Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (25)

Search Parameters:
Keywords = micro-lever mechanism

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 20835 KiB  
Article
Reverse Mortgages and Pension Sustainability: An Agent-Based and Actuarial Approach
by Francesco Rania
Risks 2025, 13(8), 147; https://doi.org/10.3390/risks13080147 - 4 Aug 2025
Abstract
Population aging poses significant challenges to the sustainability of pension systems. This study presents an integrated methodological approach that uniquely combines actuarial life-cycle modeling with agent-based simulation to assess the potential of Reverse Mortgage Loans (RMLs) as a dual lever for enhancing retiree [...] Read more.
Population aging poses significant challenges to the sustainability of pension systems. This study presents an integrated methodological approach that uniquely combines actuarial life-cycle modeling with agent-based simulation to assess the potential of Reverse Mortgage Loans (RMLs) as a dual lever for enhancing retiree welfare and supporting pension system resilience under demographic and financial uncertainty. We explore Reverse Mortgage Loans (RMLs) as a potential financial instrument to support retirees while alleviating pressure on public pensions. Unlike prior research that treats individual decisions or policy outcomes in isolation, our hybrid model explicitly captures feedback loops between household-level behavior and system-wide financial stability. To test our hypothesis that RMLs can improve individual consumption outcomes and bolster systemic solvency, we develop a hybrid model combining actuarial techniques and agent-based simulations, incorporating stochastic housing prices, longevity risk, regulatory capital requirements, and demographic shifts. This dual-framework enables a structured investigation of how micro-level financial decisions propagate through market dynamics, influencing solvency, pricing, and adoption trends. Our central hypothesis is that reverse mortgages, when actuarially calibrated and macroprudentially regulated, enhance individual financial well-being while preserving long-run solvency at the system level. Simulation results indicate that RMLs can improve consumption smoothing, raise expected utility for retirees, and contribute to long-term fiscal sustainability. Moreover, we introduce a dynamic regulatory mechanism that adjusts capital buffers based on evolving market and demographic conditions, enhancing system resilience. Our simulation design supports multi-scenario testing of financial robustness and policy outcomes, providing a transparent tool for stress-testing RML adoption at scale. These findings suggest that, when well-regulated, RMLs can serve as a viable supplement to traditional retirement financing. Rather than offering prescriptive guidance, this framework provides insights to policymakers, financial institutions, and regulators seeking to integrate RMLs into broader pension strategies. Full article
Show Figures

Figure 1

16 pages, 2403 KiB  
Article
Optimization Design of the Two-Stage Reduction Micro-Drive Mechanism Based on Particle Swarm Algorithm
by Na Zhang, Dongmei Wang, Kai Li, Kaiyang Wei, Hongyu Ge and Manzhi Yang
Micromachines 2025, 16(7), 826; https://doi.org/10.3390/mi16070826 - 19 Jul 2025
Viewed by 214
Abstract
Achieving high-precision positioning operations in a small space was of great significance in aerospace, biomedical, and other fields. In order to obtain smaller displacements with higher accuracy, this paper focused on the design, optimization, and performance analysis of a two-stage reduction micro-drive mechanism. [...] Read more.
Achieving high-precision positioning operations in a small space was of great significance in aerospace, biomedical, and other fields. In order to obtain smaller displacements with higher accuracy, this paper focused on the design, optimization, and performance analysis of a two-stage reduction micro-drive mechanism. Using the principle of lever and the principle of balanced additional force, a two-stage reduction micro-motion mechanism without parasitic motion and non-motion directional force was designed, and the structure optimization of the mechanism was completed by employing the particle swarm algorithm. A finite element analysis was conducted to assess the strength, dynamics, and kinematic properties of the mechanism. Experimental methods were also employed to analyze its dynamic and kinematic properties. The analysis results demonstrated that the mechanism met the design requirements in terms of strength and dynamic properties, with a maximum error of 9.02% and a maximum kinematic error of 0.0267 μm. The achieved reduction ratio was 24.73:1. These results indicated that the mechanism possesses excellent strength and dynamic performance, a large reduction ratio, high motion accuracy, and good linearity. This paper contributes significantly to the advancement of research in precision mechanical motion and micro-drive mechanisms. Full article
(This article belongs to the Special Issue Advanced Manufacturing Technology and Systems, 3rd Edition)
Show Figures

