Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,411)

Search Parameters:
Keywords = microbial community functional diversity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2207 KiB  
Article
Fermentation Regulation: Revealing Bacterial Community Structure, Symbiotic Networks to Function and Pathogenic Risk in Corn Stover Silage
by Zhumei Du, Shaojuan Cui, Yifan Chen, Yunhua Zhang, Siran Wang and Xuebing Yan
Agriculture 2025, 15(16), 1791; https://doi.org/10.3390/agriculture15161791 - 21 Aug 2025
Abstract
Improving agricultural by-product utilization can alleviate tropical feed shortages. This study used corn stover (CS, Zea mays L.) at the maturity stage as the material, with four silage treatments: control, lactic acid bacteria (LAB, Lactiplantibacillus plantarum), cellulase (AC, Acremonium cellulolyticus), and [...] Read more.
Improving agricultural by-product utilization can alleviate tropical feed shortages. This study used corn stover (CS, Zea mays L.) at the maturity stage as the material, with four silage treatments: control, lactic acid bacteria (LAB, Lactiplantibacillus plantarum), cellulase (AC, Acremonium cellulolyticus), and LAB+AC. After 60 days fermentation in plastic drum silos, the silos were opened for sampling. PacBio single-molecule real-time sequencing technology was used to study bacterial community structure, symbiotic network functionality, and pathogenic risk to clarify CS fermentation regulatory mechanisms. The CS contained 59.9% neutral detergent fiber and 7.1% crude protein. Additive-treated silages showed better quality than the control: higher lactic acid (1.64–1.83% dry matter, DM), lower pH (3.62–3.82), and reduced ammonia nitrogen (0.54–0.81% DM). Before ensiling, the CS was dominated by Gram-negative Rhizobium larrymoorei (16.30% of the total bacterial community). Functional prediction indicated that the microbial metabolism activity in diverse environments was strong, and the proportion of potential pathogens was relatively high (14.69%). After ensiling, Lactiplantibacillus plantarum as Gram-positive bacteria were the dominant species in all the silages (58.39–84.34% of the total bacterial community). Microbial additives facilitated the establishment of a symbiotic microbial network, where Lactiplantibacillus occupied a dominant position (p < 0.01). In addition, functional predictions showed an increase in the activity of the starch and sucrose metabolism and a decrease in the proportion of potential pathogens (0.61–1.95%). Among them, the synergistic effect of LAB and AC inoculants optimized the silage effect of CS. This study confirmed that CS is a potential high-quality roughage resource, and the application of silage technology can provide a scientific basis for the efficient utilization of feed resources and the stable development of animal husbandry in the tropics. Full article
Show Figures

Figure 1

25 pages, 7381 KiB  
Article
Noctiluca scintillans Bloom Reshapes Microbial Community Structure, Interaction Networks, and Metabolism Patterns in Qinhuangdao Coastal Waters, China
by Yibo Wang, Min Zhou, Xinru Yue, Yang Chen, Du Su and Zhiliang Liu
Microorganisms 2025, 13(8), 1959; https://doi.org/10.3390/microorganisms13081959 - 21 Aug 2025
Abstract
The coastal waters of Qinhuangdao are a major hotspot for harmful algal blooms (HABs) in the Bohai Sea, with Noctiluca scintillans being one of the primary algal species responsible for these events. A comprehensive understanding of the microbial community structure and functional responses [...] Read more.
The coastal waters of Qinhuangdao are a major hotspot for harmful algal blooms (HABs) in the Bohai Sea, with Noctiluca scintillans being one of the primary algal species responsible for these events. A comprehensive understanding of the microbial community structure and functional responses to N. scintillans bloom events is crucial for elucidating their underlying mechanisms and ecological impacts. This study investigated the microbial community dynamics, metabolic shifts, and the environmental drivers associated with a N. scintillans bloom in the coastal waters of Qinhuangdao, China, using high-throughput sequencing of 16S and 18S rRNA genes, co-occurrence network analysis, and metabolic pathway prediction. The results revealed that the proliferation of autotrophic phytoplankton, such as Minutocellus spp., likely provided a nutritional foundation and favorable conditions for the N. scintillans bloom. The bloom significantly altered the community structures of prokaryotes and microeukaryotes, resulting in significantly lower α-diversity indices in the blooming region (BR) compared to the non-blooming region (NR). Co-occurrence network analyses demonstrated reduced network complexity and stability in the BR, with keystone taxa primarily belonging to Flavobacteriaceae and Rhodobacteraceae. Furthermore, the community structures of both prokaryotes and microeukaryotes correlated with multiple environmental factors, particularly elevated levels of NH4+-N and PO43−-P. Metabolic predictions indicated enhanced anaerobic respiration, fatty acid degradation, and nitrogen assimilation pathways, suggesting microbial adaptation to bloom-induced localized hypoxia and high organic matter. Notably, ammonia assimilation was upregulated, likely as a detoxification strategy. Additionally, carbon flux was redirected through the methylmalonyl-CoA pathway and pyruvate-malate shuttle to compensate for partial TCA cycle downregulation, maintaining energy balance under oxygen-limited conditions. This study elucidates the interplay between N. scintillans blooms, microbial interactions, and functional adaptations, providing insights for HAB prediction and management in coastal ecosystems. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

