Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,177)

Search Parameters:
Keywords = microplastic

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 866 KiB  
Review
Counteracting the Harms of Microplastics on Humans: An Overview from the Perspective of Exposure
by Kuok Ho Daniel Tang
Microplastics 2025, 4(3), 47; https://doi.org/10.3390/microplastics4030047 (registering DOI) - 1 Aug 2025
Abstract
Microplastics are pervasive environmental pollutants that pose risks to human health through ingestion and inhalation. This review synthesizes current practices to reduce exposure and toxicity by examining major exposure routes and dietary interventions. More than 130 papers were analyzed to achieve this aim. [...] Read more.
Microplastics are pervasive environmental pollutants that pose risks to human health through ingestion and inhalation. This review synthesizes current practices to reduce exposure and toxicity by examining major exposure routes and dietary interventions. More than 130 papers were analyzed to achieve this aim. The findings show that microplastics contaminate a wide range of food products, with particular concern over seafood, drinking water, plastic-packaged foods, paper cups, and tea filter bags. Inhalation exposure is mainly linked to indoor air quality and smoking, while dermal contact poses minimal risk, though the release of additives from plastics onto the skin remains an area of concern. Recommended strategies to reduce dietary exposure include consuming only muscle parts of seafood, moderating intake of high-risk items like anchovies and mollusks, limiting canned seafood liquids, and purging mussels in clean water before consumption. Avoiding plastic containers, especially for hot food or microwaving, using wooden cutting boards, paper tea bags, and opting for tap or filtered water over bottled water are also advised. To mitigate inhalation exposure, the use of air filters with HyperHEPA systems, improved ventilation, regular vacuuming, and the reduction of smoking are recommended. While antioxidant supplementation shows potential in reducing microplastic toxicity, further research is needed to confirm its effectiveness. This review provides practical, evidence-based recommendations for minimizing daily microplastic exposure. Full article
20 pages, 1379 KiB  
Article
Combined Effects of Polyethylene and Bordeaux Mixture on the Soil–Plant System: Phytotoxicity, Copper Accumulation and Changes in Microbial Abundance
by Silvia Romeo-Río, Huguette Meta Foguieng, Antía Gómez-Armesto, Manuel Conde-Cid, David Fernández-Calviño and Andrés Rodríguez-Seijo
Agriculture 2025, 15(15), 1657; https://doi.org/10.3390/agriculture15151657 - 1 Aug 2025
Abstract
Greenhouses have positively impacted plant production by allowing the cultivation of different crops per year. However, the accumulation of agricultural plastics, potentially contaminated with agrochemicals, raises environmental concerns. This work evaluates the combined effect of Bordeaux mixture and low-density polyethylene (LDPE) microplastics (<5 [...] Read more.
Greenhouses have positively impacted plant production by allowing the cultivation of different crops per year. However, the accumulation of agricultural plastics, potentially contaminated with agrochemicals, raises environmental concerns. This work evaluates the combined effect of Bordeaux mixture and low-density polyethylene (LDPE) microplastics (<5 mm) on the growth of lettuce (Lactuca sativa L.) and soil microbial communities. Different levels of Bordeaux mixture (0, 100 and 500 mg kg−1), equivalent to Cu(II) concentrations (0, 17 and 83 mg kg−1), LDPE microplastics (0, 1% and 5%) and their combination were selected. After 28 days of growth, biometric and photosynthetic parameters, Cu uptake, and soil microbial responses were evaluated. Plant germination and growth were not significantly affected by the combination of Cu and plastics. However, individual Cu treatments influenced root and shoot length and biomass. Chlorophyll and carotenoid concentrations increased with Cu addition, although the differences were not statistically significant. Phospholipid fatty acid (PLFA) analysis revealed a reduction in microbial biomass at the highest Cu dose, whereas LDPE alone showed limited effects and may reduce Cu bioavailability. These results suggest that even at the highest concentration added, Cu can act as a plant nutrient, while the combination of Cu–plastics showed varying effects on plant growth and soil microbial communities. Full article
(This article belongs to the Special Issue Impacts of Emerging Agricultural Pollutants on Environmental Health)
Show Figures