Figure 1

27 pages, 11054 KiB  
Article
Preliminary Design and Simulation Analysis of a Novel Large-Stroke 3-DOF Parallel Micro-Positioning Platform
by Chunyu Li and Shengzheng Kang
Machines 2025, 13(5), 404; https://doi.org/10.3390/machines13050404 - 12 May 2025
Viewed by 434
Abstract
Due to the various application scenarios of micro-positioning platforms, designing the structure of a micro-positioning platform that accommodates performance specifications for specific real-world applications presents significant challenges. Piezoelectric actuators, known for their high-precision driving capabilities, are widely used in micro-positioning platforms. However, their [...] Read more.
Due to the various application scenarios of micro-positioning platforms, designing the structure of a micro-positioning platform that accommodates performance specifications for specific real-world applications presents significant challenges. Piezoelectric actuators, known for their high-precision driving capabilities, are widely used in micro-positioning platforms. However, their limited output displacement restricts the platform’s operational workspace. To simplify the complexity of traditional coarse–fine composite systems and avoid the interference and cost burden introduced by coarse adjustment systems, a novel large-range parallel micro-positioning platform is proposed in this paper. Through a modular configuration, lever-type, Z-shaped, and L-shaped three-stage amplification mechanisms are connected in series to achieve large-stroke motion with three degrees of freedom (DOFs), effectively compensating for the limited output displacement of the piezoelectric actuators. The structure employs three symmetric support branches in parallel to the end-effector, significantly enhancing the system’s structural symmetry, thereby improving the stability and precision of the operation. Furthermore, based on the pseudo-rigid-body model theory and the Lagrangian method, the kinematic and dynamic models of the micro-positioning platform are established. Finite element simulations are conducted to validate performance parameters such as the single-branch amplification ratio, parallel amplification ratio, and natural frequency. In addition, the platform’s operational workspace is also calculated and analyzed. The results indicate that the designed micro-positioning platform achieves a high amplification ratio of 17.5, with output motions approximately decoupled (coupling ratio less than 1.25%) in each DOF, and the operational workspace is significantly improved. Full article
(This article belongs to the Special Issue Optimization and Design of Compliant Mechanisms)
Show Figures

Figure 1

25 pages, 11322 KiB  
Article
A Triboelectric Nanogenerator Utilizing a Crank-Rocker Mechanism Combined with a Spring Cantilever Structure for Efficient Energy Harvesting and Self-Powered Sensing Applications
by Xinhua Wang, Xiangjie Xu, Tao Sun and Gefan Yin
Electronics 2024, 13(24), 5032; https://doi.org/10.3390/electronics13245032 - 21 Dec 2024
Cited by 1 | Viewed by 853
Abstract
With the advancement of industrial automation, vibrational energy generated by machinery during operation is often underutilized. Developing efficient devices for vibration energy harvesting is thus essential. Triboelectric nanogenerators (TENGs) based on spring and cantilever beam structures show considerable potential for industrial vibration energy [...] Read more.
With the advancement of industrial automation, vibrational energy generated by machinery during operation is often underutilized. Developing efficient devices for vibration energy harvesting is thus essential. Triboelectric nanogenerators (TENGs) based on spring and cantilever beam structures show considerable potential for industrial vibration energy harvesting; however, traditional designs often fail to fully harness vibrational energy due to their structural limitations. This study proposes a triboelectric nanogenerator (TENG) based on a crank-rocker mechanism and a spring cantilever structure (CR-SC TENG), which combines a crank-rocker mechanism with a spring cantilever structure, designed for both energy harvesting and self-powered sensing. The CR-SC TENG incorporates a spring cantilever beam, a crank-rocker mechanism, and lever amplification principles, enabling it to respond sensitively to low-frequency, small-amplitude vibrations. Utilizing the crank-rocker and lever effects, this device significantly amplifies micro-amplitudes, enhancing energy capture efficiency and making it well suited for low-amplitude, complex industrial environments. Experimental results demonstrate that this design effectively amplifies micro-vibrations and markedly improves energy conversion efficiency within a frequency range of 1–35 Hz and an amplitude range of 1–3 mm. As a sensor, the CR-SC TENG’s dual-generation units produce output signals that precisely reflect vibration frequencies, making it suitable for the intelligent monitoring of industrial equipment. When placed on an air compressor operating at 25 Hz, the first-generation unit achieved an output voltage of 150 V and a current of 8 μA, while the second-generation unit produced an output voltage of 60 V and a current of 5 μA. These findings suggest that the CR-SC TENG, leveraging spring cantilever beams, crank-rocker mechanisms, and lever amplification, has significant potential for micro-amplitude energy harvesting and could play a key role in smart manufacturing, intelligent factories, and the Internet of Things. Full article
Show Figures