56 pages, 4337 KiB  
Review
Glycomics in Human Diseases and Its Emerging Role in Biomarker Discovery
by Sherifdeen Onigbinde, Moyinoluwa Adeniyi, Oluwatosin Daramola, Favour Chukwubueze, Md Mostofa Al Amin Bhuiyan, Judith Nwaiwu, Tuli Bhattacharjee and Yehia Mechref
Biomedicines 2025, 13(8), 2034; https://doi.org/10.3390/biomedicines13082034 - 21 Aug 2025
Viewed by 31
Abstract
Glycosylation, the enzymatic addition of glycans to proteins and lipids, is a critical post-translational modification that influences protein folding, stability, trafficking, immune modulation, and cell signaling. The vast structural diversity of glycans arising from differences in monosaccharide composition, branching, and terminal modifications such [...] Read more.
Glycosylation, the enzymatic addition of glycans to proteins and lipids, is a critical post-translational modification that influences protein folding, stability, trafficking, immune modulation, and cell signaling. The vast structural diversity of glycans arising from differences in monosaccharide composition, branching, and terminal modifications such as sialylation, fucosylation, and sulfation underpins their functional specificity and regulatory capacity. This review provides a comprehensive overview of glycan biosynthesis, with a focus on N-glycans, O-glycans, glycosaminoglycans (GAGs), and glycolipids. It explores their essential roles in maintaining cellular homeostasis, development, and immune surveillance. In health, glycans mediate cell–cell communication, protein interactions, and immune responses. In disease, however, aberrant glycosylation is increasingly recognized as a hallmark of numerous pathological conditions, including cancer, neurodegenerative disorders, autoimmune diseases, and a wide range of infectious diseases. Glycomic alterations contribute to tumor progression, immune evasion, therapy resistance, neuroinflammation, and synaptic dysfunction. Tumor-associated carbohydrate antigens (TACAs) and disease-specific glycoforms present novel opportunities for biomarker discovery and therapeutic targeting. Moreover, glycan-mediated host–pathogen interactions are central to microbial adhesion, immune escape, and virulence. This review highlights current advances in glycomics technologies, including mass spectrometry, lectin microarrays, and glycoengineering, which have enabled the high-resolution profiling of the glycome. It also highlights the emerging potential of single-cell glycomics and multi-omics integration in precision medicine. Understanding glycome and its dynamic regulation is essential for uncovering the molecular mechanisms of disease and translating glycomic insights into innovative diagnostic and therapeutic strategies. Full article
(This article belongs to the Special Issue Role of Glycomics in Health and Diseases)
Show Figures

