Epigenetic Alterations in Colitis-Associated Colorectal Cancer
Abstract
1. Introduction
2. Pathogenesis of CAC
3. Epigenetic Mechanisms in IBD-CRC
4. Key Epigenetic Biomarkers in CAC
4.1. DNA Methylation
| Biomarker | Sample Type | Primary Result | Major Finding | Reference |
|---|---|---|---|---|
| Alu methylation level | Peripheral blood, mouse model | Methylation level of two restriction enzyme cutting sites significantly decreased (p < 0.05) in colitis associated cancer group versus normal control | Decrease in methylation level in UC-CRC compared to normal controls | [26] |
| ANPEP gene products | Colonic tissue | Significantly fewer UC-CRC tissue had brush border and tight junction expression of ANPEP compared to tissue adjacent to UC-CRC (p = 0.001) and normal controls (p < 0.0001). ANPEP gene products demonstrate an inverse correlation with methylation levels in CAC. | Downregulation in UC brush border in UC-CRC | [32] |
| MICAL3, MAD1L1, METTL22 | Colonic tissue | Identified three methylation sites relevant to distinguishing CAC from sporadic CRC and defined methylation limit values. Combination of MICAL3, MAD1L1, and METTL22 methylation sites allowed for correct assignment to CAC or sporadic CRC in 94.5% of cases | Defined methylation levels at three methylation sites can distinguish between CAC and sporadic CRC | [33] |
| SFRP2, SFRP4, WIF1, APC1A, APC2 | Colonic tissue | Panel was accurate in detecting pre-cancerous and invasive neoplasia (AUC = 0.83; 95% CI 0.79, 0.88), and dysplasia (AUC = 0.88; (0.84, 0.91)). | Multiplex methylation marker panel accurate for UC-CRC detection | [29] |
| MSH6, TIMP3 | Colonic tissue | Promoter methylation was significantly more common in IBD-related dysplasia or cancer in MSH6 (5/10 vs. 1/31, p = 0.002), and TIMP3 (4/9 vs. 1/25, p = 0.012) versus non-IBD related dysplasia or cancer samples | Promoter methylation associated with IBD related dysplasia/cancer | [30] |
| NTSR1, CD274 | Colonic tissue | Hypermethylation frequency of NTSR1 in CAC versus normal tissue (p = 0.037) Half of the CACs (16/31, 52%) expressed CD274-positive immune cells, whereas tumor cells were CD274-negative. | Increased level of methylation in CAC, similar to Lynch syndrome | [28] |
4.2. Histone Modification
4.3. MicroRNA Alterations
5. Clinical Applications and Future Directions
6. Limitations
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| IBD | Inflammatory Bowel Disease |
| CAC | Colitis-Associated Colorectal Cancer |
| CD | Crohn’s disease |
| UC | Ulcerative Colitis |
| PSC | Primary Sclerosing Cholangitis |
| DNMT | DNA methyltransferase |
| NK | Natural Killer |
References
- Fatakhova, K.; Rajapakse, R. From random to precise: Updated colon cancer screening and surveillance for inflammatory bowel disease. Transl. Gastroenterol. Hepatol. 2024, 9, 27. [Google Scholar] [CrossRef] [PubMed]
- Laredo, V.; García-Mateo, S.; Martínez-Domínguez, S.J.; López de la Cruz, J.; Gargallo-Puyuelo, C.J.; Gomollón, F. Risk of Cancer in Patients with Inflammatory Bowel Diseases and Keys for Patient Management. Cancers 2023, 15, 871. [Google Scholar] [CrossRef] [PubMed]