Figure 1

32 pages, 13377 KiB  
Article
Research on Output Characteristics of a Non-Contact Piezoelectric Actuator’s Micro-Displacement Amplifying Mechanism
by Huaiyong Li, Dongya Zhang, Yusheng Lin, Zhong Chen, Zhiwei Shi, Chong Li and Liang Zhao
Actuators 2024, 13(8), 309; https://doi.org/10.3390/act13080309 - 10 Aug 2024
Viewed by 1422
Abstract
A non-contact piezoelectric actuator is proposed. The non-contact power transfer between stator and rotor is realized by pneumatic transmission, characterized by fast response, long life, compact structure, and easy miniaturization and control. The structure of the non-contact piezoelectric actuator is designed and its [...] Read more.
A non-contact piezoelectric actuator is proposed. The non-contact power transfer between stator and rotor is realized by pneumatic transmission, characterized by fast response, long life, compact structure, and easy miniaturization and control. The structure of the non-contact piezoelectric actuator is designed and its working principle is elucidated. The equation of the relationship between the output displacements of the non-contact piezoelectric actuator’s micro-displacement amplifying mechanism and the input displacements of piezoelectric stack is deduced, and the simulation analysis method of output displacement of the micro-displacement amplifying mechanism is established. Using the equation and the simulation analysis, the output characteristics of micro-displacement amplifying mechanism for the non-contact piezoelectric actuator and their changes along with the system parameters are investigated. The detailed process of optimal design of the micro-displacement amplifying mechanism is given by means of mathematical statistics. The prototype is made and the performance test is carried out. The correctness of the theoretical calculation and simulation analysis is verified by comparing the experimental values with the theoretical and simulated values of the output displacement of the micro-displacement amplifying mechanism. The results show that the initial angle of bridge structure I has an obvious effect on the output characteristics of the micro-displacement amplifying mechanism in the range of 5°–15°. When the lever’s rod length is 13 mm–15 mm, the bridge structure II’s rod length is 6 mm–7 mm, and the power arm length of bridge structure I’s driving lever is 5 mm–7 mm, the bridge structure II’s rod horizontal projection length is 5 mm–6 mm and the output displacement of the micro-displacement amplifying mechanism is larger. Through the optimal design, it is obtained that the bridge structure I’s initial angle is 8°, the lever’s rod length is 15 mm, the bridge structure II’s rod length is 7 mm, and the power arm length of bridge structure I driving lever is 5 mm, the bridge structure II’s rod horizontal projection length is 6 mm, and the simulated output displacement of the micro-displacement amplifying mechanism is 0.1415 mm. The prototype test reveals that as the input excitation displacement decreases, the error increases, while as the input excitation displacement increases, the error decreases. Specifically, when the input excitation displacement is 0.005 mm, the measured output displacement of the micro-displacement amplifying mechanism is 0.1239 mm, resulting in a 19.8% deviation from the theoretical value and a 12.44% deviation from the simulated value. The research work in this paper enriches the research achievements of non-contact piezoelectric actuators, and also provides a reference for designing small structure and large travel micro-displacement amplifying mechanisms of this type of actuator. Full article
(This article belongs to the Special Issue Piezoelectric Actuators in MEMS)
Show Figures