Figure 1

23 pages, 1223 KiB  
Article
Functional Characterization of Native Microorganisms from the Pulp of Coffea arabica L. Var. Castillo and Cenicafé 1 for Postharvest Applications and Compost Enhancement
by Paula A. Figueroa-Varela and Eduardo Duque-Dussán
Appl. Microbiol. 2025, 5(3), 86; https://doi.org/10.3390/applmicrobiol5030086 - 21 Aug 2025
Viewed by 58
Abstract
Coffee pulp, the primary residue generated during the wet processing of Coffea arabica L., is frequently applied directly to fields as a crude soil amendment. However, this practice often lacks proper microbial stabilization, limiting its agronomic potential and posing risks due to the [...] Read more.
Coffee pulp, the primary residue generated during the wet processing of Coffea arabica L., is frequently applied directly to fields as a crude soil amendment. However, this practice often lacks proper microbial stabilization, limiting its agronomic potential and posing risks due to the presence of phytotoxic compounds. In Colombia, disease-resistant varieties such as Coffea arabica L. var. Castillo and var. Cenicafé 1, developed by the National Coffee Research Center (Cenicafé), are the amongst the most widely cultivated varieties in the country; however, despite their widespread adoption, the microbial ecology of postharvest residues from these varieties remains poorly characterized. This study aimed to isolate and functionally characterize native microbial communities from the pulp of Coffea arabica var. Castillo and var. Cenicafé 1, and to evaluate their role in postharvest processing and organic waste management. Fresh pulp samples were collected from a wet-processing facility located in tropical mid-elevation zones. A total of 53 microbial isolates were recovered using culture-dependent techniques on selective media targeting yeasts, lactic acid bacteria (LAB), and filamentous fungi. Amplicon sequencing of the 16S rRNA gene (V3–V4 region) and ITS1 region was conducted to profile bacterial and fungal communities, revealing diverse microbial consortia dominated by Aspergillus, Lactobacillus, Leuconostoc, Pichia, and Saccharomyces species. Enzymatic screening indicated high pectinolytic and cellulolytic activity. Composting trials using inoculated pulp showed a ~40% reduction in composting time and improved nutrient content. These findings support the use of native microbiota to enhance composting efficiency and postharvest valorization, contributing to more sustainable and circular coffee systems. Full article
Show Figures

Figure 1

26 pages, 12230 KiB  
Article
Microbiome Diversity and Dynamics in Lotus–Fish Co-Culture Versus Intensive Pond Systems: Implications for Sustainable Aquaculture
by Qianqian Zeng, Ziyi Wang, Zhongyuan Shen, Wuhui Li, Kaikun Luo, Qinbo Qin, Shengnan Li and Qianhong Gu
Biology 2025, 14(8), 1092; https://doi.org/10.3390/biology14081092 - 20 Aug 2025
Viewed by 114
Abstract
The lotus–fish co-culture (LFC) system leverages plant–fish symbiosis to optimize aqua-culture environments, enhancing both economic and ecological yields. However, the eco-logical mechanisms of microbial communities in LFC systems remain poorly understood, particularly regarding the functional roles of fungi, archaea, and viruses. This study [...] Read more.
The lotus–fish co-culture (LFC) system leverages plant–fish symbiosis to optimize aqua-culture environments, enhancing both economic and ecological yields. However, the eco-logical mechanisms of microbial communities in LFC systems remain poorly understood, particularly regarding the functional roles of fungi, archaea, and viruses. This study compared microbiota (viruses, archaea, fungi) in water, sediment, and fish (crucian carp) gut of LFC and intensive pond culture (IPC) systems using integrated metagenomic and environmental analyses. Results demonstrated that LFC significantly reduced concentrations of total nitrogen, total phosphorus, and nitrite nitrogen and chemical oxygen demand in water, and organic matter and total nitrogen in sediment compared to IPC. Community diversity analysis, LefSe, and KEGG annotation revealed suppressed viral diversity in LFC, yet increased complexity and stability of intestinal virus communities compared to IPC. Archaeal and functional analyses revealed significantly enhanced ammonia oxidation and OM decomposition in LFC versus IPC, promoting methane metabolism equilibrium and sediment organic matter decomposition. Moreover, crucian carp intestines in LFC harbored abundant Methanobacteria, which contributed to maintaining a low hydrogen partial pressure, suppressing facultative anaerobes and reducing intestinal infection risk. The abundance of fungi in sediment and crucian carp intestine in LFC was significantly higher than that in IPC, showing higher ecological self-purification ability and sustainability potential in LFC. Collectively, LFC's optimized archaeal–fungal networks strengthened host immunity and environmental resilience, while viral community suppression reduced pathogen risks. These findings elucidate microbiome-driven mechanisms underlying LFC’s ecological advantages, providing a framework for designing sustainable aquaculture systems through microbial community modulation. Full article
(This article belongs to the Collection Feature Papers in Microbial Biology)
Show Figures