- Clarke, W.T.; Feuerstein, J.D. Colorectal cancer surveillance in inflammatory bowel disease: Practice guidelines and recent developments. World J. Gastroenterol. 2019, 25, 4148–4157. [Google Scholar] [CrossRef]
- Murthy, S.K.; Feuerstein, J.D.; Nguyen, G.C.; Velayos, F.S. AGA Clinical Practice Update on Endoscopic Surveillance and Management of Colorectal Dysplasia in Inflammatory Bowel Diseases: Expert Review. Gastroenterology 2021, 161, 1043–1051.e4. [Google Scholar] [CrossRef]
- Rajamäki, K.; Taira, A.; Katainen, R.; Välimäki, N.; Kuosmanen, A.; Plaketti, R.M.; Seppälä, T.T.; Ahtiainen, M.; Wirta, E.V.; Vartiainen, E.; et al. Genetic and Epigenetic Characteristics of Inflammatory Bowel Disease-Associated Colorectal Cancer. Gastroenterology 2021, 161, 592–607. [Google Scholar]
- Bocchetti, M.; Ferraro, M.G.; Ricciardiello, F.; Ottaiano, A.; Luce, A.; Cossu, A.M.; Scrima, M.; Leung, W.Y.; Abate, M.; Stiuso, P.; et al. The Role of microRNAs in Development of Colitis-Associated Colorectal Cancer. Int. J. Mol. Sci. 2021, 22, 3967. [Google Scholar]
- Vanoli, A.; Parente, P.; Fassan, M.; Mastracci, L.; Grillo, F. Gut inflammation and tumorigenesis: Every site has a different tale to tell. Intern. Emerg. Med. 2023, 18, 2169–2179. [Google Scholar] [CrossRef]
- Chen, R.; Lai, L.A.; Brentnall, T.A.; Pan, S. Biomarkers for colitis-associated colorectal cancer. World J. Gastroenterol. 2016, 22, 7882–7891. [Google Scholar] [CrossRef]
- Saraggi, D.; Fassan, M.; Mescoli, C.; Scarpa, M.; Valeri, N.; Michielan, A.; D’Incá, R.; Rugge, M. The molecular landscape of colitis-associated carcinogenesis. Dig. Liver Dis. 2017, 49, 326–330. [Google Scholar] [CrossRef]
- Gutierrez-Angulo, M.; Ayala-Madrigal, M.L.; Moreno-Ortiz, J.M.; Peregrina-Sandoval, J.; Garcia-Ayala, F.D. Microbiota composition and its impact on DNA methylation in colorectal cancer. Front. Genet. 2023, 14, 1037406. [Google Scholar] [CrossRef] [PubMed]
- Quaglio, A.E.V.; Grillo, T.G.; De Oliveira, E.C.S.; Di Stasi, L.C.; Sassaki, L.Y. Gut microbiota, inflammatory bowel disease and colorectal cancer. World J. Gastroenterol. 2022, 28, 4053–4060. [Google Scholar] [CrossRef]
- Muñiz Pedrogo, D.A.; Sears, C.L.; Melia, J.M.P. Colorectal Cancer in Inflammatory Bowel Disease: A Review of the Role of Gut Microbiota and Bacterial Biofilms in Disease Pathogenesis. J. Crohns Colitis 2024, 18, 1713–1725. [Google Scholar] [CrossRef]
- Tan, S.Y.X.; Zhang, J.; Tee, W.W. Epigenetic Regulation of Inflammatory Signaling and Inflammation-Induced Cancer. Front. Cell Dev. Biol. 2022, 10, 931493. [Google Scholar] [CrossRef]
- Triantaphyllopoulos, K.A.; Ragia, N.D.; Panagiotopoulou, M.E.; Sourlingas, T.G. Integrating Inflammatory and Epigenetic Signatures in IBD-Associated Colorectal Carcinogenesis: Models, Mechanisms, and Clinical Implications. Int. J. Mol. Sci. 2025, 26, 9498. [Google Scholar] [CrossRef]
- Hartnett, L.; Egan, L.J. Inflammation, DNA methylation and colitis-associated cancer. Carcinogenesis 2012, 33, 723–731. [Google Scholar] [CrossRef] [PubMed]
- Damiano, O.M.; Stevens, A.J.; Kenwright, D.N.; Seddon, A.R. Chronic Inflammation to Cancer: The Impact of Oxidative Stress on DNA Methylation. Front. Biosci. 2025, 30, 26142. [Google Scholar] [CrossRef] [PubMed]