Figure 1

17 pages, 14700 KiB  
Article
Design of a Novel Three-Degree-of-Freedom Piezoelectric-Driven Micro-Positioning Platform with Compact Structure
by Chuan Zhao, Zhenlong Li, Fangchao Xu, Hongkui Zhang, Feng Sun, Junjie Jin, Xiaoyou Zhang and Lijian Yang
Actuators 2024, 13(7), 248; https://doi.org/10.3390/act13070248 - 28 Jun 2024
Cited by 4 | Viewed by 1612
Abstract
In this paper, a novel three-degree-of-freedom piezoelectric-driven micro-positioning platform based on a lever combination compound bridge-type displacement amplification mechanism is proposed. The micro-positioning platform proposed in this paper aims to solve the current problem of the large size and small travel of the [...] Read more.
In this paper, a novel three-degree-of-freedom piezoelectric-driven micro-positioning platform based on a lever combination compound bridge-type displacement amplification mechanism is proposed. The micro-positioning platform proposed in this paper aims to solve the current problem of the large size and small travel of the three-degree-of-freedom piezoelectric-driven micro-positioning platform. In this paper, a lever combination compound bridge-type displacement amplification mechanism combined with a new biaxial flexible hinge is proposed, the structural dimensions of the lever mechanism and the compound bridge mechanism are optimized, and the amplification multiplier is determined. The maximum output simulation analysis of the micro-positioning platform is carried out by using ANSYS, and the experimental test system is built for verification. The validation results show that the maximum errors between simulation and experiment in the z-direction, rotation direction around x, and rotation direction around y are 64 μm, 0.016°, and 0.038°, respectively, and the corresponding maximum relative errors are 5.6%, 2.4%, and 6.6%, respectively, which proves the feasibility of the theoretical design. Full article
(This article belongs to the Section Precision Actuators)
Show Figures

Figure 1

20 pages, 9156 KiB  
Article
Design and Testing of a Compliant ZTTΘ Positional Adjustment System with Hybrid Amplification
by Zhishen Liao, Zhihang Lin, Hui Tang, Bo Liu and Yingjie Jia
Micromachines 2024, 15(5), 608; https://doi.org/10.3390/mi15050608 - 30 Apr 2024
Cited by 2 | Viewed by 1631
Abstract
This article presents the design, analysis, and prototype testing of a four-degrees-of-freedom (4-DoFs) spatial pose adjustment system (SPAS) that achieves high-precision positioning with 4-DoFs (Z/Tip/Tilt/Θ). The system employs a piezoelectric-driven amplification mechanism that combines a bridge lever hybrid amplification mechanism, a [...] Read more.
This article presents the design, analysis, and prototype testing of a four-degrees-of-freedom (4-DoFs) spatial pose adjustment system (SPAS) that achieves high-precision positioning with 4-DoFs (Z/Tip/Tilt/Θ). The system employs a piezoelectric-driven amplification mechanism that combines a bridge lever hybrid amplification mechanism, a double four-bar guide mechanism, and a multi-level lever symmetric rotation mechanism. By integrating these mechanisms, the system achieves low coupling, high stiffness, and wide stroke range. Analytical modeling and finite element analysis are employed to optimize geometric parameters. A prototype is fabricated, and its performance is verified through testing. The results indicate that the Z-direction feed microstroke is 327.37 μm, the yaw motion angle around the X and Y axes is 3.462 mrad, and the rotation motion angle around the Z axis is 12.684 mrad. The x-axis and y-axis motion magnification ratio can reach 7.43. Closed-loop decoupling control experiments for multiple-input-multiple-outputs (MIMO) systems using inverse kinematics and proportional-integral-derivative feedback controllers were conducted. The results show that the Z-direction positioning accuracy is ±100 nm, the X and Y axis yaw motion accuracy is ±2 μrad, and the Z-axis rotation accuracy is ±25 μrad. Due to the ZTTΘ mechanism, the design proved to be feasible and advantageous, demonstrating its potential for precision machining and micro-nano manipulation. Full article
Show Figures