Figure 1

19 pages, 2104 KiB  
Article
Presence of Micro- and Nanoplastics Affects Degradation of Chlorinated Solvents
by Fadime Kara Murdoch, Yanchen Sun, Mark E. Fuller, Larry Mullins, Amy Hill, Jacob Lilly, John Wilson, Frank E. Löffler and Katarzyna H. Kucharzyk
Toxics 2025, 13(8), 656; https://doi.org/10.3390/toxics13080656 (registering DOI) - 31 Jul 2025
Abstract
Microplastics (MPs) and nanoplastics (NPs) can affect microbial abundance and activity, likely by damaging cell membrane components. While their effects on anaerobic digestion are known, less is understood about their impact on microbes involved in contaminant bioremediation. Chlorinated volatile organic contaminants (CVOCs) such [...] Read more.
Microplastics (MPs) and nanoplastics (NPs) can affect microbial abundance and activity, likely by damaging cell membrane components. While their effects on anaerobic digestion are known, less is understood about their impact on microbes involved in contaminant bioremediation. Chlorinated volatile organic contaminants (CVOCs) such as tetrachloroethene (PCE) and explosives like hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) are common in the environment, and their bioremediation is a promising cleanup strategy. This study examined how polystyrene (PS) and polyamide 6 (PA6) MPs and NPs influence CVOC and RDX biodegradation. PS particles did not inhibit the CVOC-degrading community SDC-9, but PA6 MPs impaired the reductive dechlorination of trichloroethene (TCE) to cis-1,2-dichloroethene (cis-DCE), causing a “cis-DCE stall” with no further conversion to vinyl chloride (VC) or ethene. Only 45% of TCE was dechlorinated to cis-DCE, and Dehalococcoides mccartyi abundance dropped 1000-fold in 35 days with PA6 MPs. In contrast, neither PA6 nor PS MPs and NPs affected RDX biotransformation. These results highlight the significant impact of PA6 MPs on CVOC biodegradation and the need to consider plastic pollution in environmental management. Full article
(This article belongs to the Special Issue Novel Technologies for Degradation of Organic Pollutants)
Show Figures

Graphical abstract

15 pages, 1919 KiB  
Article
Degradation of Microplastics in an In Vitro Ruminal Environment
by Sonia Tassone, Rabeb Issaoui, Valentina Balestra, Salvatore Barbera, Marta Fadda, Hatsumi Kaihara, Sara Glorio Patrucco, Stefania Pragliola, Vincenzo Venditto and Khalil Abid
Fermentation 2025, 11(8), 445; https://doi.org/10.3390/fermentation11080445 (registering DOI) - 31 Jul 2025
Abstract
Microplastic (MP) pollution is an emerging concern in ruminant production, as animals are exposed to MPs through air, water, and feeds. Ruminants play a key role in MP transmission to humans via animal products and contribute to MP return to agricultural soil through [...] Read more.
Microplastic (MP) pollution is an emerging concern in ruminant production, as animals are exposed to MPs through air, water, and feeds. Ruminants play a key role in MP transmission to humans via animal products and contribute to MP return to agricultural soil through excreta. Identifying effective strategies to mitigate MP pollution in the ruminant sector is crucial. A promising yet understudied approach involves the potential ability of rumen microbiota to degrade MPs. This study investigated the in vitro ruminal degradation of three widely distributed MPs—low-density polyethylene (LDPE), polyethylene terephthalate (PET), and polyamide (PA)—over 24, 48, and 72 h. PET MP exhibited the highest degradation rates (24 h: 0.50 ± 0.070%; 48 h: 0.73 ± 0.057%; and 72 h: 0.96 ± 0.082%), followed by LDPE MP (24 h: 0.03 ± 0.020%; 48 h: 0.25 ± 0.053%; and 72 h: 0.56 ± 0.066%) and PA MP (24 h: 0.10 ± 0.045%; 48 h: 0.02 ± 0.015%; and 72 h: 0.14 ± 0.067%). These findings suggest that the ruminal environment could serve as a promising tool for LDPE, PET, and PA MPs degradation. Further research is needed to elucidate the mechanisms involved, potentially enhancing ruminants’ natural capacity to degrade MPs. Full article
(This article belongs to the Special Issue Ruminal Fermentation: 2nd Edition)
Show Figures

