section of signals in
the welding process have promising potential in identifying low-strength joints. A 100% classification
rate was obtained when normal and low-strength joints were monitored using an HMM-based classifier
with selected features to verify the performance of the three selected features.
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