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Abstract: In this study, the correlation between welding quality and features of acoustic emission (AE)
signals collected during laser microwelding of stainless-steel sheets was analyzed. The performance
of selected AE features for detecting low joint bonding strength was tested using a developed
monitoring system. To obtain the AE signal for analysis and develop the monitoring system, lap
welding experiments were conducted on a laser microwelding platform with an attached AE sensor.
A gap between the two layers of stainless-steel sheets was simulated using clamp force, a pressing
bar, and a thin piece of paper. After the collection of raw signals from the AE sensor, the correlations
of welding quality with the time and frequency domain features of the AE signals were analyzed
by segmenting the signals into ten 1 ms intervals. After selection of appropriate AE signal features
based on a scatter index, a hidden Markov model (HMM) classifier was employed to evaluate the
performance of the selected features. Three AE signal features, namely the root mean square (RMS)
of the AE signal, gradient of the first 1 ms of AE signals, and 300 kHz frequency feature, were closely
related to the quality variation caused by the gap between the two layers of stainless-steel sheets.
Classification accuracy of 100% was obtained using the HMM classifier with the gradient of the signal
from the first 1 ms interval and with the combination of the 300 kHz frequency domain signal and
the RMS of the signal from the first 1 ms interval.

Keywords: acoustic emission; monitoring microwelding; hidden Markov model

1. Introduction

Laser microwelding has received considerable attention in past decades for the manu-
facturing of high-precision products in the electronics industry. Generally, the microgap
generated between the two layers of metal sheets during welding reduces the joint strength
and degrades welding quality in the manufacturing of products such as metal masks and
the package of a battery. Due to more than hundreds or thousands of welding points being
produced on a mask or a fuel cell, any failure of a single welding joint might cause the
failure of the whole product and lead to the loss of money and reputation in the industry. To
ensure manufacturing quality and apply the technique to these quality-sensitive products,
a quality monitoring system is crucial.

Studies have reported the development of monitoring systems for welding pro-
cesses [1-4]. However, most have focused on keyhole-mode welding with a conventional
welding size. Various types of sensors have been adopted in studies for monitoring laser
keyhole-mode welding quality, including audible sound sensors [5], acoustic emission
(AE) sensors [6], temperature sensors [7], and optical sensors [8]. AE signal is a kind
of solid wave generated by strain in solid material or friction on surface [9]. Due to its
high-frequency feature, it provides the advantages of a high signal-to-noise ratio. In laser
welding, the thermal expansion of solid material caused by the input of laser energy on a
workpiece will generate thermal strain in laser contact and affect the area. Therefore, the AE
signal which could be generated in laser welding is considered closely correlated with weld
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pool generation. Some studies have investigated the correlation between AE signal features
and defects resulting from keyhole-mode welding [10], and AE-based quality monitoring
has been studied. However, it still needs more work to improve system reliability when try-
ing to apply the AE-signal-based quality monitoring system to the production line. Jolly [11]
was the first to apply the AE signal to the process monitoring of stainless-steel welding.
The correlation between the crack and AE signal generation was reported. Chan et al. [12]
applied the AE signal to identify the lack of fusion in welding. Weeter et al. [13] installed
the AE sensor on a workpiece and reported that the feature change of the AE signal could
be observed for partial-penetration welding. Hamann et al. [14] also reported the increase
in the AE signal as the plasma generated in keyhole-mode welding. Habenicht et al. [15] re-
ported that the energy of the AE signal decreases as the liquid state appears in the welding.
Fang et al. [16] observed that the frequency-domain AE signal correlated closely to the cold
crack is at around 200 kHz. Shao et al. [6] reviewed studies involving the AE signal for the
development of the monitoring issues in welding. Schubert et al. [17] reported that lack-of-
fusion defects and pores were successfully detected by AE signals. Jia et al. [18] reported
that the evidence of crack propagation after solidification of a weld is successfully captured
by an AE sensor. Although the capability of the AE signal to monitor defects in welding is
confirmed in most reports, the installation of AE sensors on a workpiece makes it not easy
to be implemented in the production line. In 2014, close relationships between laser spot
welding and AE signals were reported by Lee et al. [19], and the selected features were
adopted as the input features to a back-propagation artificial neural network to predict the
weldability of stainless-steel sheets. Furthermore, for keyhole-mode monitoring, hybrid
monitoring systems have been developed that integrate AE signals with other sound or
optical signals [10,20].

