Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,051)

Search Parameters:
Keywords = microgrid energy management

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1482 KiB  
Article
Optimizing Power Sharing and Demand Reduction in Distributed Energy Resources for Apartments Through Tenant Incentivization
by Janak Nambiar, Samson Yu, Jag Makam and Hieu Trinh
Energies 2025, 18(15), 4073; https://doi.org/10.3390/en18154073 - 31 Jul 2025
Viewed by 121
Abstract
The increasing demand for electricity in multi-tenanted residential areas has placed unforeseen strain on sub-transformers, particularly in dense urban environments. This strain compromises overall grid performance and challenges utilities with shifting and rising peak demand periods. This study presents a novel approach to [...] Read more.
The increasing demand for electricity in multi-tenanted residential areas has placed unforeseen strain on sub-transformers, particularly in dense urban environments. This strain compromises overall grid performance and challenges utilities with shifting and rising peak demand periods. This study presents a novel approach to enhance the operation of a virtual power plant (VPP) comprising a microgrid (MG) integrated with renewable energy sources (RESs) and energy storage systems (ESSs). By employing an advanced monitoring and control system, the proposed topology enables efficient energy management and demand-side control within apartment complexes. The system supports controlled electricity distribution, reducing the likelihood of unpredictable demand spikes and alleviating stress on local infrastructure during peak periods. Additionally, the model capitalizes on the large number of tenancies to distribute electricity effectively, leveraging locally available RESs and ESSs behind the sub-transformer. The proposed research provides a systematic framework for managing electricity demand and optimizing resource utilization, contributing to grid reliability and a transition toward a more sustainable, decentralized energy system. Full article
Show Figures

Figure 1

40 pages, 4775 KiB  
Article
Optimal Sizing of Battery Energy Storage System for Implicit Flexibility in Multi-Energy Microgrids
by Andrea Scrocca, Maurizio Delfanti and Filippo Bovera
Appl. Sci. 2025, 15(15), 8529; https://doi.org/10.3390/app15158529 (registering DOI) - 31 Jul 2025
Viewed by 120
Abstract
In the context of urban decarbonization, multi-energy microgrids (MEMGs) are gaining increasing relevance due to their ability to enhance synergies across multiple energy vectors. This study presents a block-based MILP framework developed to optimize the operations of a real MEMG, with a particular [...] Read more.
In the context of urban decarbonization, multi-energy microgrids (MEMGs) are gaining increasing relevance due to their ability to enhance synergies across multiple energy vectors. This study presents a block-based MILP framework developed to optimize the operations of a real MEMG, with a particular focus on accurately modeling the structure of electricity and natural gas bills. The objective is to assess the added economic value of integrating a battery energy storage system (BESS) under the assumption it is employed to provide implicit flexibility—namely, bill management, energy arbitrage, and peak shaving. Results show that under assumed market conditions, tariff schemes, and BESS costs, none of the analyzed BESS configurations achieve a positive net present value. However, a 2 MW/4 MWh BESS yields a 3.8% reduction in annual operating costs compared to the base case without storage, driven by increased self-consumption (+2.8%), reduced thermal energy waste (–6.4%), and a substantial decrease in power-based electricity charges (–77.9%). The performed sensitivity analyses indicate that even with a significantly higher day-ahead market price spread, the BESS is not sufficiently incentivized to perform pure energy arbitrage and that the effectiveness of a time-of-use power-based tariff depends not only on the level of price differentiation but also on the BESS size. Overall, this study provides insights into the role of BESS in MEMGs and highlights the need for electricity bill designs that better reward the provision of implicit flexibility by storage systems. Full article
(This article belongs to the Special Issue Innovative Approaches to Optimize Future Multi-Energy Systems)
Show Figures