Graphical abstract

18 pages, 4498 KiB  
Article
Changes in Microbial Diversity During Dictyophora indusiata Mycelium Regression Period
by Jie Cheng, Lei Ye, Xin Li, Yunfu Gu, Yi Wang, Zebin Zeng, Xiaoxue Liu, Xiaoling Li and Xiaoping Zhang
Horticulturae 2025, 11(8), 981; https://doi.org/10.3390/horticulturae11080981 - 19 Aug 2025
Viewed by 182
Abstract
Dictyophora indusiata cultivation is severely impeded by premature hyphal regression. This study elucidates the spatiotemporal dynamics of mycelial regression and associated microbial succession in both substrate and soil matrices across progressive regression stages (CK: normal growth; S1: initial recession; S2: advanced recession; S3: [...] Read more.
Dictyophora indusiata cultivation is severely impeded by premature hyphal regression. This study elucidates the spatiotemporal dynamics of mycelial regression and associated microbial succession in both substrate and soil matrices across progressive regression stages (CK: normal growth; S1: initial recession; S2: advanced recession; S3: complete recession). Microscopic analysis revealed preferential mycelial regression in the substrate, preceding soil regression by 1–2 stages. High-throughput sequencing demonstrated significant fungal community restructuring, characterized by a sharp decline in Phallus abundance (substrate: 99.7% → 7.0%; soil: 78.3% → 5.5%) and concomitant explosive proliferation of Trichoderma (substrate: 0% → 45.2%; soil: 0.1% → 55.3%). Soil fungal communities exhibited a higher richness (Chao1, p < 0.05) and stability, attributed to functional redundancy (e.g., Aspergillus, Conocybe) and physical protection by organic–mineral complexes. Conversely, substrate bacterial diversity dominated, driven by organic matter availability (e.g., the Burkholderia–Caballeronia–Paraburkholderia complex surged to 59%) and optimized porosity. Niche analysis confirmed intensified competition in post-regression soil (niche differentiation) versus substrate niche contraction under Trichoderma dominance. Critically, Trichoderma overgrowing was mechanistically linked to (1) nutrient competition via activated hydrolases (e.g., Chit42) and (2) pathogenic activity (e.g., T. koningii causing rot). We propose ecological control strategies: application of antagonistic Bacillus subtilis (reducing Trichoderma by 63%), substrate C/N ratio modulation via soybean meal amendment, and Sphingomonas–biochar soil remediation. This work provides the first integrated microbial niche model for D. indusiata regression, establishing a foundation for sustainable cultivation. Full article
(This article belongs to the Special Issue Advances in Propagation and Cultivation of Mushroom)
Show Figures

Figure 1

26 pages, 857 KiB  
Review
The Infant Oral Microbiome: Developmental Dynamics, Modulating Factors, and Implications for Oral and Systemic Health
by Paula Olate, Ailín Martínez, Eulàlia Sans-Serramitjana, Matías Cortés, Rommy Díaz, Genisley Hernández, Erwin A. Paz, Néstor Sepúlveda and John Quiñones
Int. J. Mol. Sci. 2025, 26(16), 7983; https://doi.org/10.3390/ijms26167983 - 19 Aug 2025
Viewed by 206
Abstract
The infant oral microbiome is a complex and dynamic microbial community that undergoes various transformations during human development. From birth, these microorganisms are modulated by factors such as birth type, nutrition, oral hygiene, hormonal changes, and environmental and socioeconomic conditions. These elements interact [...] Read more.
The infant oral microbiome is a complex and dynamic microbial community that undergoes various transformations during human development. From birth, these microorganisms are modulated by factors such as birth type, nutrition, oral hygiene, hormonal changes, and environmental and socioeconomic conditions. These elements interact continuously, shaping the diversity and stability of the oral microbiome and consequently influencing the oral and general health of individuals. The main objective of this study was to review the literature on the evolution of the oral microbiome at different stages of growth, with special emphasis on the maintenance of dental homeostasis and prevention of pathologies such as caries and periodontitis. A bibliographic review of scientific databases was conducted, focusing on the last decade. In general, oral microbiome dysbiosis increases the risk of oral diseases and systemic conditions. Diet, parental practices, and horizontal transmission of bacteria from caregivers have been shown to modulate and influence the composition and functioning of the infant oral microbiome. Despite these advances, gaps remain in our understanding of the impact of the pediatric oral microbiome on long-term comprehensive health. Therefore, longitudinal research is needed to understand the development of the oral microbiome and its potential role in early prediction, prevention, and treatment of oral and systemic diseases. Full article
(This article belongs to the Topic Oral Health Management and Disease Treatment)
Show Figures