Few studies have reported on monitoring welding quality in conduction mode with
AE signals. Chien et al. [21] developed a quality monitoring system based on AE signals
for thin-plate butt welding. Kuo and Lu [22] studied the correlation between laser microw-
elding bonding strength and the feature of audible sound collected during welding by
simulating a gap between the layers of metal sheets. In this study, following the study
reported by Kuo and Lu [22], the correlation between welding quality and the features of
AE signals was analyzed. In the previous work [22], the signals analyzed is audible sound
collected by a MEMS microphone with frequency range below 10 kHz. In this paper, the
signal studied is the Acoustic Emission (AE) signal with a range from 50 kHz to 400 kHz.
The AE signal was collected simultaneously with audible sound studied in Reference [22]
from the same welding experiments. The experimental setup simulated the condition in
the manufacturing of the metal mask in the production line. To verify the capability of
applying the AE signal in detecting the low-strength joint in laser lap microwelding, the
same hidden Markov model (HMM)-based monitoring system as shown in Reference [22]
was employed to evaluate the performance of the selected AE features.

2. Experimental Setup
2.1. Equipment and Sensors

Laser lap microwelding experiments were conducted on a laser microwelding ma-
chine (Figure 1) with an integrated Kistler 8152B121 AE sensor (linear frequency range:
50-400 kHz). A QCW fiber laser with wavelength of 1.064 um was implemented in this
study. Two 45 mm X 10 mm SUS304 stainless metal sheets with 200 um in thickness was
chosen as workpiece. Its thermal expansion (10~%/K), thermal conductivity (W/m K), and
melting point (OC) were 18.4, 16.8, and 1723. In the test, the AE sensor was installed on
the bottom plate of the fixture with screw to collected AE signal during welding. To avoid
aliasing occurring during data acquisition, an NI 6132 was used to collect AE signals with
a sampling rate of 2 MHz.
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AE sensor

Figure 1. Laser welding research platform and fixture.

2.2. Experimental Design

Table 1 presents the welding parameters adopted in this study. The fiber laser delivers
105 W power in pulse mode with an interval of 2 ms for each welding. The laser spot size
is 50 um in diameter. To classify the welding quality for signal analysis and monitoring
model development, the joint strength was measured after lap microwelding by a peeling
test. The peeling test was performed for each welding spot on a sample, and the peeling
force was obtained using a force transducer (Kistler 9217A) during the breaking up of a
joint with equipment designed by the authors (Figure 2a); the peeling force used to break
up the joint was measured and recorded throughout the test (Figure 2b).

Table 1. Welding parameters.

Laser Type QCW Fiber Laser
Wave length (um) 1.064
Laser power (W) 105
Laser scan speed (mm/s) 200
Frequency for laser (kHz) 0.01
Time interval for pulse wave (ms) 2
Spot size (um) 50
=
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Figure 2. Peeling test (a) equipment and (b) recorded force data.

In a production line, loss of contact between the two layers of metal sheets might
be caused by the deformation of the metal sheets or insufficient clamping force induced
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Welding
Location

by improper clamper design. Improper contact can yield low joint bonding strength
or prevent joint generation. To simulate such conditions to generate different welding
quality, the central clamp, the welding location, and two thin sheets of paper between
the two layers of metal sheets were used to control the contact between the layers of
metal sheets. The thickness of paper used to increase the gap was around 200 um. After
the test, the peeling test was performed on each sample to confirm the final welding
condition. Figure 3 illustrates the setups used to simulate the two types of contact between
the metal sheet layers. To increase the possibility of obtaining improper contact between
the layers, the central clamp bar was removed, and low torque (1.5 N) was applied to the
screw. In addition, a welding location near the central parts of the fixture was selected.
Two paper sheets, which did not cover the welding point, were placed between the metal
sheets to help generate a gap. By contrast, to ensure proper contact between the layers
of metal sheets, the welding location was moved near the clamp screw, the screw torque
setting was high, and the central clamp bar was used. Table 2 presents a summary of the
experimental parameters.

Bar for clamp Fixture Base

Screw for
clamp

Screw for
clamp

Welding
Location

Welding
Location

! e o o o
°® [ ) o

Figure 3. Setup for welding with (a) proper contact and (b) loss of contact.

Table 2. Parameter settings for the generation of proper contact and loss of contact [12].

Proper Contact Loss of Contact
Torque for screw 6N 15N
Extra central clamp Yes No
Thin paper between workpieces No Yes
Welding location Close to the corner of clamp Close to central Line

3. System Development and Verification

The correlation between selected features and bonding quality was analyzed by the

scatter index | = 11{{(%'15)) that estimates the between-class scatter to within-class scatter ratio.

The between-class scatter R, arld within-class scatter R are defined as follows [23]. The
mean of features for each class Y;(k) was obtained using individual features Y;;(k):

Yilk) = — 3 Yy (k) M

where
i =it" class
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j = j'" pattern in a class

k = k' feature

M; = the number of patterns in class C;.