Figure 1

19 pages, 3963 KiB  
Article
Real-Time Energy Management in Microgrids: Integrating T-Cell Optimization, Droop Control, and HIL Validation with OPAL-RT
by Achraf Boukaibat, Nissrine Krami, Youssef Rochdi, Yassir El Bakkali, Mohamed Laamim and Abdelilah Rochd
Energies 2025, 18(15), 4035; https://doi.org/10.3390/en18154035 - 29 Jul 2025
Viewed by 359
Abstract
Modern microgrids face critical challenges in maintaining stability and efficiency due to renewable energy intermittency and dynamic load demands. This paper proposes a novel real-time energy management framework that synergizes a bio-inspired T-Cell optimization algorithm with decentralized voltage-based droop control to address these [...] Read more.
Modern microgrids face critical challenges in maintaining stability and efficiency due to renewable energy intermittency and dynamic load demands. This paper proposes a novel real-time energy management framework that synergizes a bio-inspired T-Cell optimization algorithm with decentralized voltage-based droop control to address these challenges. A JADE-based multi-agent system (MAS) orchestrates coordination between the T-Cell optimizer and edge-level controllers, enabling scalable and fault-tolerant decision-making. The T-Cell algorithm, inspired by adaptive immune system dynamics, optimizes global power distribution through the MAS platform, while droop control ensures local voltage stability via autonomous adjustments by distributed energy resources (DERs). The framework is rigorously validated through Hardware-in-the-Loop (HIL) testing using OPAL-RT, which interfaces MATLAB/Simulink models with Raspberry Pi for real-time communication (MQTT/Modbus protocols). Experimental results demonstrate a 91% reduction in grid dependency, 70% mitigation of voltage fluctuations, and a 93% self-consumption rate, significantly enhancing power quality and resilience. By integrating centralized optimization with decentralized control through MAS coordination, the hybrid approach achieves scalable, self-organizing microgrid operation under variable generation and load conditions. This work advances the practical deployment of adaptive energy management systems, offering a robust solution for sustainable and resilient microgrids. Full article
Show Figures

Figure 1

38 pages, 5939 KiB  
Article
Decentralized Energy Management for Microgrids Using Multilayer Perceptron Neural Networks and Modified Cheetah Optimizer
by Zulfiqar Ali Memon, Ahmed Bilal Awan, Hasan Abdel Rahim A. Zidan and Mohana Alanazi
Processes 2025, 13(8), 2385; https://doi.org/10.3390/pr13082385 - 27 Jul 2025
Viewed by 444
Abstract
This paper presents a decentralized energy management system (EMS) based on Multilayer Perceptron Artificial Neural Networks (MLP-ANNs) and a Modified Cheetah Optimizer (MCO) to account for uncertainty in renewable generation and load demand. The proposed framework applies an MLP-ANN with Levenberg–Marquardt (LM) training [...] Read more.
This paper presents a decentralized energy management system (EMS) based on Multilayer Perceptron Artificial Neural Networks (MLP-ANNs) and a Modified Cheetah Optimizer (MCO) to account for uncertainty in renewable generation and load demand. The proposed framework applies an MLP-ANN with Levenberg–Marquardt (LM) training for high-precision forecasts of photovoltaic/wind generation, ambient temperature, and load demand, greatly outperforming traditional statistical methods (e.g., time-series analysis) and resilient backpropagation (RP) in precision. The new MCO algorithm eliminates local trapping and premature convergence issues in classical optimization methods like Particle Swarm Optimization (PSO) and Genetic Algorithms (GAs). Simulations on a test microgrid verily demonstrate the advantages of the framework, achieving a 26.8% cost-of-operation reduction against rule-based EMSs and classical PSO/GA, and a 15% improvement in forecast accuracy using an LM-trained MLP-ANN. Moreover, demand response programs embodied in the system reduce peak loads by 7.5% further enhancing grid stability. The MLP-ANN forecasting–MCO optimization duet is an effective and cost-competitive decentralized microgrid management solution under uncertainty. Full article
Show Figures