Figure 1

17 pages, 5925 KiB  
Article
Design and Analysis of XY Large Travel Micro Stage Based on Secondary Symmetric Lever Amplification
by Tao Zhang, Liuguang Xiong, Zequan Pan, Chunhua Zhang, Wen Qu, Yuhang Wang and Chunmei Yang
Micromachines 2023, 14(9), 1805; https://doi.org/10.3390/mi14091805 - 21 Sep 2023
Cited by 7 | Viewed by 2034
Abstract
This study presents a newly developed piezoelectric drive mechanism for the purpose of designing, analyzing, and testing a micro-positioning platform driven by piezoelectric actuators. The platform incorporates a piezoelectric ceramic actuator and a flexible hinge drive and features a symmetrical two-stage lever (STSL) [...] Read more.
This study presents a newly developed piezoelectric drive mechanism for the purpose of designing, analyzing, and testing a micro-positioning platform driven by piezoelectric actuators. The platform incorporates a piezoelectric ceramic actuator and a flexible hinge drive and features a symmetrical two-stage lever (STSL) amplification mechanism and a parallelogram output structure. The implementation of this design has led to notable enhancements in the dynamic properties of the platform, thereby eliminating the undesired parasitic displacement of the mechanism. An analytical model describing the fully elastic deformation of the platform is established, which is further verified by finite element simulation. Finally, the static and dynamic performances of the platform are comprehensively evaluated through experiments. A closed-loop control strategy is adopted to eliminate the nonlinear hysteresis phenomenon of the piezoceramic actuator (PEA). The experimental results show that the piezoelectric micro-actuator platform has a motion range of 97.84 μm × 98.03 μm; the output coupling displacement error is less than 1%; the resolutions of the two axes are 8.1 nm and 8 nm, respectively; and the x-axis and y-axis trajectory tracking errors are both 0.6%. The piezoelectric micromotion platform has good dynamic properties, precision, and stability. The design has a wide application potential in the field of micro-positioning. Full article
(This article belongs to the Special Issue Micro- and Nano-Systems for Manipulation, Actuation and Sensing)
Show Figures

Figure 1

13 pages, 16268 KiB  
Article
Design and Development of a Hair-like Sensor with Bridge-Type Flexible Amplification Mechanisms
by Yongzhen Li, Pei Cao, Peng Zhang, Hua Yang, Xiaofeng Zhu and Ruihua Guo
Sensors 2023, 23(17), 7354; https://doi.org/10.3390/s23177354 - 23 Aug 2023
Cited by 3 | Viewed by 1429
Abstract
Compared with lever-type amplification mechanisms, bridge-type flexible amplification mechanisms have advantages in terms of amplification ratio and structural compactness. Therefore, they can effectively replace the lever-type amplification mechanism in the existing hair-like sensors and realize the development of miniature hair-like sensors with high [...] Read more.
Compared with lever-type amplification mechanisms, bridge-type flexible amplification mechanisms have advantages in terms of amplification ratio and structural compactness. Therefore, they can effectively replace the lever-type amplification mechanism in the existing hair-like sensors and realize the development of miniature hair-like sensors with high sensitivity. With that in mind, a highly sensitive hair-like sensor based on a bridge-type amplification mechanism with distributed flexibility is presented to measure the airflow rate. First, the structural composition and operating principle of the hair-like sensor are described. Then, detailed design and analysis of the hair-like sensor are carried out, focusing on the design of the hair post structure, amplification mechanism, and resonator. Furthermore, the designed hair-like sensor is processed and prepared, and some experimental studies are conducted. The experimental results demonstrate that the developed hair-like sensor can measure the airflow rate with high sensitivity up to 8.56 Hz/(m/s)2. This provides a new concept for the structural design of hair-like sensors and expands the application of bridge-type flexible amplification mechanisms in the field of micro/nano sensors. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