Figure 1

14 pages, 1649 KiB  
Article
Development of Cellulose Acetate Spherical Microparticles by Means of Melt Extrusion of Incompatible Polymer Blend
by Masaya Omura, Keiko Kobayashi, Kanji Nagai and Shu Shimamoto
Polymers 2025, 17(15), 2118; https://doi.org/10.3390/polym17152118 - 31 Jul 2025
Abstract
Cellulose acetate (CA), commercially produced from natural cellulose, is one of the promising candidates to solve the microplastic issue. In this study, attempts were made to prepare CA microparticles by means of melt extrusion of incompatible polymer blends comprising CA with plasticizer (triacetin [...] Read more.
Cellulose acetate (CA), commercially produced from natural cellulose, is one of the promising candidates to solve the microplastic issue. In this study, attempts were made to prepare CA microparticles by means of melt extrusion of incompatible polymer blends comprising CA with plasticizer (triacetin (TA)) and polyvinyl alcohol (PVA) followed by selective removable of TA and PVA. As implied by semi-theoretical equation previously established by Wu (Wu’s equation), particle size decreased with increasing shear rate or decreasing viscosity ratio of polymers. CA microparticles with a controlled size of 2–8 μm, narrow particle size distribution, and smooth surface were successfully obtained. Efforts were made to determine the numerical solution of Wu’s equation to compare them with observed particle size. To this end, interfacial tension between dispersed and matrix phases to be incorporated in the equation was determined by group contribution methods. The root mean squared error (RMSE) between the observed and calculated particle size was unsatisfactorily large, 4.46 μm. It was found that one of the possible reasons for the limited prediction accuracy was migration of TA from the dispersed to matrix phase affecting the viscosity ratio. Further efforts will be required to achieve a better prediction. Full article
(This article belongs to the Special Issue Advanced Cellulose Polymers and Derivatives)
Show Figures

Figure 1

54 pages, 11611 KiB  
Review
The Quest Towards Superhydrophobic Cellulose and Bacterial Cellulose Membranes and Their Perspective Applications
by Iliana Ntovolou, Despoina Farkatsi and Kosmas Ellinas
Micro 2025, 5(3), 37; https://doi.org/10.3390/micro5030037 (registering DOI) - 31 Jul 2025
Abstract
Over the last few decades, the growing demand for sustainable resources has made biopolymers increasingly popular, as they offer an eco-friendly alternative to conventional synthetic polymers, which are often associated with environmental issues such as the formation of microplastics and toxic substances. Functionalization [...] Read more.
Over the last few decades, the growing demand for sustainable resources has made biopolymers increasingly popular, as they offer an eco-friendly alternative to conventional synthetic polymers, which are often associated with environmental issues such as the formation of microplastics and toxic substances. Functionalization of biomaterials involves modifying their physical, chemical, or biological properties to improve their performance for specific applications. Cellulose and bacterial cellulose are biopolymers of interest, due to the plethora of hydroxyl groups, their high surface area, and high porosity, which makes them ideal candidates for several applications. However, there are applications, which require precise control of their wetting properties. In this review, we present the most effective fabrication methods for modifying both the morphology and the chemical properties of cellulose and bacterial cellulose, towards the realization of superhydrophobic bacterial cellulose films and surfaces. Such materials can find a wide variety of applications, yet in this review we target and discuss applications deriving from the wettability control, such as antibacterial surfaces, wound healing films, and separation media. Full article
(This article belongs to the Section Microscale Materials Science)
Show Figures