Figure 1

21 pages, 5953 KiB  
Article
Enhanced Singular Value Decomposition Modulation Technique to Improve Matrix Converter Input Reactive Power Control
by Luis Ramon Merchan-Villalba, José Merced Lozano-García, Alejandro Pizano-Martínez and Iván Abel Hernández-Robles
Energies 2025, 18(15), 3995; https://doi.org/10.3390/en18153995 - 27 Jul 2025
Viewed by 189
Abstract
Matrix converters (MC) offer a compact, bidirectional solution for power conversion; however, achieving precise reactive power control at the input terminals remains challenging under varying operating conditions. This paper presents an enhanced Singular Value Decomposition modulation technique (e-SVD) as a solution tailored to [...] Read more.
Matrix converters (MC) offer a compact, bidirectional solution for power conversion; however, achieving precise reactive power control at the input terminals remains challenging under varying operating conditions. This paper presents an enhanced Singular Value Decomposition modulation technique (e-SVD) as a solution tailored to optimize reactive power management on the MC input side, enabling both active and reactive power control regardless of the power factor. The proposed method achieves input reactive power control based on a reactive power gain, a quantity derived from the apparent output power and defined by a mathematical expression involving electrical parameters and control variables. Experimental tests carried out on a low-power MC prototype to validate the proposal show that the measured reactive power gain closely aligns with theoretical predictions from the mathematical expressions. Overall, the proposed e-SVD modulation technique lays the foundation for more reliable reactive power regulation in applications such as microgrids and distributed generation systems, contributing to the development of smarter and more resilient energy infrastructures. Full article
(This article belongs to the Special Issue Energy, Electrical and Power Engineering: 4th Edition)
Show Figures

Figure 1

38 pages, 2182 KiB  
Article
Smart Grid Strategies for Tackling the Duck Curve: A Qualitative Assessment of Digitalization, Battery Energy Storage, and Managed Rebound Effects Benefits
by Joseph Nyangon
Energies 2025, 18(15), 3988; https://doi.org/10.3390/en18153988 - 25 Jul 2025
Viewed by 377
Abstract
Modern utilities face unprecedented pressures as trends in digital transformation and democratized energy choice empower consumers to engage in peak shaving, flexible load management, and adopt grid automation and intelligence solutions. A powerful confluence of architectural, technological, and socio-economic forces is transforming the [...] Read more.
Modern utilities face unprecedented pressures as trends in digital transformation and democratized energy choice empower consumers to engage in peak shaving, flexible load management, and adopt grid automation and intelligence solutions. A powerful confluence of architectural, technological, and socio-economic forces is transforming the U.S. electricity market, triggering significant changes in electricity production, transmission, and consumption. Utilities are embracing digital twins and repurposed Utility 2.0 concepts—distributed energy resources, microgrids, innovative electricity market designs, real-time automated monitoring, smart meters, machine learning, artificial intelligence, and advanced data and predictive analytics—to foster operational flexibility and market efficiency. This analysis qualitatively evaluates how digitalization, Battery Energy Storage Systems (BESSs), and adaptive strategies to mitigate rebound effects collectively advance smart duck curve management. By leveraging digital platforms for real-time monitoring and predictive analytics, utilities can optimize energy flows and make data-driven decisions. BESS technologies capture surplus renewable energy during off-peak periods and discharge it when demand spikes, thereby smoothing grid fluctuations. This review explores the benefits of targeted digital transformation, BESSs, and managed rebound effects in mitigating the duck curve problem, ensuring that energy efficiency gains translate into actual savings. Furthermore, this integrated approach not only reduces energy wastage and lowers operational costs but also enhances grid resilience, establishing a robust framework for sustainable energy management in an evolving market landscape. Full article
(This article belongs to the Special Issue Policy and Economic Analysis of Energy Systems)
Show Figures