18 pages, 5281 KiB  
Article
How Good Is a Tactical-Grade GNSS + INS (MEMS and FOG) in a 20-m Bathymetric Survey?
by Johnson O. Oguntuase, Anand Hiroji and Peter Komolafe
Sensors 2023, 23(2), 754; https://doi.org/10.3390/s23020754 - 9 Jan 2023
Cited by 1 | Viewed by 3584
Abstract
This paper examines how tactical-grade Inertial Navigation Systems (INS), aided by Global Navigation Satellite System (GNSS) modules, vary from a survey-grade system in the bathymetric mapping in depths less than 20 m. The motivation stems from the advancements in sensor developments, measurement processing [...] Read more.
This paper examines how tactical-grade Inertial Navigation Systems (INS), aided by Global Navigation Satellite System (GNSS) modules, vary from a survey-grade system in the bathymetric mapping in depths less than 20 m. The motivation stems from the advancements in sensor developments, measurement processing algorithms, and the proliferation of autonomous and uncrewed surface vehicles often seeking to use tactical-grade systems for high-quality bathymetric products. While the performance of survey-grade GNSS + INS is well-known to the hydrographic and marine science community, the performance and limitations of the tactical-grade micro-electro-mechanical system (MEMS) and tactical-grade fiber-optic-gyro (FOG) INS aided with GNSS require some study to answer the following questions: (1) How close or far is the tactical-grade GNSS + INS performance from the survey-grade systems? (2) For what survey order (IHO S-44 6th ed.) can a user deploy them? (3) Can we use them for navigation chart production? We attempt to answer these questions by deploying two tactical-grade GNSS + INS units (MEMS and FOG) and a survey-grade GNSS + INS on a survey boat. All systems collected data while operating a multibeam system with the lever-arm offsets accurately determined using a total station. The tactical-grade GNSS + INSs shared one pair of antennas for heading, while the survey-grade system used an independent antenna pair. We analyze the GNSS + INS results in sequence, examine the patch-test results, and the sensor-specific SBET-integrated bathymetric surfaces as metrics for determining the tactical-grade GNSS + INSs’ reliability. In addition, we evaluate the multibeam’s sounding uncertainties at different beam angles. The bathymetric surfaces using the tactical-grade navigation solutions are within 15 cm of the surface generated with the survey-grade solutions. Full article
(This article belongs to the Special Issue Hydrographic Systems and Sensors)
Show Figures

Figure 1

28 pages, 12489 KiB  
Article
Precision Low-Cost Compact Micro-Displacement Sensors Based on a New Arrangement of Cascaded Levers with Flexural Joints
by Che-Chih Tsao, Yi-Chun Tseng, Yu-Sheng Chen, Wei-Hsuan Chang and Li-Ting Huo
Sensors 2023, 23(1), 326; https://doi.org/10.3390/s23010326 - 28 Dec 2022
Cited by 5 | Viewed by 4075
Abstract
Existing displacement sensors of micrometers to sub-micron precision are expensive and have various limitations. This paper reports the design and development of a new contact type compact micro-displacement sensor of sub-micron precision for a fraction of the cost of commercial devices. The basic [...] Read more.
Existing displacement sensors of micrometers to sub-micron precision are expensive and have various limitations. This paper reports the design and development of a new contact type compact micro-displacement sensor of sub-micron precision for a fraction of the cost of commercial devices. The basic concept of the new sensor system applies a mechanical magnifying mechanism to magnify a displacement at sub-micron to micron level and uses a low-cost Hall sensor to measure the magnified displacement. Various conceptual designs for the mechanical magnifying mechanism based on cascaded levers with flexural joints were studied and a final design, featuring side-by-side placement of lever structures in a multi-planar layout with adjacent levers coupled by L-shaped coupling foils, was devised. Prototypes of two different sizes and constructions with mechanical magnification ratios over 100 were made and tested. Measurement repeatability and accuracy to sub-micrometer level and a resolution down to hundredths of a micrometer were demonstrated by a compact Alpha Model prototype. Design modification of parts and a corresponding small lot size production procedure were devised to provide an estimated bill of material cost per unit under US$100. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

