Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,350)

Search Parameters:
Keywords = microRNA-155 detection

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 1034 KB  
Communication
Highly Sensitive Electrochemiluminescence Analysis of miRNA-107 Using AIE-Active Polymer Dots as Emitters
by Zhi-Hong Xu, Xin Weng, Ruo-Mei Lin, Hui Tong, Yang Guo, Li-Shuang Yu, Hang Gao and Qin Xu
Biosensors 2026, 16(2), 99; https://doi.org/10.3390/bios16020099 - 4 Feb 2026
Viewed by 52
Abstract
The ultrasensitive detection of microRNA-17 (miRNA-107) is required for clinical diagnosis. In this work, an aggregation-induced electrochemiluminescence (AIECL) sensor was developed for the quantification of miRNA-107, in which AIECL-active polymer dots (Pdots) were characterized by transmission electron microscopy, ultraviolet–visible spectroscopy, and cyclic voltammetry [...] Read more.
The ultrasensitive detection of microRNA-17 (miRNA-107) is required for clinical diagnosis. In this work, an aggregation-induced electrochemiluminescence (AIECL) sensor was developed for the quantification of miRNA-107, in which AIECL-active polymer dots (Pdots) were characterized by transmission electron microscopy, ultraviolet–visible spectroscopy, and cyclic voltammetry and used as ECL emitters. Black hole quencher-labeled hairpin DNA (HP-BHQ) was modified on the Pdot surfaces, resulting in the ECL signal of the Pdots being in the “off” state due to the resonant energy transfer (RET) between the BHQ and Pdots. In the presence of miRNA-107, HP-BHQ opened through RNA-DNA hybridization. Subsequently, the introduced duplex-specific nuclease (DSN) facilitated the cleavage of DNA in the RNA–DNA hybrid chain and led to the detachment of HP-BHQ from the electrode surface. The ECL signal of the Pdots recovered, i.e., to the “on” state. The variation in the ECL signal was related to the concentration of the target miRNA-107. As a result, the AIECL biosensor exhibited a wide linear response to miRNA-107 concentrations ranging from 1.0 fM to 10.0 pM, and a low detection limit of 0.82 fM. This work provides a novel platform for the sensitive analysis of miRNA. Full article
(This article belongs to the Special Issue Electrochemical Biosensors for Rapid and Sensitive Detection)
Show Figures

Graphical abstract

29 pages, 1126 KB  
Review
The Multi-Target lncRNA–miRNA–mRNA TRIAD in Pancreatic Cancer Diagnosis and Therapy
by Hyeon-su Jeong, Yun Ju Lee, Du Hyeong Lee, Hyun-Young Roh, Ga-ram Jeong and Heui-Soo Kim
Int. J. Mol. Sci. 2026, 27(3), 1400; https://doi.org/10.3390/ijms27031400 - 30 Jan 2026
Viewed by 103
Abstract
Pancreatic cancer (PC) is one of the most lethal malignancies worldwide, characterized by late diagnosis, aggressive progression, and limited responsiveness to current therapeutic strategies. Although extensive genomic analyses have identified key driver protein-coding genes (PCGs), therapeutic approaches targeting individual genes have shown limited [...] Read more.
Pancreatic cancer (PC) is one of the most lethal malignancies worldwide, characterized by late diagnosis, aggressive progression, and limited responsiveness to current therapeutic strategies. Although extensive genomic analyses have identified key driver protein-coding genes (PCGs), therapeutic approaches targeting individual genes have shown limited clinical benefit. This limitation highlights the molecular complexity of PC, where tumor progression is governed by regulatory networks that extend beyond genetic alterations. Non-coding RNAs (ncRNAs), which constitute nearly 98% of the human genome, have emerged as regulators of gene expression in cancer. Among them, microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) regulate oncogenic processes, including aberrant signaling activation, tumor microenvironment remodeling, epithelial–mesenchymal transition, immune evasion, and resistance. Beyond their independent functions, lncRNAs, miRNAs, and mRNAs form an integrated regulatory network known as the lncRNA–miRNA–mRNA TRIAD, enabling control of gene expression. Such network-based regulation provides a framework for multi-target therapeutic strategies. Moreover, the rapid responsiveness and disease-specific expression patterns of ncRNAs suggest strong potential as diagnostic and prognostic biomarkers in PC, where early detection remains challenging. This review summarizes the regulatory roles of PCGs, miRNAs, and lncRNAs in PC and highlights the lncRNA–miRNA–mRNA TRIAD as a framework for understanding gene regulatory networks. Full article
(This article belongs to the Collection Latest Review Papers in Molecular Genetics and Genomics)
Show Figures