Figure 1

41 pages, 5984 KiB  
Article
Socio-Economic Analysis for Adoption of Smart Metering System in SAARC Region: Current Challenges and Future Perspectives
by Zain Khalid, Syed Ali Abbas Kazmi, Muhammad Hassan, Sayyed Ahmad Ali Shah, Mustafa Anwar, Muhammad Yousif and Abdul Haseeb Tariq
Sustainability 2025, 17(15), 6786; https://doi.org/10.3390/su17156786 - 25 Jul 2025
Viewed by 503
Abstract
Cross-border energy trading activity via interconnection has received much attention in Southern Asia to help the South Asian Association for Regional Cooperation (SAARC) region’s energy deficit states. This research article proposed a smart metering system to reduce energy losses and increase distribution sector [...] Read more.
Cross-border energy trading activity via interconnection has received much attention in Southern Asia to help the South Asian Association for Regional Cooperation (SAARC) region’s energy deficit states. This research article proposed a smart metering system to reduce energy losses and increase distribution sector efficiency. The implementation of smart metering systems in utility management plays a pivotal role in advancing several Sustainable Development Goals (SDGs), i.e.; SDG (Affordable and Clean Energy), and SDG Climate Action. By enabling real-time monitoring, accurate measurement, and data-driven management of energy resources, smart meters promote efficient consumption, reduce losses, and encourage sustainable behaviors among consumers. The adoption of a smart metering system along with Strengths, Weaknesses, Opportunities, Threats (SWOT) analysis, socio-economic analysis, current challenges, and future prospects was also investigated. Besides the economics of the electrical distribution system, one feeder with non-technical losses of about 16% was selected, and the cost–benefit analysis and cost–benefit ratio was estimated for the SAARC region. The import/export ratio is disturbing in various SAARC grids, and a solution in terms of community microgrids is presented from Pakistan’s perspective as a case study. The proposed work gives a guidelines for SAARC countries to reduce their losses and improve their system functionality. It gives a composite solution across multi-faceted evaluation for the betterment of a large region. Full article
(This article belongs to the Section Development Goals towards Sustainability)
Show Figures

Graphical abstract

31 pages, 4584 KiB  
Article
A Discrete-Event Based Power Management System Framework for AC Microgrids
by Paolo C. Erazo Huera, Thamiris B. de Paula, João M. T. do Amaral, Thiago M. Tuxi, Gustavo S. Viana, Emanuel L. van Emmerik and Robson F. S. Dias
Energies 2025, 18(15), 3964; https://doi.org/10.3390/en18153964 - 24 Jul 2025
Viewed by 282
Abstract
This paper presents a practical framework for the design and real-time implementation of a Power Management System (PMS) for microgrids based on Supervisory Control Theory (SCT) for discrete-event systems. A detailed step-by-step methodology is provided, which covers the entire process from defining discrete [...] Read more.
This paper presents a practical framework for the design and real-time implementation of a Power Management System (PMS) for microgrids based on Supervisory Control Theory (SCT) for discrete-event systems. A detailed step-by-step methodology is provided, which covers the entire process from defining discrete events, modeling microgrid components, synthesizing supervisory controllers, and realizing them in MATLAB (R2024b) Stateflow. This methodology is applied to a case study, where a decentralized supervisor controller is designed for a microgrid containing a Battery Energy Storage System (BESS), a generator set (Genset), a wind and a solar generation system, critical loads, and noncritical loads. Unlike previous works based on SCT, the proposed PMS addresses the following functionalities: (i) grid-connected and islanded operation; (ii) peak shaving; (iii) voltage support; (iv) load shedding. Finally, a CHIL testing is employed to validate the synthesized SCT-based PMS. Full article
Show Figures

Figure 1

27 pages, 3280 KiB  
Article
Design and Implementation of a Robust Hierarchical Control for Sustainable Operation of Hybrid Shipboard Microgrid
by Arsalan Rehmat, Farooq Alam, Mohammad Taufiqul Arif and Syed Sajjad Haider Zaidi
Sustainability 2025, 17(15), 6724; https://doi.org/10.3390/su17156724 - 24 Jul 2025
Viewed by 404
Abstract
The growing demand for low-emission maritime transport and efficient onboard energy management has intensified research into advanced control strategies for hybrid shipboard microgrids. These systems integrate both AC and DC power domains, incorporating renewable energy sources and battery storage to enhance fuel efficiency, [...] Read more.
The growing demand for low-emission maritime transport and efficient onboard energy management has intensified research into advanced control strategies for hybrid shipboard microgrids. These systems integrate both AC and DC power domains, incorporating renewable energy sources and battery storage to enhance fuel efficiency, reduce greenhouse gas emissions, and support operational flexibility. However, integrating renewable energy into shipboard microgrids introduces challenges, such as power fluctuations, varying line impedances, and disturbances caused by AC/DC load transitions, harmonics, and mismatches in demand and supply. These issues impact system stability and the seamless coordination of multiple distributed generators. To address these challenges, we proposed a hierarchical control strategy that supports sustainable operation by improving the voltage and frequency regulation under dynamic conditions, as demonstrated through both MATLAB/Simulink simulations and real-time hardware validation. Simulation results show that the proposed controller reduces the frequency deviation by up to 25.5% and power variation improved by 20.1% compared with conventional PI-based secondary control during load transition scenarios. Hardware implementation on the NVIDIA Jetson Nano confirms real-time feasibility, maintaining power and frequency tracking errors below 5% under dynamic loading. A comparative analysis of the classical PI and sliding mode control-based designs is conducted under various grid conditions, such as cold ironing mode of the shipboard microgrid, and load variations, considering both the AC and DC loads. The system stability and control law formulation are verified through simulations in MATLAB/SIMULINK and practical implementation. The experimental results demonstrate that the proposed secondary control architecture enhances the system robustness and ensures sustainable operation, making it a viable solution for modern shipboard microgrids transitioning towards green energy. Full article
(This article belongs to the Special Issue Smart Grid Technologies and Energy Sustainability)
Show Figures