27 pages, 10967 KiB  
Article
Parametric Study and Experimental Investigations of a Single Crank–Slotted Dual Lever Mechanism for MAV Flapping Actuation
by Spoorthi Singh, Aravind Karthik Muralidharan, Jayakrishnan Radhakrishnan, Mohammad Zuber, Adi Azriff Basri, Norkhairunnisa Mazlan, Mohd Nizar Hamidon and Kamarul Arifin Ahmad
Biomimetics 2022, 7(4), 208; https://doi.org/10.3390/biomimetics7040208 - 21 Nov 2022
Cited by 5 | Viewed by 4615
Abstract
Insect RoboFlyers are interesting and active focuses of study but producing high-quality flapping robots that replicate insect flight is challenging., due to the dual requirement of both a sophisticated transmission mechanism with light weight and minimal intervening connections. This innovative mechanism was created [...] Read more.
Insect RoboFlyers are interesting and active focuses of study but producing high-quality flapping robots that replicate insect flight is challenging., due to the dual requirement of both a sophisticated transmission mechanism with light weight and minimal intervening connections. This innovative mechanism was created to address the need for a producible structure that is small in size, small in mass, and has reduced design linkages. The proposed Single Crank-Slotted Dual Lever (SC-SDL) mechanism transforms rotational motion into specific angular motion at different velocities for each of its two strokes, i.e., the forward stroke and the return stroke. The discovery of a lag between the left and right lever motions in our design mechanism-I leads us to the conclusion that the flapping is asymmetric. To eliminate the position lag, the design has been altered, and a new design mechanism-II has been developed. Comparative kinematic analysis of both design systems is performed using simulations. Two-dimensional analysis of the base ornithopter configuration using ANSYS FLUENT yielded deeper insights regarding the influence of varying flapping frequency on critical flow metrics regarding adequate lift and thrust. For a flapping frequency of 24 Hz, adequate lift generation was achieved with minimal flow disturbances and wake interactions. Averaged dual wing estimations were made as part of the CFD study, which showed similar agreements. To validate the estimations, experimental tests were performed over the design mechanism-II configuration. Full article
(This article belongs to the Section Biomimetic Design, Constructions and Devices)
Show Figures

Figure 1

16 pages, 4867 KiB  
Article
Design and Performance Research of a Precision Micro-Drive Reduction System without Additional Motion
by Manzhi Yang, Xiaodong Zhang, Chuanwei Zhang, Hongzhang Wu and Yizhi Yang
Micromachines 2022, 13(10), 1636; https://doi.org/10.3390/mi13101636 - 29 Sep 2022
Cited by 8 | Viewed by 2129
Abstract
A micro-drive system is a key part of macro-micro-drive technology and precision positioning technology in which a micro-drive reduction system can provide more precise motion and suitable small space motion. Therefore, it is necessary to study precision micro-drive reduction systems. In this paper, [...] Read more.
A micro-drive system is a key part of macro-micro-drive technology and precision positioning technology in which a micro-drive reduction system can provide more precise motion and suitable small space motion. Therefore, it is necessary to study precision micro-drive reduction systems. In this paper, based on the design of a micro-drive reduction mechanism without force and displacement in non-motion direction, a precision micro-drive reduction system driven by a piezoelectric ceramic actuator (PZT) was designed, and the strength, dynamic and motion performance of the system was analyzed. First, based on the principle of a flexure hinge lever and the principle of balanced additional force, a type of precision micro-drive reduction mechanism with an adjustable reduction ratio was designed. Second, the strength performance of the system was analyzed by finite element analysis, and the dynamic performance of the system was analyzed by finite element analysis and experiments. Finally, the kinematic performance of the system was analyzed by theoretical analysis, the finite element method and experiment, and the motion linear equation was calculated based on the linear fitting equations of three methods. The study results showed that the system had good strength and dynamic performances, and the system’s motion had the advantages of high precision and good linearity. This research has certain reference value for the design and performance research of micro-drive mechanisms. Full article
(This article belongs to the Special Issue Ultra-Precision Manufacturing Technology)
Show Figures