Figure 1

24 pages, 3691 KiB  
Article
Independent and Interactive Effects of Precipitation Intensity and Duration on Soil Microbial Communities in Forest and Grassland Ecosystems of China: A Meta-Analysis
by Bo Hu and Wei Li
Microorganisms 2025, 13(8), 1915; https://doi.org/10.3390/microorganisms13081915 - 17 Aug 2025
Viewed by 313
Abstract
Altered precipitation regimes, both in intensity and duration, can profoundly influence the structure and function of soil microbial communities, yet the patterns and drivers of these responses remain unclear across ecosystem types. Here, using data exclusively from 101 field experiments conducted in China [...] Read more.
Altered precipitation regimes, both in intensity and duration, can profoundly influence the structure and function of soil microbial communities, yet the patterns and drivers of these responses remain unclear across ecosystem types. Here, using data exclusively from 101 field experiments conducted in China (yielding 695 observations), we investigated the impacts of altered precipitation on soil microbial biomass, diversity, and enzymatic activity in forest and grassland ecosystems. Soil microbial biomass carbon (MBC) and nitrogen (MBN) increased in response to precipitation addition, particularly in grasslands, but they decreased under reduced precipitation, with the decline being more pronounced in forests. The magnitude and duration of precipitation manipulation significantly influenced these effects, with moderate and long-term changes producing divergent responses. Bacterial diversity was largely unaffected by all precipitation treatments, whereas fungal diversity decreased significantly under intense and short-term reductions in precipitation. Enzyme activities exhibited the following element-specific patterns: carbon- and phosphorus-cycling enzymes and antioxidant enzymes were suppressed by precipitation reduction, especially in grasslands, while nitrogen-cycling enzymes showed no consistent response. Moreover, microbial responses were significantly shaped by environmental factors, including mean annual temperature (MAT), mean annual precipitation (MAP), and elevation. Our region-specific analysis highlights precipitation-driven microbial dynamics across China’s diverse climatic and ecological conditions. These findings demonstrate that soil microbial communities respond asymmetrically to precipitation changes, with responses shaped by both ecosystem type and climatic context, underscoring the need to account for environmental heterogeneity when predicting belowground feedback to climate change. Full article
Show Figures

Figure 1

15 pages, 2894 KiB  
Article
Assembly of Abundant and Rare Bacterial and Fungal Communities in Different Typical Forest Types in the Zhongtiao Mountains
by Zixing Li, Ran Wang and Mengtao Zhang
Microorganisms 2025, 13(8), 1911; https://doi.org/10.3390/microorganisms13081911 - 16 Aug 2025
Viewed by 171
Abstract
Soil microorganisms play an important role in maintaining the functioning of terrestrial ecosystems. Soil microbial communities usually contain both abundant and rare microorganisms. However, in forest ecosystems, the differences in the functions and assembly processes of abundant and rare microbial taxa in soils [...] Read more.
Soil microorganisms play an important role in maintaining the functioning of terrestrial ecosystems. Soil microbial communities usually contain both abundant and rare microorganisms. However, in forest ecosystems, the differences in the functions and assembly processes of abundant and rare microbial taxa in soils between planted pure and mixed forests are currently unknown. In this study, four different forest types in the Zhongtiao Mountains were selected, and the diversity and assembly processes of abundant and rare microbial communities in their soils were quantitatively analyzed. The results show that there are differences in the diversity and assembly processes of abundant and rare microorganisms in the four forests. Significant differences in the α-diversity (Shannon index) of abundant bacteria (p = 0.019) and rare fungi (p = 0.049) were obtained in the four forests. The assembly of abundant bacterial and fungal communities in the four forest types was mainly influenced by stochastic processes, the assembly of rare bacterial communities was mainly influenced by deterministic processes, and the assembly of rare fungal communities was influenced by a combination of deterministic and stochastic processes. Planted mixed forests increase the relative contribution of deterministic processes in the assembly of rare fungal communities compared to planted pure forests. This study determined the relative contributions of deterministic and stochastic processes in the assembly of abundant and rare microbial communities among different forest types, providing a theoretical basis for forest management in mixed forests. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