Figure 1

42 pages, 1094 KB  
Review
Gastric Cancer Epithelial-Mesenchymal Transition-The Role of Micro-RNA
by Maciej Biskupski, Adam Brachet, Gabriela Hunek, Agnieszka Karabin, Michał Czerski, Wiktoria Bojarska, Robert Karpiński, Grzegorz Teresiński, Alicja Forma and Jacek Baj
Cancers 2026, 18(3), 462; https://doi.org/10.3390/cancers18030462 - 30 Jan 2026
Viewed by 123
Abstract
Epithelial-mesenchymal transition (EMT) is a key driver of invasion, metastasis, and treatment resistance in gastric cancer, yet its post-transcriptional regulation by microRNAs (miRNAs) is not fully delineated. We performed a structured literature search in PubMed, Web of Science, and Scopus for studies evaluating [...] Read more.
Epithelial-mesenchymal transition (EMT) is a key driver of invasion, metastasis, and treatment resistance in gastric cancer, yet its post-transcriptional regulation by microRNAs (miRNAs) is not fully delineated. We performed a structured literature search in PubMed, Web of Science, and Scopus for studies evaluating miRNAs in relation to EMT in gastric cancer and synthesised tumor-intrinsic, microenvironmental, and circulating EMT-related miRNA networks. Downregulated, predominantly tumor-suppressive miRNAs, including miR-34a, miR-200 family, miR-148a, miR-204, miR-30a, miR-101, miR-218, miR-26a, miR-375, miR-506, and others, converge on EMT transcription factors and pathways such as ZEB1/2, Snail, TGF-β/SMAD, Wnt/β-catenin, c-Met, and PI3K/AKT, and their restoration reverses EMT phenotypes in preclinical models. Upregulated oncomiRs, such as miR-21, miR-17-5p, miR-106b-5p, miR-23a, miR-130a-3p, miR-196a-5p, miR-181a, miR-616-3p, miR-301a-3p, miR-150, miR-27a-3p and miR-192/215, target tumor suppressors and reinforce these pathways. Cancer-associated fibroblast, macrophage, neutrophil, and natural killer cell-derived miRNAs, together with systemic indices such as the neutrophil-to-lymphocyte ratio and mediators like FAM3C, add microenvironmental layers of EMT regulation. Several EMT-related miRNAs show consistent associations with invasion, metastasis, peritoneal dissemination, prognosis, and chemoresistance, and many are detectable in circulation. Overall, EMT-related miRNAs orchestrate gastric cancer cell plasticity and tumor-microenvironment crosstalk and represent promising biomarker and therapeutic candidates that warrant validation in prospective, subtype-stratified, and translational studies. Full article
29 pages, 2090 KB  
Article
Liquid Biopsy Analysis of the EV-Associated Micro-RNA Signature in Vulvar Carcinoma May Benefit Disease Diagnosis and Prognosis
by Friederike Borchardt, Leonie Kleinholz, Anna Jaeger, Jana Löptien, Vanessa Vohl, Jolanthe Kropidlowski, Klaus Pantel, Eik Vettorazzi, Linn Woelber, Harriet Wikman and Katharina Effenberger
Cancers 2026, 18(3), 438; https://doi.org/10.3390/cancers18030438 - 29 Jan 2026
Viewed by 164
Abstract
Background: Vulvar cancer mainly affects postmenopausal women, but its incidence is rising among younger individuals due to persistent HPV infection. Validated diagnostic biomarkers remain lacking, though circulating exosomal microRNAs (exomiRs) have recently emerged as promising liquid biopsy tools across various cancers. Objective: The [...] Read more.
Background: Vulvar cancer mainly affects postmenopausal women, but its incidence is rising among younger individuals due to persistent HPV infection. Validated diagnostic biomarkers remain lacking, though circulating exosomal microRNAs (exomiRs) have recently emerged as promising liquid biopsy tools across various cancers. Objective: The purpose of this study was to identify a panel of dysregulated plasma-derived extracellular vesicle (EV)-associated miRNAs, hereafter referred to as exosomal micro-RNAs, as liquid biopsy markers for the detection of vulvar cancer and for assessment of HPV-positivity. Methods: Five healthy donor (HD) and 10 vulvar cancer samples underwent Next-Generation Sequencing to screen for differentially expressed exomiRs. The seven most dysregulated and four stably expressed exomiRs were subsequently analyzed in 81 cancer and 60 HD samples by qRT-PCR. Differential expression was determined by the 2−ΔΔCT method. Binary regression was used to construct an exomiR panel. HPV status was assessed using mass spectrometry. Results: Five single exomiRs showed a statistically significant dysregulation in cancer patients compared to healthy controls: miR-143-3p, miR-223-3p, miR-451a, miR-4516 and miR-151a-5p. The combination of six exomiRs resulted in a panel with superior diagnostic ability (p < 0.001; ROC-AUC = 0.805; 95% CI: 0.726–0.884) in distinguishing cancer patients from HDs. A model consisting of miR-223-3p, miR-143-3p and miR-451a could discriminate HPV-positive from -negative (p = 0.003; ROC-AUC = 0.939), and a model of miR-4516, miR-143-3p, miR-16-5p and miR-451a was predictive of lymph node positivity (p < 0.001, ROC-AUC = 0.786). Multivariate Cox regression showed that a model of downregulated miR-16-5p and upregulated miR-451a was significantly associated with poorer survival (p = 0.023). Conclusions: This study indicates the future potential of exomiRs as diagnostic and prognostic liquid biopsy markers for vulvar cancer. Full article
(This article belongs to the Special Issue Novel Approaches in the Management of Gynecological Cancers)
Show Figures