Figure 1

10 pages, 216 KiB  
Article
Migration of Phthalates and Bisphenol A from Polyethylene Terephthalate Bottles into Beer During Storage at Controlled Temperatures
by Krešimir Mastanjević, Brankica Kartalović, Dragan Kovačević, Vinko Krstanović and Kristina Habschied
Foods 2025, 14(15), 2689; https://doi.org/10.3390/foods14152689 - 30 Jul 2025
Viewed by 160
Abstract
PET (polyethylene terephthalate) bottles contain different chemicals that can act as endocrine disruptors. Phthalates and bisphenol A can be found in various foods and beverages packaged in PET packaging or aluminum cans. For some phthalates, the European Union has established specified tolerable daily [...] Read more.
PET (polyethylene terephthalate) bottles contain different chemicals that can act as endocrine disruptors. Phthalates and bisphenol A can be found in various foods and beverages packaged in PET packaging or aluminum cans. For some phthalates, the European Union has established specified tolerable daily intakes for humans. This study aimed to establish the changes, types of phthalates (dimethyl phthalate, diethyl phthalate, diisobutyl phthalate, dibutyl phthalate, bis(2-ethylhexyl) phthalate, di-n-octyl phthalate), and bisphenol A concentrations in beer packaged in PET bottles and stored at two temperatures (4 °C and 20 °C) for four months. Beers were obtained from a local brewery after packaging into PET bottles and stored at the designated temperatures. GC-MS analysis was performed to determine phthalates and bisphenol A. Obtained data show that beers packaged in PET bottles can contain significant amounts of bisphenol A, and that their concentration increases with storage time. Phthalates were also identified in the samples, with the highest concentration of bis(2-ethylhexyl) phthalate found in the sample kept at 20 °C after 1 month of storage, sample P5; this concentration was 164.814 µg/L. BPA was recorded with the highest concentration in sample P11, which underwent 4 months of storage at a temperature of 20 °C. Full article
27 pages, 2729 KiB  
Review
Degradation of Emerging Plastic Pollutants from Aquatic Environments Using TiO2 and Their Composites in Visible Light Photocatalysis
by Alexandra Gabriela Stancu, Maria Râpă, Cristina Liana Popa, Simona Ionela Donțu, Ecaterina Matei and Cristina Ileana Covaliu-Mirelă
Molecules 2025, 30(15), 3186; https://doi.org/10.3390/molecules30153186 - 30 Jul 2025
Viewed by 110
Abstract
This review synthesized the current knowledge on the effect of TiO2 photocatalysts on the degradation of microplastics (MPs) and nanoplastics (NPs) under visible light, highlighting the state-of-the-art techniques, main challenges, and proposed solutions for enhancing the performance of the photocatalysis technique. The [...] Read more.
This review synthesized the current knowledge on the effect of TiO2 photocatalysts on the degradation of microplastics (MPs) and nanoplastics (NPs) under visible light, highlighting the state-of-the-art techniques, main challenges, and proposed solutions for enhancing the performance of the photocatalysis technique. The synthesis of TiO2-based photocatalysts and hybrid nanostructured TiO2 materials, including those coupled with other semiconductor materials, is explored. Studies on TiO2-based photocatalysts for the degradation of MPs and NPs under visible light remain limited. The degradation behavior is influenced by the composition of the TiO2 composites and the nature of different types of MPs/NPs. Polystyrene (PS) MPs demonstrated complete degradation under visible light photocatalysis in the presence of α-Fe2O3 nanoflowers integrated into a TiO2 film with a hierarchical structure. However, photocatalysis generally fails to achieve the full degradation of small plastic pollutants at the laboratory scale, and its overall effectiveness in breaking down MPs and NPs remains comparatively limited. Full article
(This article belongs to the Special Issue New Research on Novel Photo-/Electrochemical Materials)
Show Figures

Figure 1

17 pages, 1962 KiB  
Article
Effects of Commercially Available Plastics on Estuarine Sediment Dweller Polychaeta Hediste diversicolor
by David Daniel, João Pinto da Costa, Ana Violeta Girão and Bruno Nunes
Microplastics 2025, 4(3), 46; https://doi.org/10.3390/microplastics4030046 - 30 Jul 2025
Viewed by 131
Abstract
Microplastics (MPs) are a major contaminant in aquatic environments. Due to their size, they are likely to cause deleterious effects. In this study, we assessed the effects of MPs obtained from two commercially available plastics (PP and PET) in the polychaeta Hediste diversicolor [...] Read more.
Microplastics (MPs) are a major contaminant in aquatic environments. Due to their size, they are likely to cause deleterious effects. In this study, we assessed the effects of MPs obtained from two commercially available plastics (PP and PET) in the polychaeta Hediste diversicolor after different periods (4 and 28 days). Toxic effects were assessed by measuring burrowing and spontaneous activities, phase I (CYP1A1, 1A2, and 3A4) activities), conjugation metabolism (GSTs), and antioxidant defense (CAT). Behavioral traits and phase I activities were nonresponsive to the presence of both plastics and for the two durations of exposure, indicating that these organisms are not affected by exposure to MPs and do not metabolize them. Conjugation metabolism was inhibited, which may be explained by the MPs’ capability of inhibiting certain enzymes. CAT activity was increased in animals acutely exposed to PP and decreased in animals chronically exposed to PET. This study shows that PP- and PET-MPs do not cause adverse effects on H. diversicolor. Full article
Show Figures