Figure 1

21 pages, 10456 KiB  
Article
Experimental Validation of a Modular Skid for Hydrogen Production in a Hybrid Microgrid
by Gustavo Teodoro Bustamante, Jamil Haddad, Bruno Pinto Braga Guimaraes, Ronny Francis Ribeiro Junior, Frederico de Oliveira Assuncao, Erik Leandro Bonaldi, Luiz Eduardo Borges-da-Silva, Fabio Monteiro Steiner, Jaime Jose de Oliveira Junior and Claudio Inacio de Almeida Costa
Energies 2025, 18(15), 3910; https://doi.org/10.3390/en18153910 - 22 Jul 2025
Viewed by 266
Abstract
This article presents the development, integration, and experimental validation of a modular microgrid for sustainable hydrogen production, addressing global electricity demand and environmental challenges. The system was designed for initial validation in a thermoelectric power plant environment, with scalability to other applications. Centered [...] Read more.
This article presents the development, integration, and experimental validation of a modular microgrid for sustainable hydrogen production, addressing global electricity demand and environmental challenges. The system was designed for initial validation in a thermoelectric power plant environment, with scalability to other applications. Centered on a six-compartment skid, it integrates photovoltaic generation, battery storage, and a liquefied petroleum gas generator to emulate typical cogeneration conditions, together with a high-purity proton exchange membrane electrolyzer. A supervisory control module ensures real-time monitoring and energy flow management, following international safety standards. The study also explores the incorporation of blockchain technology to certify the renewable origin of hydrogen, enhancing traceability and transparency in the green hydrogen market. The experimental results confirm the system’s technical feasibility, demonstrating stable hydrogen production, efficient energy management, and islanded-mode operation with preserved grid stability. These findings highlight the strategic role of hydrogen as an energy vector in the transition to a cleaner energy matrix and support the proposed architecture as a replicable model for industrial facilities seeking to combine hydrogen production with advanced microgrid technologies. Future work will address large-scale validation and performance optimization, including advanced energy management algorithms to ensure economic viability and sustainability in diverse industrial contexts. Full article
Show Figures