Figure 1

18 pages, 1342 KB  
Review
The Role of Biomarkers in Personalized Anesthesia: From Physiological Parameters to Molecular Diagnostics
by Irina Nenadic, Predrag Stevanovic, Marina Bobos, Maja Stojanovic, Nemanja Dimic, Suzana Bojic, Dragica Dekic, Jovana Radovanovic and Marko Djuric
Biomedicines 2026, 14(2), 300; https://doi.org/10.3390/biomedicines14020300 - 29 Jan 2026
Viewed by 308
Abstract
Personalized anesthesia has emerged as a key direction in modern perioperative medicine, driven by advances in molecular biology, analytical technologies, and digital monitoring. Traditional physiological parameters often fail to detect early stages of organ dysfunction, whereas molecular biomarkers provide earlier and more sensitive [...] Read more.
Personalized anesthesia has emerged as a key direction in modern perioperative medicine, driven by advances in molecular biology, analytical technologies, and digital monitoring. Traditional physiological parameters often fail to detect early stages of organ dysfunction, whereas molecular biomarkers provide earlier and more sensitive insight into inflammation, oxidative stress, neurotoxicity, and renal or hepatic injury. Inflammatory markers such as IL-6, CRP, and PCT indicate early immune activation, while oxidative stress biomarkers, including 8-isoprostanes and malondialdehyde, quantify metabolic imbalance and ischemia–reperfusion injury. Neurotoxicity biomarkers such as S100β, NSE, and GFAP allow early detection of subclinical cerebral injury, whereas kynurenine-pathway metabolites reflect neuroinflammation and the risk of postoperative cognitive dysfunction. Renal biomarkers such as NGAL, KIM-1, and cystatin C detect acute kidney injury significantly earlier than creatinine, and miR-122 holds strong potential as an early marker of hepatocellular injury. Genetic and epigenetic biomarkers—including polymorphisms in CYP2D6, CYP3A4/5, RYR1, OPRM1, and COMT, as well as microRNA-based signatures—enable individualized drug dosing and optimization of anesthetic strategies. Meanwhile, digital biomarkers such as EEG-derived indices, HRV, and NIRS provide continuous real-time physiological monitoring and can integrate with AI-based algorithms for predictive, adaptive anesthesia management. Although no single biomarker meets all criteria for an ideal clinical indicator, combining molecular, genetic, and digital biomarkers represents the most promising pathway toward fully personalized, safe, and outcome-optimized perioperative care. Full article
(This article belongs to the Section Molecular and Translational Medicine)
Show Figures