The overall system mean Y is determined as follows:

Y(k) = Z piYi(k) ()

where
pi = a priori probability of class C;
C = number of classes.
The within-class scatter is obtained by calculating covariance for each feature as follows:

1 M; o _
Ri(k) = MZ (Yij(k) = Yii(k)) (Vi (k) = Yii(k)) ®3)
ij=1
Moreover, the individual-class scatter is defined as follows:
c B B T
Re(k) = Y pi (Y(K) = Y(K)) (Y:(k) — Y (k) @
i=1

From Equations (3) and (4), the feature selection criterion, a cost function, is defined

as follows: Ro(k

where

As soon as the features that are closely related to the welding quality were determined,
the training AE signal features collected were used to train the HMMs for determining
welding quality [24]. Once the models were developed, the unknown condition of welding
quality was determined using collected AE signals with selected features and developed
HMMs. The schematic of determining the unknown quality condition is illustrated in
Figure 4, in which selected AE signal features, other than those used for model development,
serve as input data to the system. In the system, to determine the quality, the quality state S,
based on selected features is determined by referring to the model with a large probability
value of Sps and Spw based on Viterbi algorithm.

Unknown

AE Signal from

Quality Condition Observation Sequence

Designated Feature

Features
F,to Generate

Generation

Viterbi
Algorithm

Model for Good Quality Tool Welding

Ay, | Decision S, | Decision Quality

Model for Bad Quality : Tool Fusion Sn
At M Decision Snw

\4

Condition

Figure 4. Schematic of determining the unknown quality condition by using the developed model.
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4. Results and Discussions

The AE signals studied in this work were collected simultaneously with the audible
sound signals in the same experiments as in previous work [22]. Two experimental setups
were used to obtain different contact conditions between the two layers of metal sheets. The
peeling test was performed to verify the joint bonding strength, and the surface condition
of each broken joint was investigated using an optical microscope after the peeling test.
Figure 5 illustrates the conditions of the top and bottom surfaces of both layers of metal
sheets after peeling [22]. The surface condition presented in Figure 5a was obtained from
a case with a peeling force of >15 N and considered to be a normal joint. The surface
condition presented in Figure 5b was obtained for a case with low peeling force and
considered to be a loss of contact between layers and an unqualified joint. Figure 5a reveals
clear tearing of the material on the bottom layer, and the part of material that was removed
appears on the bottom surface of the top layer of the sample. By contrast, no material was
removed from the bottom layer of the sample (Figure 5b), and only a magnified view of
the heat effect observed on the bottom surface of the top layer and the top surface of the
bottom layer is presented. This result suggests that no relevant joint was created between
the two layers of the welded sample when the gap was generated. The range of peeling
forces used for the proper contact cases was 12-17 N. No peeling force was obtained for
the low-strength bonding because complete peeling occurred abruptly upon initiation of
the peeling test.

Normal-strength bonding Low-strength bonding

Top surface of top
layer

Bottom surface of
top layer

Top surface of
bottom layer

(b)

Figure 5. Surface condition of samples after peeling: (a) high and (b) low joint strength [22].

The AE signal was generated immediately after the contact of the laser beam with
the sample surface. Figure 6 presents the AE signals collected from cases with normal
or low joint strength. Different patterns for the two cases were obtained in the first 1 ms
of welding, possibly because various thermal transmission patterns were caused by the
different contact conditions between the two layers of metal sheets. Moreover, for the first
4 ms of welding, the energy of AE signals from joints with normal bonding strength was
higher than that of the signals from the joints with low bonding strength. The observation
matches well the fundamental AE signal generation mechanism in that the higher energy
of the AE signal could be generated before the weld pool is created completely because of
the higher strain rate generated by thermal expansion on solid material in that period.
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Figure 6. AE signals collected during laser microwelding for joints with (a) low and (b) normal bonding strength.
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Since the signal in the initial 3 ms might contain more information regarding the
weld pool generation, the signal in the initial 3 ms was used to extract the features of the
frequency domain that are closely related to joint bonding strength. Figure 7 presents the
frequency domain of the first 1 ms of AE signals for both cases. The results indicate no
considerable difference between the signal energy for both cases at frequencies of <150 kHz.
However, the energy level of signals of >150 kHz for normal bonding strength was higher
than that for the case with low joint bonding strength. This indicates that the energy level
of the time domain signal in the first 1 ms of welding and frequency domain features
are promising features for identifying low joint bonding strength. Figure 8 presents the
frequency domain signals for the first three (of eight) 1 ms welding intervals.