21 pages, 5549 KiB  
Article
Effects of Near-Natural Forest Management on Soil Microbial Communities in the Temperate–Subtropical Transition Zone of China
by Tian Zhang, Xibin Dong, Jin Yang, Zhenhua Li and Jiangxiong Zhu
Microorganisms 2025, 13(8), 1906; https://doi.org/10.3390/microorganisms13081906 - 15 Aug 2025
Viewed by 248
Abstract
In order to precisely improve the quality of major tree species in northern China, near-natural differentiated management has been gradually introduced into forestry practice, aiming to optimize forest structure, enhance forest quality, and promote nutrient cycling and water conservation. As an essential element [...] Read more.
In order to precisely improve the quality of major tree species in northern China, near-natural differentiated management has been gradually introduced into forestry practice, aiming to optimize forest structure, enhance forest quality, and promote nutrient cycling and water conservation. As an essential element of forest ecosystems, soil microbes contribute to biodiversity preservation and nutrient turnover in soils. This study selected three typical forest types (Quercus acutissima forest, Pinus tabulaeformis forest, and Pinus tabulaeformis × Quercus mixed forest) that have been managed with target trees on Zhongtiao Mountain. Using 16S/ITS rRNA high-throughput sequencing, this study systematically assessed the influences of forest type and soil depth (0–60 cm) on the soil properties and microbial communities. The results showed that the fungal alpha diversity indices were the highest in Pinus tabulaeformis forest, which decreased with soil depth. Actinobacteriota exhibited the greatest relative abundance in mixed forest, whereas Ascomycota predominated in the Pinus tabulaeformis forest. The microbial co-occurrence network exhibited greater complexity compared to the pure forest. Microbial carbon and nitrogen cycling functions showed strong correlation with soil pH and nutrient levels. Symbiotrophs dominated the fungal community, and ectomycorrhizae were significantly abundant in mixed forests. pH is the dominant factor driving changes in microbial communities. In summary, the mixed forest improved soil nutrients, enhanced the complexity of microbial networks, and supported higher ectomycorrhizal abundance. These findings provide practical guidance for improving soil health and stability of forest ecosystems through near-natural management. Full article
(This article belongs to the Special Issue Advances in Soil Microbial Ecology, 2nd Edition)
Show Figures

Figure 1

22 pages, 2597 KiB  
Article
Interactive Effects of Mulching Width and Irrigation Management on Cotton Growth and Dynamic Changes in Soil Factors in Arid Regions
by Nanfang Li, Guang Yang, Yinping Song, Wenzhi Wang, Xianbo Zhang, Hao Liu and Huifeng Ning
Agronomy 2025, 15(8), 1964; https://doi.org/10.3390/agronomy15081964 - 14 Aug 2025
Viewed by 190
Abstract
Mulching and irrigation are key practices for improving cotton yield and soil conditions, especially in Xinjiang, China. This study investigated the combined effects of mulching width and irrigation depth on cotton growth and rhizosphere microorganisms. Two mulching widths—conventional (M1) and ultra-wide (M2)—and three [...] Read more.
Mulching and irrigation are key practices for improving cotton yield and soil conditions, especially in Xinjiang, China. This study investigated the combined effects of mulching width and irrigation depth on cotton growth and rhizosphere microorganisms. Two mulching widths—conventional (M1) and ultra-wide (M2)—and three irrigation depths, 0.8 ETc (W1), 1.0 ETc (W2), and 1.2 ETc (W3), were tested. The impacts on cotton growth, soil environment, and rhizosphere microbial communities were analyzed. Results showed that under the same irrigation depth, M2 significantly increased soil moisture and reduced salt accumulation. Soil temperature under M2 was higher than M1, with increases of 0.55 °C and 1.65 °C during the budding and flowering–boll stages. M2 also increased root length (3.52–10.72%) and root surface area (5.8–7.51%). The beneficial fungus Cladosporium was enriched, while the pathogen Fusarium was suppressed under M2. With the same mulching width, increasing irrigation improved soil moisture, reduced electrical conductivity, and decreased soil temperature. Root diameter and volume increased by 7.67–47% and 9.43–10.36%, respectively. Mulching width and irrigation depth significantly affected bacterial α-diversity. M2W3 showed the highest microbial richness and functional diversity. This study offers guidance for efficient cotton cultivation in southern Xinjiang. Full article
(This article belongs to the Special Issue Crop Management in Water-Limited Cropping Systems)
Show Figures