- Jair, K.W.; Bachman, K.E.; Suzuki, H.; Ting, A.H.; Rhee, I.; Yen, R.W.; Baylin, S.B.; Schuebel, K.E. De novo CpG island methylation in human cancer cells. Cancer Res. 2006, 66, 682–692. [Google Scholar] [CrossRef]
- Chen, L.; Luo, Z.; Zhao, C.; Li, Q.; Geng, Y.; Xiao, Y.; Chen, M.K.; Li, L.; Chen, Z.X.; Wu, M. Dynamic Chromatin States Coupling with Key Transcription Factors in Colitis-Associated Colorectal Cancer. Adv. Sci. 2022, 9, e2200536. [Google Scholar] [CrossRef] [PubMed]
- Fleisher, A.S.; Esteller, M.; Harpaz, N.; Leytin, A.; Rashid, A.; Xu, Y.; Liang, J.; Stine, O.C.; Yin, J.; Zou, T.T.; et al. Microsatellite instability in inflammatory bowel disease-associated neoplastic lesions is associated with hypermethylation and diminished expression of the DNA mismatch repair gene, hMLH1. Cancer Res. 2000, 60, 4864–4868. [Google Scholar]
- Wang, F.Y.; Arisawa, T.; Tahara, T.; Takahama, K.; Watanabe, M.; Hirata, I.; Nakano, H. Aberrant DNA methylation in ulcerative colitis without neoplasia. Hepatogastroenterology 2008, 55, 62–65. [Google Scholar]
- Dhir, M.; Montgomery, E.A.; Glöckner, S.C.; Schuebel, K.E.; Hooker, C.M.; Herman, J.G.; Baylin, S.B.; Gearhart, S.L.; Ahuja, N. Epigenetic regulation of WNT signaling pathway genes in inflammatory bowel disease (IBD) associated neoplasia. J. Gastrointest. Surg. 2008, 12, 1745–1753. [Google Scholar] [CrossRef]
- Li, Y.; Deuring, J.; Peppelenbosch, M.P.; Kuipers, E.J.; de Haar, C.; van der Woude, C.J. IL-6-induced DNMT1 activity mediates SOCS3 promoter hypermethylation in ulcerative colitis-related colorectal cancer. Carcinogenesis 2012, 33, 1889–1896. [Google Scholar] [CrossRef]
- Kanaan, Z.; Rai, S.N.; Eichenberger, M.R.; Barnes, C.; Dworkin, A.M.; Weller, C.; Cohen, E.; Roberts, H.; Keskey, B.; Petras, R.E.; et al. Differential microRNA expression tracks neoplastic progression in inflammatory bowel disease-associated colorectal cancer. Hum. Mutat. 2012, 33, 551–560. [Google Scholar] [CrossRef]
- Li, J.; Su, X.; Dai, L.; Chen, N.; Fang, C.; Dong, Z.; Fu, J.; Yu, Y.; Wang, W.; Zhang, H.; et al. Temporal DNA methylation pattern and targeted therapy in colitis-associated cancer. Carcinogenesis 2020, 41, 235–244. [Google Scholar]
- Emmett, R.A.; Davidson, K.L.; Gould, N.J.; Arasaradnam, R.P. DNA methylation patterns in ulcerative colitis-associated cancer: A systematic review. Epigenomics 2017, 9, 1029–1042. [Google Scholar] [CrossRef]
- Bai, X.; Zhu, Y.; Pu, W.; Xiao, L.; Li, K.; Xing, C.; Jin, Y. Circulating DNA and its methylation level in inflammatory bowel disease and related colon cancer. Int. J. Clin. Exp. Pathol. 2015, 8, 13764–13769. [Google Scholar]
- Ye, D.; Jiang, D.; Zhang, X.; Mao, Y. Alu Methylation and Risk of Cancer: A Meta-analysis. Am. J. Med. Sci. 2020, 359, 271–280. [Google Scholar]
- Mäki-Nevala, S.; Ukwattage, S.; Wirta, E.V.; Ahtiainen, M.; Ristimäki, A.; Seppälä, T.T.; Lepistö, A.; Mecklin, J.P.; Peltomäki, P. Immunoprofiles and DNA Methylation of Inflammatory Marker Genes in Ulcerative Colitis-Associated Colorectal Tumorigenesis. Biomolecules 2021, 11, 1440. [Google Scholar] [CrossRef]