Graphical abstract

30 pages, 964 KB  
Review
The Mystery of the Hidden Trace: Emerging Genetic Approaches to Improve Body Fluid Identification
by Dana Macfarlane, Gabriela Roca, Christian Stadler and Sara C. Zapico
Genes 2026, 17(2), 146; https://doi.org/10.3390/genes17020146 - 28 Jan 2026
Viewed by 175
Abstract
Body fluid identification at crime scenes is the first step in the forensic biology workflow, leading to the identification of the perpetrator and/or, in some cases, the victim. Current methods that are regularly used in forensic criminal evidence analysis utilize well-studied properties of [...] Read more.
Body fluid identification at crime scenes is the first step in the forensic biology workflow, leading to the identification of the perpetrator and/or, in some cases, the victim. Current methods that are regularly used in forensic criminal evidence analysis utilize well-studied properties of each fluid as the foundation of the protocol. Among these approaches, alternative light sources, chemical reactions, lateral flow immunochromatographic tests, and microscopic detection stand out to identify the main body fluids encountered at crime scenes: blood, semen, and saliva. However, these often come with limits for specificity and sensitivity. There is also difficulty with fluid mixtures, environmental degradation, and destruction of the sample by the method used. Other fluids, like vaginal fluid and fecal matter, lack standardized protocols and require innovative ideas for accurate analysis without compromising the sample. Emerging technologies based on molecular methods have been the focus of body fluid research, with emphasis on topics such as mRNA, microRNA, epigenetics, and microbial analysis. Additional information alongside the determination of fluid origin could be an advantage from new molecular techniques, such as the identification of donors from SNP analysis, if regular STR analysis is not possible. Validation studies and the integration of such research have the potential to expand and enhance the laboratory practices of forensic science. This article will provide an overview of the current methods applied in the crime lab for body fluid identification before exploring active research in this field, pointing out the potential of these techniques for application in forensic cases to overcome present issues and expand the variety of body fluids identified. Full article
(This article belongs to the Section Genetic Diagnosis)
Show Figures

Figure 1

26 pages, 29623 KB  
Review
Biomarkers of Common Molecular Dysregulation in Tumor Tissue and Peritumor Mucosa in Head and Neck SCC: Insights into Field Cancerization
by Lyuben Dimitrov, Gergana S. Stancheva, Silva G. Kyurkchiyan, Milena Mitkova, Iglika Stancheva, Silviya Valcheva, Kristina Komitova, Silviya Skelina, Julian Rangachev and Todor M. Popov
Int. J. Mol. Sci. 2026, 27(3), 1212; https://doi.org/10.3390/ijms27031212 - 25 Jan 2026
Viewed by 186
Abstract
Field cancerization is a fundamental paradigm in tumorigenesis, emphasizing that carcinogenesis begins long before the appearance of clinically detectable lesions and often precedes recognizable premalignant changes. A direct manifestation of this process is the molecular dysregulation observed in the peritumoral mucosa—histologically normal-appearing tissue [...] Read more.
Field cancerization is a fundamental paradigm in tumorigenesis, emphasizing that carcinogenesis begins long before the appearance of clinically detectable lesions and often precedes recognizable premalignant changes. A direct manifestation of this process is the molecular dysregulation observed in the peritumoral mucosa—histologically normal-appearing tissue that nonetheless exhibits genetic and epigenetic alterations similar to those of the adjacent tumor. This review summarizes current evidence on the molecular alterations shared between tumor tissue and peritumoral mucosa in HNSCC and evaluates their potential as biomarkers for defining molecular margins and improving surgical precision. A literature search was conducted in PubMed using combinations of the keywords “peritumor,” “laryngeal”, “HNSCC,” and “field cancerization.” Studies were included if they directly compared tumor tissue with peritumoral mucosa and, preferably, a third set of distant normal control samples. Only nine studies met the inclusion criteria, highlighting the scarcity of focused research in this area. Reported biomarkers exhibiting comparable dysregulation in both tumor and peritumor tissues include MDM2, E2F2, CDKN2A/p16, ETS-1, MGMT, and multiple microRNAs (e.g., miR-21, miR-96-5p, miR-145-5p). These molecular signatures demonstrate the presence of a biologically altered field extending beyond histologically defined tumor margins. Peritumoral mucosal dysregulation, as a consequence of field cancerization, underscores the need to redefine surgical margins at the molecular level. The identification and validation of biomarkers reflecting this continuum could enable the establishment of molecular margins—improving risk assessment, reducing local recurrence, and advancing personalized oncologic surgery in HNSCC. Standardizing definitions and sampling protocols for “normal adjacent tissue” remains essential for future translational research. Full article
(This article belongs to the Special Issue Genetic and Epigenetic Analyses in Cancer)
Show Figures

