Silage Preparation, Processing and Efficient Utilization—2nd Edition

A special issue of Agriculture (ISSN 2077-0472). This special issue belongs to the section "Farm Animal Production".

Deadline for manuscript submissions: 31 January 2026 | Viewed by 1896

Special Issue Editors


E-Mail Website
Guest Editor
Institute of Ensiling and Processing of Grass, College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing 210095, China
Interests: silage; ensiling; agricultural by-product utilization; forage preparation

Special Issue Information

Dear Colleagues,

Silage is a high-quality animal feed obtained through desirable bacteria fermentation under anaerobic conditions. It is rich in nutrition, with good palatability, high digestibility, and long-term storage. Silage production, otherwise known as ensiling, is a very complex process of microbial activity and biochemical changes, and it is one of the most important ways to preserve crop straws or forage biomasses. Animals that feed on silage can effectively improve the availability of animal protein and reduce methane emissions. There are a lot of silage resources available on the Earth. However, the utilization rate is low, leading to a massive waste of resources and severe environmental pollution. On the other hand, with the rapid development of animal production, there is a considerable shortage of animal roughage yearly. With this in mind, it is essential to investigate silage preparation, processing and efficient utilization.

Based on the first volume, a Special Issue focused on the application of silage and animal feed in farm animal production, we decided to continue with a second volume, researching topics that may include but are not limited to the following: silage preparation, processing and efficient utilization in improving silage quality and animal performance. Research articles will cover a broad range of silage from forages and other roughage resources. All types of articles, such as original research, opinions, and reviews, are welcome.

Dr. Siran Wang
Dr. Junfeng Li
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Agriculture is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • silage
  • ensiling
  • lactic acid bacteria
  • bacterial community
  • fermentation
  • forage

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issue

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

18 pages, 2207 KB  
Article
Fermentation Regulation: Revealing Bacterial Community Structure, Symbiotic Networks to Function and Pathogenic Risk in Corn Stover Silage
by Zhumei Du, Shaojuan Cui, Yifan Chen, Yunhua Zhang, Siran Wang and Xuebing Yan
Agriculture 2025, 15(16), 1791; https://doi.org/10.3390/agriculture15161791 - 21 Aug 2025
Viewed by 284
Abstract
Improving agricultural by-product utilization can alleviate tropical feed shortages. This study used corn stover (CS, Zea mays L.) at the maturity stage as the material, with four silage treatments: control, lactic acid bacteria (LAB, Lactiplantibacillus plantarum), cellulase (AC, Acremonium cellulolyticus), and [...] Read more.
Improving agricultural by-product utilization can alleviate tropical feed shortages. This study used corn stover (CS, Zea mays L.) at the maturity stage as the material, with four silage treatments: control, lactic acid bacteria (LAB, Lactiplantibacillus plantarum), cellulase (AC, Acremonium cellulolyticus), and LAB+AC. After 60 days fermentation in plastic drum silos, the silos were opened for sampling. PacBio single-molecule real-time sequencing technology was used to study bacterial community structure, symbiotic network functionality, and pathogenic risk to clarify CS fermentation regulatory mechanisms. The CS contained 59.9% neutral detergent fiber and 7.1% crude protein. Additive-treated silages showed better quality than the control: higher lactic acid (1.64–1.83% dry matter, DM), lower pH (3.62–3.82), and reduced ammonia nitrogen (0.54–0.81% DM). Before ensiling, the CS was dominated by Gram-negative Rhizobium larrymoorei (16.30% of the total bacterial community). Functional prediction indicated that the microbial metabolism activity in diverse environments was strong, and the proportion of potential pathogens was relatively high (14.69%). After ensiling, Lactiplantibacillus plantarum as Gram-positive bacteria were the dominant species in all the silages (58.39–84.34% of the total bacterial community). Microbial additives facilitated the establishment of a symbiotic microbial network, where Lactiplantibacillus occupied a dominant position (p < 0.01). In addition, functional predictions showed an increase in the activity of the starch and sucrose metabolism and a decrease in the proportion of potential pathogens (0.61–1.95%). Among them, the synergistic effect of LAB and AC inoculants optimized the silage effect of CS. This study confirmed that CS is a potential high-quality roughage resource, and the application of silage technology can provide a scientific basis for the efficient utilization of feed resources and the stable development of animal husbandry in the tropics. Full article
Show Figures