Figure 1

30 pages, 1981 KiB  
Article
Stochastic Control for Sustainable Hydrogen Generation in Standalone PV–Battery–PEM Electrolyzer Systems
by Mohamed Aatabe, Wissam Jenkal, Mohamed I. Mosaad and Shimaa A. Hussien
Energies 2025, 18(15), 3899; https://doi.org/10.3390/en18153899 - 22 Jul 2025
Viewed by 379
Abstract
Standalone photovoltaic (PV) systems offer a viable path to decentralized energy access but face limitations during periods of low solar irradiance. While batteries provide short-term storage, their capacity constraints often restrict the use of surplus energy, highlighting the need for long-duration solutions. Green [...] Read more.
Standalone photovoltaic (PV) systems offer a viable path to decentralized energy access but face limitations during periods of low solar irradiance. While batteries provide short-term storage, their capacity constraints often restrict the use of surplus energy, highlighting the need for long-duration solutions. Green hydrogen, generated via proton exchange membrane (PEM) electrolyzers, offers a scalable alternative. This study proposes a stochastic energy management framework that leverages a Markov decision process (MDP) to coordinate PV generation, battery storage, and hydrogen production under variable irradiance and uncertain load demand. The strategy dynamically allocates power flows, ensuring system stability and efficient energy utilization. Real-time weather data from Goiás, Brazil, is used to simulate system behavior under realistic conditions. Compared to the conventional perturb and observe (P&O) technique, the proposed method significantly improves system performance, achieving a 99.9% average efficiency (vs. 98.64%) and a drastically lower average tracking error of 0.3125 (vs. 9.8836). This enhanced tracking accuracy ensures faster convergence to the maximum power point, even during abrupt load changes, thereby increasing the effective use of solar energy. As a direct consequence, green hydrogen production is maximized while energy curtailment is minimized. The results confirm the robustness of the MDP-based control, demonstrating improved responsiveness, reduced downtime, and enhanced hydrogen yield, thus supporting sustainable energy conversion in off-grid environments. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

16 pages, 5057 KiB  
Article
Control and Management of Multi-Agent Systems Using Fuzzy Logic for Microgrids
by Zineb Cabrane, Mohammed Ouassaid, Donghee Choi and Soo Hyoung Lee
Batteries 2025, 11(7), 279; https://doi.org/10.3390/batteries11070279 - 21 Jul 2025
Viewed by 240
Abstract
The existing standalone microgrids (MGs) require good energy management systems (EMSs) to respond to energy needs. The EMS presented in this paper is used for an MG based on PV and wind energy sources. The energy storage system is implemented using three packs [...] Read more.
The existing standalone microgrids (MGs) require good energy management systems (EMSs) to respond to energy needs. The EMS presented in this paper is used for an MG based on PV and wind energy sources. The energy storage system is implemented using three packs of batteries. Power smoothing is carried out via the introduction of supercapacitors (SCs) in parallel to the loads and sources. The distribution of energy of the presented MG is focused on the multi-agent system (MAS) using Fuzzy Logic Supervisor control. The MAS is used in order to leverage autonomous and interacting agents to optimize operations and achieve system objectives. To reduce the stress on batteries and avoid damaging all the batteries together by the charge and discharge cycles, one pack of batteries can usually be used. When this pack of batteries is fully discharged and there is a need for energy, it can be taken from another pack of batteries. The same analysis applies to the charge; when batteries of the first pack are fully charged and there is a surplus of energy, it can be stored in other packs of batteries. Two simulation results are used to demonstrate the efficiency of the EMS control used. These simulation tests are proposed with and without SCs. Full article
(This article belongs to the Section Battery Modelling, Simulation, Management and Application)
Show Figures

Figure 1

21 pages, 1910 KiB  
Article
Optimizing Residential Electricity Demand with Bipartite Models for Enhanced Demand Response
by Jonathan Campoverde, Marcelo Garcia Torres and Luis Tipan
Energies 2025, 18(14), 3819; https://doi.org/10.3390/en18143819 - 17 Jul 2025
Cited by 1 | Viewed by 291
Abstract
This study presents an advanced energy demand management approach within residential microgrids using bipartite models for optimal demand response. The methodology relies on linear programming, specifically the Simplex algorithm, to optimize power distribution while minimizing costs. The model aims to reduce residential energy [...] Read more.
This study presents an advanced energy demand management approach within residential microgrids using bipartite models for optimal demand response. The methodology relies on linear programming, specifically the Simplex algorithm, to optimize power distribution while minimizing costs. The model aims to reduce residential energy consumption by flattening the demand curve through demand response programs. Additionally, the Internet of Things (IoT) is integrated as a communication channel to ensure efficient energy management without compromising user comfort. The research evaluates energy resource allocation using bipartite graphs, modeling the generation of energy from renewable and conventional high-efficiency sources. Various case studies analyze scenarios with and without market constraints, assessing the impact of demand response at different levels (5%, 10%, 15%, and 20%). Results demonstrate a significant reduction in reliance on external grids, with optimized energy distribution leading to potential cost savings for consumers. The findings suggest that intelligent demand response strategies can enhance microgrid efficiency, supporting sustainability and reducing carbon footprints. Full article
Show Figures