- Beggs, A.D.; Mehta, S.; Deeks, J.J.; James, J.D.; Caldwell, G.M.; Dilworth, M.P.; Stockton, J.D.; Blakeway, D.; Pestinger, V.; Vince, A.; et al. Validation of epigenetic markers to identify colitis associated cancer: Results of module 1 of the ENDCAP-C study. eBioMedicine 2019, 39, 265–271. [Google Scholar] [CrossRef]
- Rosa, I.; Silva, P.; da Mata, S.; Magro, F.; Carneiro, F.; Peixoto, A.; Silva, M.; Sousa, H.T.; Roseira, J.; Parra, J.; et al. Methylation patterns in dysplasia in inflammatory bowel disease patients. Scand. J. Gastroenterol. 2020, 55, 646–655. [Google Scholar] [CrossRef]
- Cervena, K.; Siskova, A.; Buchler, T.; Vodicka, P.; Vymetalkova, V. Methylation-Based Therapies for Colorectal Cancer. Cells 2020, 9, 1540. [Google Scholar] [CrossRef]
- Pekow, J.; Hernandez, K.; Meckel, K.; Deng, Z.; Haider, H.I.; Khalil, A.; Zhang, C.; Talisila, N.; Siva, S.; Jasmine, F.; et al. IBD-associated Colon Cancers Differ in DNA Methylation and Gene Expression Profiles Compared With Sporadic Colon Cancers. J. Crohns Colitis 2019, 13, 884–893. [Google Scholar] [CrossRef]
- Haumaier, F.; Dregelies, T.; Sterlacci, W.; Atreya, R.; Vieth, M. Methylation Analysis of Colitis-Associated Colorectal Carcinomas. Discov. Med. 2024, 36, 1363–1369. [Google Scholar] [CrossRef]
- Lightfoot, Y.L.; Yang, T.; Sahay, B.; Mohamadzadeh, M. Targeting aberrant colon cancer-specific DNA methylation with lipoteichoic acid-deficient Lactobacillus acidophilus. Gut Microbes 2013, 4, 84–88. [Google Scholar] [CrossRef]
- Bannister, A.J.; Kouzarides, T. Regulation of chromatin by histone modifications. Cell Res. 2011, 21, 381–395. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, Z.; Jia, J.; Du, T.; Zhang, N.; Tang, Y.; Fang, Y.; Fang, D. Overview of Histone Modification. Adv. Exp. Med. Biol. 2021, 1283, 1–16. [Google Scholar]
- Carvalho, S.; Freitas, M.; Antunes, L.; Monteiro-Reis, S.; Vieira-Coimbra, M.; Tavares, A.; Paulino, S.; Videira, J.F.; Jerónimo, C.; Henrique, R. Prognostic value of histone marks H3K27me3 and H3K9me3 and modifying enzymes EZH2, SETDB1 and LSD-1 in colorectal cancer. J. Cancer Res. Clin. Oncol. 2018, 144, 2127–2137. [Google Scholar] [CrossRef]
- Gerçeker, E.; Boyacıoglu, S.O.; Kasap, E.; Baykan, A.; Yuceyar, H.; Yıldırım, H.; Ayhan, S.; Ellidokuz, E.; Korkmaz, M. Never in mitosis gene A-related kinase 6 and aurora kinase A: New gene biomarkers in the conversion from ulcerative colitis to colorectal cancer. Oncol. Rep. 2015, 34, 1905–1914. [Google Scholar] [CrossRef]
- Liang, B.; Wang, Y.; Xu, J.; Shao, Y.; Xing, D. Unlocking the potential of targeting histone-modifying enzymes for treating IBD and CRC. Clin. Epigenetics 2023, 15, 146. [Google Scholar] [CrossRef]
- Zhu, S.; Denman, C.J.; Cobanoglu, Z.S.; Kiany, S.; Lau, C.C.; Gottschalk, S.M.; Hughes, D.P.; Kleinerman, E.S.; Lee, D.A. The narrow-spectrum HDAC inhibitor entinostat enhances NKG2D expression without NK cell toxicity, leading to enhanced recognition of cancer cells. Pharm. Res. 2015, 32, 779–792. [Google Scholar] [CrossRef]
- Karasic, T.B.; Brown, T.J.; Schneider, C.; Teitelbaum, U.R.; Reiss, K.A.; Mitchell, T.C.; Massa, R.C.; O’Hara, M.H.; DiCicco, L.; Garcia-Marcano, L.; et al. Phase I Trial of Regorafenib, Hydroxychloroquine, and Entinostat in Metastatic Colorectal Cancer. Oncologist 2022, 27, 716-e689. [Google Scholar] [CrossRef]