Figure 1

19 pages, 6265 KiB  
Article
Adsorption Behavior of Tetracycline by Polyethylene Microplastics in Groundwater Environment
by Jiahui Li, Hui Li, Wei Zhang, Xiongguang Li, Xiangke Kong and Min Liu
Sustainability 2025, 17(15), 6908; https://doi.org/10.3390/su17156908 - 30 Jul 2025
Viewed by 158
Abstract
Previous studies have mostly focused on the adsorption behavior of microplastics for antibiotics in soil or aqueous environments. This study explores the adsorption characteristics of microplastics for antibiotics under groundwater environmental conditions and the influence of typical influencing factors of the groundwater environment [...] Read more.
Previous studies have mostly focused on the adsorption behavior of microplastics for antibiotics in soil or aqueous environments. This study explores the adsorption characteristics of microplastics for antibiotics under groundwater environmental conditions and the influence of typical influencing factors of the groundwater environment (pH, pollutant concentration, aquifer media, dissolved organic matter, and ionic strength) on the adsorption process. Polyethylene (PE) and tetracycline (TC) were selected as typical microplastics and antibiotics in the experiment. The study results showed that the adsorption of TC by PE reached equilibrium at 48 h, and the adsorption kinetics fitted pseudo-second-order kinetics models well. The adsorption isotherm was consistent with the Langmuir model. The adsorption capacity of PE for TC was highest under neutral conditions and positively correlated with the initial concentration of TC. The aquifer media exhibited limited effects on the adsorption process. Fulvic acid (FA) significantly suppressed TC adsorption onto PE, attributable to competitive adsorption mechanisms. TC adsorption on PE initially increased then declined with Ca2+ concentration due to Ca2+ bridging and competition. This research elucidates the adsorption mechanisms of PE towards TC, providing theoretical basis and reference for assessing the environmental risk of microplastics and antibiotics in groundwater. Full article
Show Figures

Figure 1

23 pages, 780 KiB  
Review
Extraction Methods of Microplastics in Environmental Matrices: A Comparative Review
by Garbiñe Larrea, David Elustondo and Adrián Durán
Molecules 2025, 30(15), 3178; https://doi.org/10.3390/molecules30153178 - 29 Jul 2025
Viewed by 112
Abstract
Due to the growing issue of plastic pollution over recent decades, it is essential to establish well-defined and appropriate methodologies for their extraction from diverse environmental samples. These particles can be found in complex agricultural matrices such as compost, sediments, agricultural soils, sludge, [...] Read more.
Due to the growing issue of plastic pollution over recent decades, it is essential to establish well-defined and appropriate methodologies for their extraction from diverse environmental samples. These particles can be found in complex agricultural matrices such as compost, sediments, agricultural soils, sludge, and wastewater, as well as in less complex samples like tap and bottled water. The general steps of MPs extraction typically include drying the sample, sieving to remove larger particles, removal of organic matter, density separation to isolate polymers, filtration using meshes of various sizes, oven drying of the filters, and polymer identification. Complex matrices with high organic matter content require specific removal steps. Most studies employ an initial drying process with temperature control to prevent polymer damage. For removal of organic matter, 30% H2O2 is the most commonly used reagent, and for density separation, saturated NaCl and ZnCl2 solutions are typically applied for low- and high-density polymers, respectively. Finally, filtration is carried out using meshes selected according to the identification technique. This review analyzes the advantages and limitations of the different methodologies to extract microplastics from different sources, aiming to provide in-depth insight for researchers dedicated to the study of environmental samples. Full article
(This article belongs to the Special Issue Applied Chemistry in Europe)
Show Figures