Figure 1

26 pages, 736 KiB  
Review
Review of Advances in Renewable Energy-Based Microgrid Systems: Control Strategies, Emerging Trends, and Future Possibilities
by Kayode Ebenezer Ojo, Akshay Kumar Saha and Viranjay Mohan Srivastava
Energies 2025, 18(14), 3704; https://doi.org/10.3390/en18143704 - 14 Jul 2025
Viewed by 448
Abstract
This paper gives a thorough overview of the technological advancements in microgrid systems, focusing on the Internet of Things (IoT), predictive analytics, real-time monitoring, architectures, control strategies, benefits, and drawbacks. It highlights their importance in boosting system security, guaranteeing real-time control, and increasing [...] Read more.
This paper gives a thorough overview of the technological advancements in microgrid systems, focusing on the Internet of Things (IoT), predictive analytics, real-time monitoring, architectures, control strategies, benefits, and drawbacks. It highlights their importance in boosting system security, guaranteeing real-time control, and increasing energy efficiency. Accordingly, researchers have embraced the involvement of many control capacities through voltage and frequency stability, optimal power sharing, and system optimization in response to the progressively complex and expanding power systems in recent years. Advanced control techniques have garnered significant interest among these management strategies because of their high accuracy and efficiency, flexibility and adaptability, scalability, and real-time predictive skills to manage non-linear systems. This study provides insight into various facets of microgrids (MGs), literature review, and research gaps, particularly concerning their control layers. Additionally, the study discusses new developments like Supervisory Control and Data Acquisition (SCADA), blockchain-based cybersecurity, smart monitoring systems, and AI-driven control for MGs optimization. The study concludes with recommendations for future research, emphasizing the necessity of stronger control systems, cutting-edge storage systems, and improved cybersecurity to guarantee that MGs continue to be essential to the shift to a decentralized, low-carbon energy future. Full article
(This article belongs to the Section A1: Smart Grids and Microgrids)
Show Figures

Figure 1

34 pages, 924 KiB  
Systematic Review
Smart Microgrid Management and Optimization: A Systematic Review Towards the Proposal of Smart Management Models
by Paul Arévalo, Dario Benavides, Danny Ochoa-Correa, Alberto Ríos, David Torres and Carlos W. Villanueva-Machado
Algorithms 2025, 18(7), 429; https://doi.org/10.3390/a18070429 - 11 Jul 2025
Cited by 1 | Viewed by 566
Abstract
The increasing integration of renewable energy sources (RES) in power systems presents challenges related to variability, stability, and efficiency, particularly in smart microgrids. This systematic review, following the PRISMA 2020 methodology, analyzed 66 studies focused on advanced energy storage systems, intelligent control strategies, [...] Read more.
The increasing integration of renewable energy sources (RES) in power systems presents challenges related to variability, stability, and efficiency, particularly in smart microgrids. This systematic review, following the PRISMA 2020 methodology, analyzed 66 studies focused on advanced energy storage systems, intelligent control strategies, and optimization techniques. Hybrid storage solutions combining battery systems, hydrogen technologies, and pumped hydro storage were identified as effective approaches to mitigate RES intermittency and balance short- and long-term energy demands. The transition from centralized to distributed control architectures, supported by predictive analytics, digital twins, and AI-based forecasting, has improved operational planning and system monitoring. However, challenges remain regarding interoperability, data privacy, cybersecurity, and the limited availability of high-quality data for AI model training. Economic analyses show that while initial investments are high, long-term operational savings and improved resilience justify the adoption of advanced microgrid solutions when supported by appropriate policies and financial mechanisms. Future research should address the standardization of communication protocols, development of explainable AI models, and creation of sustainable business models to enhance resilience, efficiency, and scalability. These efforts are necessary to accelerate the deployment of decentralized, low-carbon energy systems capable of meeting future energy demands under increasingly complex operational conditions. Full article
(This article belongs to the Special Issue Algorithms for Smart Cities (2nd Edition))
Show Figures

Figure 1

Back to TopTop