Figure 1

35 pages, 1919 KB  
Review
Precision Oncology in Ocular Melanoma: Integrating Molecular and Liquid Biopsy Biomarkers
by Snježana Kaštelan, Fanka Gilevska, Zora Tomić, Josipa Živko and Tamara Nikuševa-Martić
Curr. Issues Mol. Biol. 2026, 48(2), 131; https://doi.org/10.3390/cimb48020131 - 25 Jan 2026
Viewed by 208
Abstract
Ocular melanomas, comprising uveal melanoma (UM) and conjunctival melanoma (CoM), represent the most common primary intraocular and ocular surface malignancies in adults. Although rare compared with cutaneous melanoma, they exhibit unique molecular landscapes that provide critical opportunities for biomarker-driven precision medicine. In UM, [...] Read more.
Ocular melanomas, comprising uveal melanoma (UM) and conjunctival melanoma (CoM), represent the most common primary intraocular and ocular surface malignancies in adults. Although rare compared with cutaneous melanoma, they exhibit unique molecular landscapes that provide critical opportunities for biomarker-driven precision medicine. In UM, recurrent mutations in GNAQ and GNA11, together with alterations in BAP1, SF3B1, and EIF1AX, have emerged as key prognostic biomarkers that stratify metastatic risk and guide surveillance strategies. Conversely, in CoM, the mutational spectrum overlaps with cutaneous melanoma, with frequent alterations in BRAF, NRAS, NF1, and KIT, offering actionable targets for personalised treatment. Beyond genomics, epigenetic signatures, microRNAs, and protein-based markers provide further insights into tumour progression, microenvironmental remodelling, and immune evasion. In parallel, liquid biopsy has emerged as a minimally invasive approach for real-time disease monitoring. Analyses of circulating tumour DNA (ctDNA), circulating tumour cells (CTCs), and exosome-derived microRNAs demonstrate increasing potential for early detection of minimal residual disease, prognostic assessment, and evaluation of treatment response. However, the clinical integration of these biomarkers remains limited by tumour heterogeneity, technical variability, and the lack of unified translational frameworks. This review synthesises current knowledge of molecular and liquid biopsy biomarkers in ocular melanoma, highlighting their relevance for diagnosis, prognosis, and treatment personalisation. The integration of established tissue-based molecular markers with novel liquid biopsy technologies will enable a unique framework for biomarker-guided precision oncology and risk-adapted surveillance in uveal and conjunctival melanoma, offering insight into strategies for early detection, therapeutic monitoring, and personalised clinical management. Full article
Show Figures

Figure 1

10 pages, 1063 KB  
Article
Highly Sensitive Hybridization Chain Reaction-Based miRNA Detection Technology Using Diffusivity Analysis of Fluorescent Probe-Modified miRNA Particles
by Momoka Nakai, Yui Watanabe, Maho Koda, Chisato Sakamoto, Tatsuhito Hasegawa, Han-Sheng Chuang and Hiroaki Sakamoto
Sensors 2026, 26(2), 713; https://doi.org/10.3390/s26020713 - 21 Jan 2026
Viewed by 147
Abstract
MicroRNAs (miRNAs) are promising biomarkers for the early detection of various diseases, particularly cancer, driving active development of highly sensitive and selective detection technologies. This study aims to establish a novel miRNA detection technique that utilizes image analysis to track the Brownian motion [...] Read more.
MicroRNAs (miRNAs) are promising biomarkers for the early detection of various diseases, particularly cancer, driving active development of highly sensitive and selective detection technologies. This study aims to establish a novel miRNA detection technique that utilizes image analysis to track the Brownian motion (diffusivity) of fluorescent probe-modified miRNA particles. This method identifies the presence and concentration of miRNAs by exploiting the change in particle size upon hybridization with the target. Furthermore, the use of a probe modified with a photo-crosslinkable artificial nucleic acid (CNV-D) enables the covalent capture of the target miRNA, ensuring high selectivity in biological samples even under stringent washing conditions. By integrating Hybridization Chain Reaction (HCR), the complex size is significantly amplified, dramatically enhancing the detection sensitivity. Consequently, we successfully demonstrated the highly sensitive and specific detection of the cancer biomarker miR-21 in serum, achieving an exceptionally low limit of detection (LOD) of 1 fM. This technology holds great potential to contribute to the early diagnosis of cancer. Full article
(This article belongs to the Special Issue Biomedical Sensors Based on Microfluidics)
Show Figures