Figure 1

15 pages, 3874 KiB  
Article
Utilizing the Intrinsic Mode of Weakly Coupled Resonators for Temperature Compensation
by Kunfeng Wang, Xingyin Xiong, Zheng Wang, Pengcheng Cai, Liangbo Ma and Xudong Zou
Micromachines 2022, 13(9), 1447; https://doi.org/10.3390/mi13091447 - 1 Sep 2022
Cited by 2 | Viewed by 1930
Abstract
Accelerometers based on outputting amplitude ratios in weakly coupled resonators (WCRs) are attractive because their parametric sensitivity is higher by two or three orders of magnitudes than those based on outputting frequency. However, the impact of temperature on the coupler is a key [...] Read more.
Accelerometers based on outputting amplitude ratios in weakly coupled resonators (WCRs) are attractive because their parametric sensitivity is higher by two or three orders of magnitudes than those based on outputting frequency. However, the impact of temperature on the coupler is a key factor in accelerometer applications. This paper proposed a novel mode-localized WCR accelerometer with a temperature compensation mechanism, with sensitive elements incorporating a double-ended tuning fork (DETF) resonator, clamped–clamped (CC) resonator, and a micro-lever coupler. The DETF out-of-phase mode is utilized, which is only sensitive to temperature, to measure the temperature change of WCRs and complete the temperature compensation using the compensation algorithm. This proposed method has no time delay in measuring the temperature of sensitive elements and no temperature difference caused by the uneven temperature field. The parametric sensitivity in amplitude ratio (AR) to acceleration drifting with temperature was theoretically analyzed, and the novel device was designed and fabricated by a silicon-on-glass process. Both simulation and experiment results demonstrated that the coupling stiffness drifted with temperature, which resulted in the drifts of its sensitivity to acceleration and zero-bias stability. Using the intrinsic mode of WCRs, in terms of the DETF out-of-phase mode, as an in situ thermometer and carrying out the temperature compensation algorithm, the drift of zero bias could be suppressed from 102 mg to 4.5 mg (g is the gravity acceleration), and the drift of the parameter sensitivity in AR was suppressed from 0.74 AR/g to 0.02 AR/g with the temperature range from 330 K to 370 K and acceleration range from 0 g to 0.2 g. Full article
(This article belongs to the Special Issue MEMS Inertial Sensors)
Show Figures

Figure 1

20 pages, 3054 KiB  
Article
Dynamical Design and Gain Performance Analysis of a 3-DoF Micro-Gyro with an Anchored Leverage Mechanism
by Kunpeng Zhang, Sai Wang, Shuying Hao, Qichang Zhang and Jingjing Feng
Micromachines 2022, 13(8), 1201; https://doi.org/10.3390/mi13081201 - 28 Jul 2022
Cited by 3 | Viewed by 1704
Abstract
In this paper, we apply the leverage amplification principle to improve the gain of a three-degrees-of-freedom (3-DoF) micro-gyro. The gain of the micro-gyro can be improved by designing linear and nonlinear micro-gyros with an anchored lever mechanism (ALM). First, the sensor system of [...] Read more.
In this paper, we apply the leverage amplification principle to improve the gain of a three-degrees-of-freedom (3-DoF) micro-gyro. The gain of the micro-gyro can be improved by designing linear and nonlinear micro-gyros with an anchored lever mechanism (ALM). First, the sensor system of the micro-gyro is designed as a complete 2-DOF system with an ALM. The effect of the leverage rate (LR) on the mass ratio and frequency coupling parameter (FCP) of the complete 2-DOF sense system is studied. We analyze the variation rule of the gain of the lever’s input and output as the LR increases. Afterwards, the bandwidth and gain performance of linear and nonlinear micro-gyros with an ALM is investigated by applying the arbitrarily tunable characteristics of peak spacing of the complete 2-DOF system. The influence of LR, FCP, nonlinear strength, damping, and peak spacing on bandwidth and gain of the 3-DOF micro-gyro is analyzed. The results indicate that both LR and FCP have a large effect on the gain and bandwidth of a micro-gyro with an ALM. The LR parameter mainly improves the gain of the micro-gyro, and the FCP parameter mainly adjusts the bandwidth performance. Adding levers can effectively improve the gain performance of the linear micro-gyro. The linear micro-gyro with an ALM can improve the gain by 4.5 dB compared to the one without an ALM. The nonlinear micro-gyro with an ALM combines two characteristics: the nonlinear micro-gyro can improve the bandwidth, while the lever structure can improve the gain. Compared with the linear micro-gyro without an ALM, the gain can be increased by 17.6 dB, and the bandwidth can be improved as well. In addition, the bandwidth of a micro-gyro with an ALM is related to the gain difference between the peaks of the lever output. The increase in the gain difference leads to a flattening of the left peak, which effectively broadens the bandwidth. For nonlinear micro-gyros with an ALM, the bandwidth can be further improved by increasing the nonlinear stiffness coefficient, and better gain and bandwidth can be obtained using a vacuum package. Full article
(This article belongs to the Special Issue Feature Papers of Micromachines in Engineering and Technology 2022)
Show Figures

Figure 1

Back to TopTop