AE-M12-1-39 frequency domain
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l-
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Figure 7. Frequency AE signals collected during laser microwelding for normal (without gap) and low bonding strength

(with gap).
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Figure 8. Frequency-domain AE signals collected during laser microwelding for different 1 ms intervals of the welding

process: (a) low and (b) normal bonding strengths.

For the case with the low bonding strength (Figure 8a), the energy level was the
same for the first two 1 ms intervals, and that for the third interval was not much lower.
However, unlike those in Figure 8a, the energy levels of the frequency-domain AE signals
obtained for the first three 1 ms intervals of welding (Figure 8b) differed for normal and
low bonding strength, especially for signals of >200 kHz. Therefore, the frequency signals
for the first millisecond of welding were considered suitable features for the development
of a monitoring system to identify the loss of bonding strength caused by gaps generated
during welding.

To determine the ability of each feature to identify joint bonding conditions, an index
], based on the ratio of between-class to in-class distribution, was obtained for each of the
three aforementioned features for each of the first three 1 ms intervals. The index calculated
for all frequency-domain features generated from the AE signals collected during laser
operation (Figure 9). The feature with the highest ] was obtained at 300 kHz. Figure 10
presents ] for signals collected only in the first millisecond of laser operation. The feature
with the highest ] was located at 300 kHz; moreover, its ] was higher than that presented
in Figure 9 for the same frequency. This result agrees well with the findings presented in
Figures 7 and 8.

The AE features’ signals for each millisecond of welding are shown in Figure 11; the
root mean square (RMS) and gradient of the signals for each 1 ms interval were calculated
(Figures 12 and 13, respectively). The average RMS and gradient of the signals were
obtained from 20 samples for each 1 ms interval. The difference between the RMS of the
cases with high and low bonding strength was obtained for the first four intervals. The
gradient of signals from the first interval seems to be the most suitable for identifying
low bonding strength. Therefore, the RMS of the AE signal in the first 4 ms and the
gradient of the signal in the first millisecond were considered candidates for identifying
the joint strength.

To determine the ability of each feature to identify joint conditions, the index J for
both time-domain features for each interval was recalculated. The RMS and gradient of the
signals in the first millisecond exhibited the highest ] (Figure 14) and thus were considered
the most suitable candidates, along with the frequency features of 300 kHz, for inputs
for classifiers. To evaluate the performance of the selected features for classifying the
joint bonding strength from laser lap microwelding, an HMM classifier was implemented
with those features. The model was trained on 10 data sets obtained from 10 samples
and evaluated using another 10 data sets. Classification accuracy of 100% was obtained
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(Table 3) with the features of the AE signal gradient from the first millisecond. Furthermore,
by combining the 300 kHz frequency and RMS features of the first millisecond together,
100% classification accuracy was achieved based on the conditions in this study.
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Figure 9. Raw signal and classification index for frequency features (a) raw signal for index calculation
(b) classification index (signals collected throughout laser operation).
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Figure 10. Raw signal and classification index for frequency features (a) raw signal for index
calculation (b) classification index (signals collected in the first millisecond of laser operation).
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Figure 11. Intervals of AE signals for (a) low and (b) normal joint strength.
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Figure 14. Classification index for each 1 ms interval: (a) RMS and (b) gradient of signals.

Table 3. Selected features for HMM.

Selected Features Welding with Gap Welding without Gap
1 300 kHz 100% 88.9%
2 Gradient (~1 ms) 100% 100%
3 RMS (~1 ms) 100% 88.9%
4 1,3 100% 100%
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5. Conclusions

In this study, experiments were conducted on a laser microwelding machine installed
in the industry to investigate the capability of applying an AE signal to monitor the joint
quality in lap microwelding of stainless sheets for the manufacturing of the metal mask.
The correlation between AE signals and joint bonding strength resulting from laser lap
microwelding was analyzed and verified by applying the traditional feature extraction
method and the developed HMM classifier. The results show that the RMS and gradient of
signals obtained during the first millisecond of welding and the 300 kHz frequency signal
feature are promising features for identifying low-strength joints based on the conditions
in this study. By applying an HMM classifier with the gradient of the signal from the first
1 ms interval, 100% classification accuracy was achieved. Furthermore, the combination
of the 300 kHz frequency feature and the RMS of the signal from the first 1 ms resulted
in 100% classification accuracy as well for the welding parameters and material setup in
this study. Based on the results obtained in this study, the AE signal is confirmed to be
capable of monitoring the joint quality in laser lap microwelding. Along with the work
done by Kuo and Lu [12] for audible sound signal analysis to monitor welding quality,
the sound /AE multi-sensor joint quality monitoring system is expected to be developed
in the future to apply to the production line to increase the reliability of the joint quality
monitoring system.
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