Figure 1

17 pages, 580 KB  
Article
Early Detection of Pacing-Induced Cardiomyopathy Using MicroRNA-208b-3p and MicroRNA-9: A Prospective Cohort Analysis
by Onoufrios Malikides, Aleksi Sallo, Andria Papazachariou, Ioannis Kopidakis, Angeliki Alifragki, Joanna Kontaraki, Konstantinos Fragkiadakis, Gregory Chlouverakis, Eleftherios Kallergis, Emmanuel Simantirakis and Maria Marketou
Genes 2026, 17(1), 103; https://doi.org/10.3390/genes17010103 - 19 Jan 2026
Viewed by 192
Abstract
Background/Objectives: Pacing-induced cardiomyopathy (PiCM) is a recognized complication of chronic right ventricular pacing (RVP), characterized by left ventricular (LV) dysfunction, adverse remodeling, and progression to heart failure. MicroRNAs (miRs) regulate gene expression and play an important role in ventricular remodeling. This study aimed [...] Read more.
Background/Objectives: Pacing-induced cardiomyopathy (PiCM) is a recognized complication of chronic right ventricular pacing (RVP), characterized by left ventricular (LV) dysfunction, adverse remodeling, and progression to heart failure. MicroRNAs (miRs) regulate gene expression and play an important role in ventricular remodeling. This study aimed to observe whether dynamic changes in miRs according to a novel peripheral blood mononuclear cell (PBMC)-based approach could serve as early predictive biomarkers of PiCM. Methods: A prospective, single-center cohort study was conducted in adult patients undergoing pacemaker implantation. Clinical characteristics, echocardiographic parameters and expression levels of miR-208b-3p and miR-9 were assessed immediately and 3 months post-pacemaker implantation. PiCM was defined as a ≥10% reduction in LVEF at one year, with no alternative cause. Statistical analyses included correlation testing, ROC curve analysis, and multivariate regression to identify factors associated with PiCM. Results: Among 126 patients, 11.1% developed PiCM. Compared with the non-PiCM group, those who developed PiCM exhibited more pronounced 3-month changes in miR-208b-3p (median Δ3log miR: +1.3 vs. −0.4, p = 0.013) and miR-9 (median Δ3log miR: −1.7 vs. +0.21, p = 0.011). In multivariate analyses, Δ3LV-GLS, Δ3logmiR-208b-3p, and Δ3logmiR-9 were associated with a higher likelihood of PiCM. Among PiCM patients, Δ3logmiR-208b-3p correlated inversely with Δ3LV-GLS (r = −0.73, p = 0.016), while Δ3logmiR-9 correlated positively (r = 0.88, p < 0.001). ROC analyses demonstrated good predictive ability for Δ3LV-GLS (AUC = 0.924), Δ3log miR-208b-3p (AUC = 0.783), and Δ3log miR-9 (AUC = 0.835), with no significant differences between curves. Conclusions: Early LV-GLS deterioration and dynamic changes in expression of miR-208b-3p and miR-9 in PBMCs precede overt LV systolic dysfunction. These miRs may serve as early predictive biomarkers for PiCM. Full article
Show Figures

Figure 1

26 pages, 1104 KB  
Review
The Placenta in Gestational Diabetes: An Integrated Review on Metabolic Pathways, Genetic, Epigenetic and Ultrasound Biomarkers for Clinical Perspectives
by Giovanni Tossetta, Roberto Campagna, Arianna Vignini, Giuseppe Maria Maruotti, Mariarosaria Motta, Chiara Murolo, Laura Sarno, Camilla Grelloni, Monia Cecati, Stefano Raffaele Giannubilo and Andrea Ciavattini
Int. J. Mol. Sci. 2026, 27(2), 919; https://doi.org/10.3390/ijms27020919 - 16 Jan 2026
Viewed by 213
Abstract
Pregnancies complicated by diabetes, including pregestational and gestational diabetes mellitus, are associated with increased maternal and fetal morbidity. Early identification of at-risk pregnancies is crucial for timely intervention and improved outcomes. Emerging evidence highlights the interplay of genetic predisposition, epigenetic modifications, and non-invasive [...] Read more.
Pregnancies complicated by diabetes, including pregestational and gestational diabetes mellitus, are associated with increased maternal and fetal morbidity. Early identification of at-risk pregnancies is crucial for timely intervention and improved outcomes. Emerging evidence highlights the interplay of genetic predisposition, epigenetic modifications, and non-invasive biomarkers in the early detection of diabetic pregnancies. Genetic factors influencing insulin signaling, glucose metabolism, and pancreatic β-cell function may contribute to susceptibility to gestational hyperglycemia. Concurrently, epigenetic alterations, such as DNA methylation and histone modifications in maternal and placental tissues, have been linked to dysregulated metabolic pathways and adverse pregnancy outcomes. Non-invasive biomarkers, including circulating cell-free DNA and microRNAs in maternal blood, show promise for early diagnosis by offering a safer and more practical alternative to invasive testing. Integrating genetic, epigenetic, and molecular marker data could enhance risk stratification and enable personalized monitoring and management strategies. This review synthesizes current knowledge on the molecular underpinnings of diabetic pregnancies, evaluates the potential of emerging biomarkers for early diagnosis, and discusses the challenges and future perspectives for translating these findings into clinical practice. Understanding these mechanisms may pave the way for precision medicine approaches, ultimately improving maternal and neonatal outcomes in pregnancies affected by diabetes. Full article
Show Figures