- Cartwright, E.; Slater, S.; Saffery, C.; Tran, A.; Turkes, F.; Smith, G.; Aresu, M.; Kohoutova, D.; Terlizzo, M.; Zhitkov, O.; et al. Phase II trial of domatinostat (4SC-202) in combination with avelumab in patients with previously treated advanced mismatch repair proficient oesophagogastric and colorectal adenocarcinoma: EMERGE. ESMO Open 2024, 9, 102971. [Google Scholar] [CrossRef]
- James, J.P.; Riis, L.B.; Malham, M.; Høgdall, E.; Langholz, E.; Nielsen, B.S. MicroRNA Biomarkers in IBD-Differential Diagnosis and Prediction of Colitis-Associated Cancer. Int. J. Mol. Sci. 2020, 21, 7893. [Google Scholar] [CrossRef]
- El-Daly, S.M.; Morsy, S.M.; Medhat, D.; El-Bana, M.A.; Latif, Y.A.; Omara, E.A.; Awadallah, J.R.; Gamal-Eldeen, A.M. The diagnostic efficacy of circulating miRNAs in monitoring the early development of colitis-induced colorectal cancer. J. Cell Biochem. 2019, 120, 16668–16680. [Google Scholar] [CrossRef]
- Włodarczyk, M.; Maryńczak, K.; Burzyński, J.; Włodarczyk, J.; Basak, J.; Fichna, J.; Majsterek, I.; Ciesielski, P.; Spinelli, A.; Dziki, Ł. The role of miRNAs in the pathogenesis, diagnosis, and treatment of colorectal cancer and colitis-associated cancer. Clin. Exp. Med. 2025, 25, 86. [Google Scholar] [CrossRef]
- Yang, C.; Lu, W.; He, H.; Liu, H. Inflammation and DNA Methylation-Dependent Down-Regulation of miR-34b-5p Mediates c-MYC Expression and CRL4(DCAF4) E3 Ligase Activity in Colitis-Associated Cancer. Am. J. Pathol. 2020, 190, 674–688. [Google Scholar] [CrossRef]
- Ueda, Y.; Ando, T.; Nanjo, S.; Ushijima, T.; Sugiyama, T. DNA methylation of microRNA-124a is a potential risk marker of colitis-associated cancer in patients with ulcerative colitis. Dig. Dis. Sci. 2014, 59, 2444–2451. [Google Scholar] [CrossRef]
- Nikolaieva, N.; Sevcikova, A.; Omelka, R.; Martiniakova, M.; Mego, M.; Ciernikova, S. Gut Microbiota-MicroRNA Interactions in Intestinal Homeostasis and Cancer Development. Microorganisms 2022, 11, 107. [Google Scholar] [CrossRef]
- Yuan, C.; Burns, M.B.; Subramanian, S.; Blekhman, R. Interaction between Host MicroRNAs and the Gut Microbiota in Colorectal Cancer. mSystems 2018, 3, e00205-17. [Google Scholar] [CrossRef]
- Yuan, C.; Steer, C.J.; Subramanian, S. Host-MicroRNA-Microbiota Interactions in Colorectal Cancer. Genes 2019, 10, 270. [Google Scholar] [CrossRef]
- Ludwig, K.; Fassan, M.; Mescoli, C.; Pizzi, M.; Balistreri, M.; Albertoni, L.; Pucciarelli, S.; Scarpa, M.; Sturniolo, G.C.; Angriman, I.; et al. PDCD4/miR-21 dysregulation in inflammatory bowel disease-associated carcinogenesis. Virchows Arch. 2013, 462, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Ahmed Hassan, E.; El-Din Abd El-Rehim, A.S.; Mohammed Kholef, E.F.; Abd-Elgwad Elsewify, W. Potential role of plasma miR-21 and miR-92a in distinguishing between irritable bowel syndrome, ulcerative colitis, and colorectal cancer. Gastroenterol. Hepatol. Bed Bench 2020, 13, 147–154. [Google Scholar] [PubMed]
- Sur, D.; Advani, S.; Braithwaite, D. MicroRNA panels as diagnostic biomarkers for colorectal cancer: A systematic review and meta-analysis. Front. Med. 2022, 9, 915226. [Google Scholar] [CrossRef]