Figure 1

13 pages, 4828 KiB  
Article
Dynamics of Water Quality and Microbial Communities in the Middle Route of the South-to-North Water Diversion Project: Characterization and Driving Mechanisms
by Xinyong Liu, Zhibing Chang, Li Liu, Juechun Li, Jing Gao, Yingcai Wang, Yuming Su, Yuxin Hu and Yu Peng
Microorganisms 2025, 13(8), 1895; https://doi.org/10.3390/microorganisms13081895 - 14 Aug 2025
Viewed by 207
Abstract
Microbial communities, as critical functional components of riverine ecosystems, play a pivotal role in biogeochemical cycles and water quality regulation. The South-to-North Water Diversion Middle Route Project (SNWD-MRP) is a major cross-basin water transfer initiative, and bacteria are essential for the stability of [...] Read more.
Microbial communities, as critical functional components of riverine ecosystems, play a pivotal role in biogeochemical cycles and water quality regulation. The South-to-North Water Diversion Middle Route Project (SNWD-MRP) is a major cross-basin water transfer initiative, and bacteria are essential for the stability of water quality in the project. This study employed environmental DNA (eDNA) metabarcoding targeting the 16S rRNA gene to investigate spatiotemporal variations in water quality and bacterial communities along the SNWD-MRP during summer and winter. Integrated analyses, including redundancy analysis (RDA), Mantel tests, and ecological network modeling, were applied to unravel the driving mechanisms of microbial succession. The water quality along the SNWD-MRP is generally classified as Grade I, with significant seasonal variations in water quality parameters and microbial community composition. In the summer, higher temperatures lead to an increased abundance of cyanobacteria. In contrast, during the winter, lower water temperatures and higher dissolved oxygen levels result in the dominance of Pseudomonas and Bacillota species. RDA identified the permanganate index as the primary driver of microbial composition across seasons, with total phosphorus and total nitrogen having a greater influence in winter. Mantel tests highlighted significant correlations between Cyanobacteria and total phosphorus during winter. Ecological network analysis revealed that the complexity and connectivity of the winter network increased, likely due to suitable nutrient levels rendering the microbial network more complex and stable. These findings underscore the synergistic effects of temperature and nutrient availability on microbial succession, providing actionable insights for optimizing water quality management and ecological stability in large-scale water diversion systems. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

21 pages, 695 KiB  
Review
Bacteriophages, Antibiotics and Probiotics: Exploring the Microbial Battlefield of Colorectal Cancer
by Cristian Constantin Volovat, Mihai Andrei Cosovanu, Madalina-Raluca Ostafe, Iolanda Georgiana Augustin, Constantin Volovat, Bogdan Georgescu and Simona Ruxandra Volovat
Int. J. Mol. Sci. 2025, 26(16), 7837; https://doi.org/10.3390/ijms26167837 - 13 Aug 2025
Viewed by 352
Abstract
Colorectal cancer (CRC), a prevalent malignancy, is a significant global health concern. The intricate interplay of genetic mutations, inflammatory processes, and environmental factors underscores the complexity of CRC’s etiology. The human gut harbors a diverse microbial community that plays a key role in [...] Read more.
Colorectal cancer (CRC), a prevalent malignancy, is a significant global health concern. The intricate interplay of genetic mutations, inflammatory processes, and environmental factors underscores the complexity of CRC’s etiology. The human gut harbors a diverse microbial community that plays a key role in maintaining homeostasis and influencing various aspects of host physiology. Perturbations in the gut microbiome (GM) composition and function have been implicated in CRC carcinogenesis. This bidirectional relationship involves microbial contributions to inflammation, DNA damage, and immune modulation, shaping the tumor microenvironment (TME). Bacteriophages, viruses that infect bacteria, contribute to the microbiome’s diversity and function by influencing bacterial abundance and composition. These phages can impact host–microbiome interactions, potentially influencing CRC risk. Furthermore, they can be manipulated to transport targeted medication, without being metabolized. Antibiotics exert selective pressures on the gut microbiome, leading to shifts in bacterial populations and potential dysbiosis. Probiotics can modulate the composition and activity of the GM and could be considered adjunctive therapy in the treatment of CRC. Understanding the intricate balance between bacteriophages, antibiotics–probiotics, and the GM is essential for comprehending CRC etiology and progression. Full article
(This article belongs to the Special Issue Colorectal Cancer: From Pathophysiology to Novel Therapies)
Show Figures