Figure 1

29 pages, 3259 KiB  
Review
The Role of the Environment (Water, Air, Soil) in the Emergence and Dissemination of Antimicrobial Resistance: A One Health Perspective
by Asma Sassi, Nosiba S. Basher, Hassina Kirat, Sameh Meradji, Nasir Adam Ibrahim, Takfarinas Idres and Abdelaziz Touati
Antibiotics 2025, 14(8), 764; https://doi.org/10.3390/antibiotics14080764 - 29 Jul 2025
Viewed by 296
Abstract
Antimicrobial resistance (AMR) has emerged as a planetary health emergency, driven not only by the clinical misuse of antibiotics but also by diverse environmental dissemination pathways. This review critically examines the role of environmental compartments—water, soil, and air—as dynamic reservoirs and transmission routes [...] Read more.
Antimicrobial resistance (AMR) has emerged as a planetary health emergency, driven not only by the clinical misuse of antibiotics but also by diverse environmental dissemination pathways. This review critically examines the role of environmental compartments—water, soil, and air—as dynamic reservoirs and transmission routes for antibiotic-resistant bacteria (ARB) and resistance genes (ARGs). Recent metagenomic, epidemiological, and mechanistic evidence demonstrates that anthropogenic pressures—including pharmaceutical effluents, agricultural runoff, untreated sewage, and airborne emissions—amplify resistance evolution and interspecies gene transfer via horizontal gene transfer mechanisms, biofilms, and mobile genetic elements. Importantly, it is not only highly polluted rivers such as the Ganges that contribute to the spread of AMR; even low concentrations of antibiotics and their metabolites, formed during or after treatment, can significantly promote the selection and dissemination of resistance. Environmental hotspots such as European agricultural soils and airborne particulate zones near wastewater treatment plants further illustrate the complexity and global scope of pollution-driven AMR. The synergistic roles of co-selective agents, including heavy metals, disinfectants, and microplastics, are highlighted for their impact in exacerbating resistance gene propagation across ecological and geographical boundaries. The efficacy and limitations of current mitigation strategies, including advanced wastewater treatments, thermophilic composting, biosensor-based surveillance, and emerging regulatory frameworks, are evaluated. By integrating a One Health perspective, this review underscores the imperative of including environmental considerations in global AMR containment policies and proposes a multidisciplinary roadmap to mitigate resistance spread across interconnected human, animal, and environmental domains. Full article
(This article belongs to the Special Issue The Spread of Antibiotic Resistance in Natural Environments)
Show Figures

Figure 1

21 pages, 2854 KiB  
Article
Unseen Threats at Sea: Awareness of Plastic Pellets Pollution Among Maritime Professionals and Students
by Špiro Grgurević, Zaloa Sanchez Varela, Merica Slišković and Helena Ukić Boljat
Sustainability 2025, 17(15), 6875; https://doi.org/10.3390/su17156875 - 29 Jul 2025
Viewed by 150
Abstract
Marine pollution from plastic pellets, small granules used as a raw material for plastic production, is a growing environmental problem with grave consequences for marine ecosystems, biodiversity, and human health. This form of primary microplastic is increasingly becoming the focus of environmental policies, [...] Read more.
Marine pollution from plastic pellets, small granules used as a raw material for plastic production, is a growing environmental problem with grave consequences for marine ecosystems, biodiversity, and human health. This form of primary microplastic is increasingly becoming the focus of environmental policies, owing to its frequent release into the marine environment during handling, storage, and marine transportation, all of which play a crucial role in global trade. The aim of this paper is to contribute to the ongoing discussions by highlighting the environmental risks associated with plastic pellets, which are recognized as a significant source of microplastics in the marine environment. It will also explore how targeted education and awareness-raising within the maritime sector can serve as key tools to address this environmental challenge. The study is based on a survey conducted among seafarers and maritime students to raise their awareness and assess their knowledge of the issue. Given their operational role in ensuring safe and responsible shipping, seafarers and maritime students are in a key position to prevent the release of plastic pellets into the marine environment through increased awareness and initiative-taking practices. The results show that awareness is moderate, but there is a significant lack of knowledge, particularly in relation to the environmental impact and regulatory aspects of plastic pellet pollution. These results underline the need for improved education and training in this area, especially among future and active maritime professionals. Full article
Show Figures