- Wang, A.; Deng, S.; Chen, X.; Yu, C.; Du, Q.; Wu, Y.; Chen, G.; Hu, L.; Hu, C.; Li, Y. miR-29a-5p/STAT3 Positive Feedback Loop Regulates TETs in Colitis-Associated Colorectal Cancer. Inflamm. Bowel. Dis. 2020, 26, 524–533. [Google Scholar] [CrossRef]
- Patel, M.; Verma, A.; Aslam, I.; Pringle, H.; Singh, B. Novel plasma microRNA biomarkers for the identification of colitis-associated carcinoma. Lancet 2015, 385, S78. [Google Scholar] [CrossRef]
- Wang, T.; Xu, X.; Xu, Q.; Ren, J.; Shen, S.; Fan, C.; Hou, Y. miR-19a promotes colitis-associated colorectal cancer by regulating tumor necrosis factor alpha-induced protein 3-NF-κB feedback loops. Oncogene 2017, 36, 3240–3251. [Google Scholar] [CrossRef]
- Gu, X.; Wei, S.; Lv, X. Circulating tumor cells: From new biological insights to clinical practice. Signal Transduct. Target. Ther. 2024, 9, 226. [Google Scholar] [CrossRef]
- Wetzel, A.; Scholtka, B.; Schumacher, F.; Rawel, H.; Geisendörfer, B.; Kleuser, B. Epigenetic DNA Methylation of EBI3 Modulates Human Interleukin-35 Formation via NFkB Signaling: A Promising Therapeutic Option in Ulcerative Colitis. Int. J. Mol. Sci. 2021, 22, 5329. [Google Scholar] [CrossRef]
- Zhou, R.W.; Harpaz, N.; Itzkowitz, S.H.; Parsons, R.E. Molecular mechanisms in colitis-associated colorectal cancer. Oncogenesis 2023, 12, 48. [Google Scholar] [CrossRef] [PubMed]
- Kritzinger, J.; Kotrri, G.; Lakatos, P.L.; Bessissow, T.; Wild, G. The Role of Biomarkers in Surveillance of Ulcerative Colitis-Associated Colorectal Cancer: A Scoping Review. J. Clin. Med. 2025, 14, 5979. [Google Scholar] [CrossRef]
| Biomarker | Sample Type | Major Finding | References |
|---|---|---|---|
| miR-21 | Tissue, Serum | Upregulated in IBD and CAC, hypothesized to facilitate development of CAC | [43,44,51,52,53] |
| miR-15b | Tissue, Serum | Increased levels correlate with tumor progression, with high diagnostic accuracy for detection of early colonic lesion (AUC 1.00) | [44,53] |
| miR-29a | Tissue, Serum | Increased levels correlate to tumor progression, high diagnostic accuracy for detection of early colonic lesions (AUC 0.90) | [44,54] |
| miR-375 | Plasma | Upregulated in CAC compared with active UC (p = 0.0061) | [55] |
| miR-34b-5p | Tissue | Suppressed in CAC tissue versus adjacent control tissue (p < 0.001) | [46] |
| miR-19a | Tissue | Upregulated in CAC. May promote development of CAC through stimulation of TNF-α | [45,56] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Ganesh, N.; Grady, W.M.; Kaz, A.M. Epigenetic Alterations in Colitis-Associated Colorectal Cancer. Epigenomes 2026, 10, 4. https://doi.org/10.3390/epigenomes10010004
Ganesh N, Grady WM, Kaz AM. Epigenetic Alterations in Colitis-Associated Colorectal Cancer. Epigenomes. 2026; 10(1):4. https://doi.org/10.3390/epigenomes10010004
Chicago/Turabian StyleGanesh, Nisha, William M. Grady, and Andrew M. Kaz. 2026. "Epigenetic Alterations in Colitis-Associated Colorectal Cancer" Epigenomes 10, no. 1: 4. https://doi.org/10.3390/epigenomes10010004
APA StyleGanesh, N., Grady, W. M., & Kaz, A. M. (2026). Epigenetic Alterations in Colitis-Associated Colorectal Cancer. Epigenomes, 10(1), 4. https://doi.org/10.3390/epigenomes10010004