Graphical abstract

12 pages, 257 KB  
Review
Epigenetic Alterations in Colitis-Associated Colorectal Cancer
by Nisha Ganesh, William M. Grady and Andrew M. Kaz
Epigenomes 2026, 10(1), 4; https://doi.org/10.3390/epigenomes10010004 - 16 Jan 2026
Viewed by 319
Abstract
Colitis-associated colorectal cancer (CAC) represents a distinct subtype of colorectal malignancy that arises in the setting of chronic inflammatory bowel disease (IBD). Unlike sporadic colorectal cancer, CAC develops through inflammation-driven molecular pathways, in which epigenetic alterations play a pivotal role in tumor initiation [...] Read more.
Colitis-associated colorectal cancer (CAC) represents a distinct subtype of colorectal malignancy that arises in the setting of chronic inflammatory bowel disease (IBD). Unlike sporadic colorectal cancer, CAC develops through inflammation-driven molecular pathways, in which epigenetic alterations play a pivotal role in tumor initiation and progression. This review highlights the major epigenetic mechanisms implicated in CAC, including DNA methylation, histone modifications, and microRNA (miRNA) dysregulation. Aberrant DNA methylation patterns, such as promoter hypermethylation of tumor suppressor genes and global hypomethylation, contribute to genomic instability and altered gene expression. In parallel, inflammation-induced changes in histone configuration modulate chromatin accessibility and transcriptional activity of key oncogenic and tumor-suppressive pathways. Furthermore, deregulated miRNAs influence multiple aspects of CAC pathogenesis by targeting genes involved in inflammation and tumor progression. Understanding these epigenetic processes provides valuable insights into the development of colorectal malignancy and identifies potential biomarkers for early detection and intervention in colitis-associated colorectal cancer. Full article
(This article belongs to the Special Issue Epigenetic Signatures in Metabolic Health and Cancer)
33 pages, 1331 KB  
Review
MicroRNAs in Esophageal Cancer: Implications for Diagnosis, Progression, Prognosis and Chemoresistance
by Erica Cataldi-Stagetti, Giulia Governatori, Arianna Orsini, Bianca De Nicolo, Rocco Maurizio Zagari and Elena Bonora
Int. J. Mol. Sci. 2026, 27(2), 878; https://doi.org/10.3390/ijms27020878 - 15 Jan 2026
Viewed by 289
Abstract
Esophageal cancer (EC), including esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC), remains a highly lethal disease because of its late diagnosis, significant biological heterogeneity, and frequent resistance to therapy. Growing evidence indicates that microRNAs (miRNAs) are key posttranscriptional regulators involved in [...] Read more.
Esophageal cancer (EC), including esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC), remains a highly lethal disease because of its late diagnosis, significant biological heterogeneity, and frequent resistance to therapy. Growing evidence indicates that microRNAs (miRNAs) are key posttranscriptional regulators involved in tumor initiation, progression, metastasis, and response to treatment. This review provides a comprehensive and updated overview of miRNA dysregulation in both ESCC and EAC, with a specific focus on its emerging clinical relevance in early detection, prognostic assessment, and prediction of therapeutic response. Multiple tissue-based and circulating miRNA signatures, some capable of distinguishing between Barrett’s esophagus (BE), dysplasia, and EAC, demonstrate promising diagnostic performance. In parallel, several miRNAs, including miR-21, miR-23a, miR-455-3p, and miR-196b, have been consistently associated with chemoresistance and radioresistance. Moreover, distinct miRNA expression patterns are correlated with tumor aggressiveness, metastatic potential, and the risk of recurrence, supporting their integration with conventional histopathological and molecular parameters for improved patient stratification. Overall, miRNAs represent a powerful class of biomarkers and potential therapeutic targets in EC, with increasing translational relevance in precision oncology. Full article
(This article belongs to the Collection Latest Review Papers in Molecular Genetics and Genomics)
Show Figures