Figure 1

19 pages, 1599 KiB  
Article
Nanopolystyrene (nanoPS) and Sodium Azide (NaN3) Toxicity in Danio rerio: Behavioural and Morphological Evaluation
by Wanda Komorowska, Łukasz Kurach and Agnieszka Dąbrowska
Microplastics 2025, 4(3), 45; https://doi.org/10.3390/microplastics4030045 - 29 Jul 2025
Viewed by 215
Abstract
Nano- (NPs) and microplastics (MPs) are ubiquitous and raising concerns about their toxicity. A popular model for studying acute toxicity is Danio rerio. This study investigated the acute toxicity in FET test of polystyrene nanoparticles (500 nm, nanoPS) at different concentrations (0.01, [...] Read more.
Nano- (NPs) and microplastics (MPs) are ubiquitous and raising concerns about their toxicity. A popular model for studying acute toxicity is Danio rerio. This study investigated the acute toxicity in FET test of polystyrene nanoparticles (500 nm, nanoPS) at different concentrations (0.01, 0.1, and 0.2 mg/mL), with different surface groups (non-modified, amine, carboxyl) and discuss the toxicological contribution of commercially added compounds. Different behavioural tests were used to investigate the neurotoxicity of nanoPS and sodium azide: coiling assay test, light–dark preference test, and colour preference test. Sodium azide and other preservatives are often present in commercially available NP and MP solutions frequently used in microplastic toxicity tests, but their effects on the results remain largely unknown. In the FET test, nanoPS did not increase mortality or affect the heart rate or body length. A higher hatching rate was observed at 48 hpf. Although nanoPS showed no acute toxicity, behavioural tests revealed subtle neurotoxic effects (changes in colour preference), suggesting a potential impact on neurological function. Additionally, sodium azide exhibited toxicity, indicating that additives may confound toxicity assessments. This highlights the need for careful consideration of preservatives in nanoparticle research to avoid misleading conclusions. Full article
Show Figures

Figure 1

25 pages, 13635 KiB  
Article
Microplastics in Nearshore and Subtidal Sediments in the Salish Sea: Implications for Marine Habitats and Exposure
by Frances K. Eshom-Arzadon, Kaitlyn Conway, Julie Masura and Matthew R. Baker
J. Mar. Sci. Eng. 2025, 13(8), 1441; https://doi.org/10.3390/jmse13081441 - 28 Jul 2025
Viewed by 298
Abstract
Plastic debris is a pervasive and persistent threat to marine ecosystems. Microplastics (plastics < 5 mm) are increasing in a variety of marine habitats, including open water systems, shorelines, and benthic sediments. It remains unclear how microplastics distribute and accumulate in marine systems [...] Read more.
Plastic debris is a pervasive and persistent threat to marine ecosystems. Microplastics (plastics < 5 mm) are increasing in a variety of marine habitats, including open water systems, shorelines, and benthic sediments. It remains unclear how microplastics distribute and accumulate in marine systems and the extent to which this pollutant is accessible to marine taxa. We examined subtidal benthic sediments and beach sediments in critical nearshore habitats for forage fish species—Pacific sand lance (Ammodytes personatus), Pacific herring (Clupea pallasi), and surf smelt (Hypomesus pretiosus)—to quantify microplastic concentrations in the spawning and deep-water habitats of these fish and better understand how microplastics accumulate and distribute in nearshore systems. In the San Juan Islands, we examined an offshore subtidal bedform in a high-flow channel and beach sites of protected and exposed shorelines. We also examined 12 beach sites proximate to urban areas in Puget Sound. Microplastics were found in all samples and at all sample sites. Microfibers were the most abundant, and flakes were present proximate to major shipyards and marinas. Microplastics were significantly elevated in Puget Sound compared to the San Juan Archipelago. Protected beaches had elevated concentrations relative to exposed beaches and subtidal sediments. Microplastics were in higher concentrations in sand and fine-grain sediments, poorly sorted sediments, and artificial sediments. Microplastics were also elevated at sites confirmed as spawning habitats for forage fish. The model results indicate that both current speed and proximate urban populations influence nearshore microplastic concentrations. Our research provides new insights into how microplastics are distributed, deposited, and retained in marine sediments and shorelines, as well as insight into potential exposure in benthic, demersal, and shoreline habitats. Further analyses are required to examine the relative influence of urban populations and shipping lanes and the effects of physical processes such as wave exposure, tidal currents, and shoreline geometry. Full article
(This article belongs to the Special Issue Benthic Ecology in Coastal and Brackish Systems—2nd Edition)
Show Figures

Figure 1

Back to TopTop