Figure 1

18 pages, 3495 KiB  
Article
Structural and Functional Differences in the Gut and Lung Microbiota of Pregnant Pomona Leaf-Nosed Bats
by Taif Shah, Qi Liu, Guiyuan Yin, Zahir Shah, Huan Li, Jingyi Wang, Binghui Wang and Xueshan Xia
Microorganisms 2025, 13(8), 1887; https://doi.org/10.3390/microorganisms13081887 - 13 Aug 2025
Viewed by 243
Abstract
Mammals harbor diverse microbial communities across different body sites, which are crucial to physiological functions and host homeostasis. This study aimed to understand the structure and function of gut and lung microbiota of pregnant Pomona leaf-nosed bats using V3-V4 16S rRNA gene sequencing. [...] Read more.
Mammals harbor diverse microbial communities across different body sites, which are crucial to physiological functions and host homeostasis. This study aimed to understand the structure and function of gut and lung microbiota of pregnant Pomona leaf-nosed bats using V3-V4 16S rRNA gene sequencing. Of the 350 bats captured using mist nets in Yunnan, nine pregnant Pomona leaf-nosed bats with similar body sizes were chosen. Gut and lung samples were aseptically collected from each bat following cervical dislocation and placed in sterile cryotubes before microbiota investigation. Microbial taxonomic annotation revealed that the phyla Firmicutes and Actinobacteriota were most abundant in the guts of pregnant bats, whereas Proteobacteria and Bacteroidota were abundant in the lungs. Family-level classification revealed that Bacillaceae, Enterobacteriaceae, and Streptococcaceae were more abundant in the guts, whereas Rhizobiaceae and Burkholderiaceae dominated the lungs. Several opportunistic and potentially pathogenic bacterial genera were present at the two body sites. Bacillus, Cronobacter, and Corynebacterium were abundant in the gut, whereas Bartonella, Burkholderia, and Mycoplasma dominated the lungs. Alpha diversity analysis (using Chao1 and Shannon indices) within sample groups examined read depth and species richness, whereas beta diversity using unweighted and weighted UniFrac distance metrics revealed distinct clustering patterns between the two groups. LEfSe analysis revealed significantly enriched bacterial taxa, indicating distinct microbial clusters within the two body sites. The two Random Forest classifiers (MDA and MDG) evaluated the importance of microbial features in the two groups. Comprehensive functional annotation provided insights into the microbiota roles in metabolic activities, human diseases, signal transduction, etc. This study contributes to our understanding of the microbiota structure and functional potential in pregnant wild bats, which may have implications for host physiology, immunity, and the emergence of diseases. Full article
(This article belongs to the Special Issue Gut Microbiome in Homeostasis and Disease, 3rd Edition)
Show Figures

Figure 1

27 pages, 1027 KiB  
Review
Recent Advances and Developments in Bacterial Endophyte Identification and Application: A 20-Year Landscape Review
by Neo M. Mametja, Thanyani E. Ramadwa, Muthumuni Managa and Tracy M. Masebe
Plants 2025, 14(16), 2506; https://doi.org/10.3390/plants14162506 - 12 Aug 2025
Viewed by 480
Abstract
Bacterial endophytes have emerged as critical components of plant microbiomes, offering multifaceted benefits ranging from growth promotion to stress resilience. This review synthesizes two decades of research, from 2004 to 2024, on bacterial endophyte identification and applications, highlighting advances in both traditional culture-based [...] Read more.
Bacterial endophytes have emerged as critical components of plant microbiomes, offering multifaceted benefits ranging from growth promotion to stress resilience. This review synthesizes two decades of research, from 2004 to 2024, on bacterial endophyte identification and applications, highlighting advances in both traditional culture-based techniques and modern omics approaches. The review also focuses on interactions between these microorganisms and their host plants, emphasizing their roles in biocontrol, phytoremediation, and nanoparticle biosynthesis. While significant progress has been made in characterizing cultivable bacterial endophytes, challenges persist in accessing unculturable species and understanding strain-specific functional mechanisms. The integration of metagenomics, metatranscriptomics, and metabolomics has begun unraveling this hidden diversity, revealing novel metabolic pathways and plant–microbe communication systems. There have been limitations in endophyte isolation protocols and field applications, and therefore a need exists for standardized frameworks to bridge lab-based discoveries with agricultural practices. Cutting-edge multi-omics techniques, such as genomics, transcriptomics, metabolomics, proteomics, and phenomics, should be used more in future research to clarify the mechanistic underpinnings of plant–endophyte interactions to thoroughly profile the microbial communities and unlock their functional potential under diverse environmental conditions. Overall, bacterial endophytes present viable paths toward sustainable farming methods, supporting food security and crop resilience in the face of environmental difficulties by providing a transformative opportunity for next-generation agriculture, mitigating climate-related agricultural stressors, reducing dependence on synthetic agrochemicals, and enhancing crop productivity. Full article
(This article belongs to the Special Issue Beneficial Effects of Bacteria on Plants)
Show Figures

Figure 1

Back to TopTop