Figure 1

15 pages, 445 KB  
Review
Sepsis Biomarkers in Evolution: Comparative Insights and the Promising Roles of MDW and Presepsin
by Andrea Piccioni, Lucrezia Fiorentino, Silvia Baroni, Simone Leggeri, Giulia Pignataro, Giulia Napoli, Gabriele Savioli, Marcello Covino, Antonio Gasbarrini, Francesco Franceschi and Marcello Candelli
Medicina 2026, 62(1), 148; https://doi.org/10.3390/medicina62010148 - 12 Jan 2026
Viewed by 355
Abstract
Background and Objectives: Sepsis is a life-threatening condition caused by a dysregulated host response to infection. Early recognition is crucial to improve outcomes, but conventional biomarkers such as C-reactive protein (CRP) and procalcitonin (PCT) show limited diagnostic accuracy. Materials and Methods: We performed [...] Read more.
Background and Objectives: Sepsis is a life-threatening condition caused by a dysregulated host response to infection. Early recognition is crucial to improve outcomes, but conventional biomarkers such as C-reactive protein (CRP) and procalcitonin (PCT) show limited diagnostic accuracy. Materials and Methods: We performed a narrative review of the literature on sepsis biomarkers, with a focus on their biological role, diagnostic performance, clinical applicability, and limitations. Particular attention was given to presepsin (P-SEP) and monocyte distribution width (MDW), which have recently gained relevance. Results: Several novel biomarkers—including lipopolysaccharide-binding protein (LBP), soluble triggering receptor expressed on myeloid cells-1 (sTREM-1), mid-regional pro-adrenomedullin (MR-proADM), neutrophil gelatinase-associated lipocalin (NGAL), Proenkephalin (PENK), and circulating microRNAs—have been studied, though most remain investigational. Among them, P-SEP shows rapid kinetics and correlation with disease severity, while MDW, derived from routine complete blood count, offers encouraging sensitivity and cost-effectiveness in emergency settings. Both biomarkers appear practical and potentially valuable for early sepsis detection. Conclusions: P-SEP and MDW emerge as the most promising biomarkers for timely sepsis recognition and risk stratification. Further validation and standardization are required to include them into routine clinical practice. Full article
(This article belongs to the Section Intensive Care/ Anesthesiology)
Show Figures

Figure 1

19 pages, 5060 KB  
Review
Electrochemical Biosensors for Exosome Detection: Current Advances, Challenges, and Prospects for Glaucoma Diagnosis
by María Moreno-Guzmán, Juan Pablo Hervás-Pérez, Laura Martín-Carbajo, María José Crespo Carballés and Marta Sánchez-Paniagua
Sensors 2026, 26(2), 433; https://doi.org/10.3390/s26020433 - 9 Jan 2026
Viewed by 254
Abstract
Glaucoma is a leading cause of irreversible blindness worldwide, with its asymptomatic progression highlighting the urgent need for early, minimally invasive biomarkers. Exosomes derived from the aqueous humor (AH) have emerged as promising candidates, as they carry proteins, nucleic acids, and lipids that [...] Read more.
Glaucoma is a leading cause of irreversible blindness worldwide, with its asymptomatic progression highlighting the urgent need for early, minimally invasive biomarkers. Exosomes derived from the aqueous humor (AH) have emerged as promising candidates, as they carry proteins, nucleic acids, and lipids that reflect the physiological and pathological state of ocular tissues such as the trabecular meshwork and ciliary body. However, their low abundance, nanoscale size, and the limited volume of AH complicate detection and characterization. Conventional methods, including Western blotting, PCR or mass spectrometry, are labor-intensive, time-consuming, and often incompatible with microliter-scale samples. Electrochemical biosensors offer a highly sensitive, rapid, and low-volume alternative, enabling the detection of exosomal surface markers and internal cargos such as microRNAs, proteins, and lipids. Recent advances in nanomaterial-enhanced electrodes, microfluidic integration, enzyme- and nanozyme-mediated signal amplification, and ratiometric detection strategies have significantly improved sensitivity, selectivity, and multiplexing capabilities. While most studies focus on blood or serum, these platforms hold great potential for AH-derived exosome analysis, supporting early-stage glaucoma diagnosis, monitoring of disease progression, and evaluation of therapeutic responses. Continued development of miniaturized, point-of-care electrochemical biosensors could facilitate clinically viable, noninvasive exosome-based diagnostics for glaucoma. Full article
(This article belongs to the Special Issue Feature Review Papers in Biosensors Section 2025)
Show Figures

Figure 1

Back to TopTop