Figure 1

23 pages, 1759 KB  
Article
Comprehensive Evaluation of Agricultural Residues Corn Stover Silage
by Pilong Zhou, Guofang Wu, Xuan Luo, Yuhong Ma, Kaiwen Guan, Huili Pang, Zhongfang Tan, Shiyan Zhang and Lei Wang
Agriculture 2025, 15(13), 1362; https://doi.org/10.3390/agriculture15131362 - 25 Jun 2025
Viewed by 469
Abstract
As a typical agricultural waste, the resource utilization of corn stover (CS) plays a crucial role in the coordinated optimization of ecological and economic benefits. In order to enhance the utilization of CS resources, Lentilactobacillus (L.) buchneri (LB) and different proportions of Artemisia [...] Read more.
As a typical agricultural waste, the resource utilization of corn stover (CS) plays a crucial role in the coordinated optimization of ecological and economic benefits. In order to enhance the utilization of CS resources, Lentilactobacillus (L.) buchneri (LB) and different proportions of Artemisia argyi (AA) were added to CS to investigate the impact of additives on the fermentation quality and aerobic stability of corn stover silage (CSS). This study revealed that the separate addition of AA or LB in CS effectively improved the silage quality and aerobic stability. Specifically, LB exhibited the lowest pH value of 3.72 at 90 d of fermentation, while the NH3-N content was 0.07 g/kg DM during the anaerobic fermentation stage and 0.19 g/kg DM during the aerobic exposure stage (p < 0.05). Mixing 30% AA increased the lactic acid content, lowered the pH, maintained a higher relative abundance of Lactobacillus, and reduced mycotoxin levels. In terms of aerobic stability, all AA-treated groups demonstrated superior performance compared to the LB treatment. Additionally, it was observed, that in the 30% AA group, Candida exhibited the highest relative abundance. Importantly, the addition of AA upregulated carbohydrate metabolism and lipid metabolism during the ensiling process, and their relative abundances remained high during aerobic exposure. Fully utilizing CS resources as feed to provide fiber and nutrients for ruminants can not only reduce the pressure on forage demand but meet the development needs of “grain-saving” animal husbandry, which is conducive to solving the contradictions of “human–animal competition for food” and “human animal competition for land”. Full article
Show Figures

Figure 1

18 pages, 2050 KB  
Article
Influence of Epiphytic Microorganisms on Silage Quality and Aerobic Exposure Characteristics of Grass Pastures
by Qi Yan, Hao Ding, Chenghuan Qin, Qichao Gu, Xin Gao, Yongqi Tan, Deshuang Wei, Yiqiang Li, Nanji Zhang, Ruizhanghui Wang, Bo Lin and Caixia Zou
Agriculture 2025, 15(8), 890; https://doi.org/10.3390/agriculture15080890 - 19 Apr 2025
Viewed by 540
Abstract
In this study, we investigated whether epiphytic microorganisms of fresh forage affect silage quality and aerobic exposure of silage by determining the changes in chemical composition, fermentation characteristics and microbial population of two grass forages (sugarcane tops and corn stover) under aerobic exposure [...] Read more.
In this study, we investigated whether epiphytic microorganisms of fresh forage affect silage quality and aerobic exposure of silage by determining the changes in chemical composition, fermentation characteristics and microbial population of two grass forages (sugarcane tops and corn stover) under aerobic exposure treatments (fresh, end-of-storage and aerobic exposure periods). There were nine replicates for each of the two forage silages. The total silage time was 60 days, after which the cellar was opened for a 12-day period for aerobic exposure measurements. At the end of ensiling, the lactic acid content of corn stover silage (116.78 g/kg DM) was significantly higher than that of sugarcane top silage (16.07 g/kg DM; p < 0.01), and the corn stover (3.53) had a significantly lower pH than sugarcane tops (4.46) (p < 0.01). Weissella was the most abundant epiphytic lactic acid bacteria (LAB) in sugarcane tops and corn stover (19.08% and 11.15%, respectively). The relative abundance of epiphytic Pediococcus was higher in sugarcane tops (0.17%) than in corn stover (0.09%; p < 0.05). The relative abundance of Pediococcus was significantly higher in sugarcane top silage (2.24%) than in corn stover silage during the aerobic exposure period (p < 0.01). The acetic acid content of corn stover silage was significantly reduced during aerobic exposure (p < 0.01) due to the abundance of Paenibacillus (62.38%). The fungal genus Candida affected the aerobic exposure of sugarcane top (37.88%) and corn stover silage (73.52%). In summary, Weissella was the genus of lactic acid bacteria present in the highest abundance in sugarcane tops and corn stover, favoring early and rapid acidification. In addition, Candiada, which consumes organic acids in large numbers, was the fungal genus that influenced the aerobic exposure of sugarcane top silage versus corn stover silage. Full article
Show Figures

Graphical abstract

Back to TopTop