Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (58)

Search Parameters:
Keywords = micro saw

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 8548 KB  
Article
Study on the Motion Trajectory of Abrasives and Surface Improvement Mechanism in Ultrasonic-Assisted Diamond Wire Sawing Monocrystalline Silicon
by Honghao Li, Yufei Gao, Shengtan Hu and Zhipu Huo
Micromachines 2025, 16(6), 708; https://doi.org/10.3390/mi16060708 - 13 Jun 2025
Viewed by 475
Abstract
The surface quality of diamond wire sawing (DWS) wafers directly affects the efficiency and yield of subsequent processing steps. This paper investigates the motion trajectory of abrasives in ultrasonic-assisted diamond wire sawing (UADWS) and its mechanism for improving surface quality. The influence of [...] Read more.
The surface quality of diamond wire sawing (DWS) wafers directly affects the efficiency and yield of subsequent processing steps. This paper investigates the motion trajectory of abrasives in ultrasonic-assisted diamond wire sawing (UADWS) and its mechanism for improving surface quality. The influence of ultrasonic vibration on the cutting arc length, cutting depth, and interference of multi-abrasive trajectories was analyzed through the establishment of an abrasive motion trajectory model. The ultrasonic vibration transforms the abrasive trajectory from linear to sinusoidal, thereby increasing the cutting arc length while reducing the cutting depth. A lower wire speed was found to be more conducive to exploiting the advantages of ultrasonic vibration. Furthermore, the intersecting interference of multi-abrasive trajectories contributes to enhanced surface quality. Experimental studies were conducted on monocrystalline silicon (mono-Si) to verify the effectiveness of ultrasonic vibration in improving surface morphology and reducing wire marks during the sawing process. The experimental results demonstrate that, compared with DWS, UADWS achieves a significantly lower surface roughness Ra and generates micro-pits. The ultrasonic vibration induces a micro-grinding effect on both peaks and valleys of wire marks, effectively reducing their peak–valley (PV) height. This study provides a theoretical basis for optimizing UADWS process parameters and holds significant implications for improving surface quality in mono-Si wafer slicing. Full article
(This article belongs to the Section D:Materials and Processing)
Show Figures

Figure 1

26 pages, 1879 KB  
Review
Enhanced Micromixing Using Surface Acoustic Wave Devices: Fundamentals, Designs, and Applications
by Jin-Chen Hsu
Micromachines 2025, 16(6), 619; https://doi.org/10.3390/mi16060619 - 25 May 2025
Cited by 1 | Viewed by 1135
Abstract
Microfluidics-based mixing methods have attracted increasing attention due to their great potential in bio-related and material science fields. The combination of acoustics and microfluidics, called acoustofluidics, has been shown to be a promising tool for precise manipulation of microfluids and micro-objects. In general, [...] Read more.
Microfluidics-based mixing methods have attracted increasing attention due to their great potential in bio-related and material science fields. The combination of acoustics and microfluidics, called acoustofluidics, has been shown to be a promising tool for precise manipulation of microfluids and micro-objects. In general, achieving robust mixing performance in an efficient and simple manner is crucial for microfluidics-based on-chip devices. When surface acoustic waves (SAWs) are introduced into microfluidic devices, the acoustic field can drive highly controllable acoustic streaming flows through acoustofluidic interactions with micro-solid structures, which have the advantages of label-free operation, flexible control, contactless force, fast-response kinetics, and good biocompatibility. Therefore, the design and application of various SAW micromixers have been demonstrated. Herein, we present a comprehensive overview of the latest research and development of SAW-based micromixers. Specifically, we discuss the design principles and underlying physics of SAW-based acoustic micromixing, summarize the distinct types of existing SAW micromixers, and highlight established applications of SAW micromixing technology in chemical synthesis, nanoparticle fabrication, cell culture, biochemical analysis, and cell lysis. Finally, we present current challenges and some perspectives to motivate further research in this area. The purpose of this work is to provide an in-depth understanding of SAW micromixers and inspire readers who are interested in making some innovations in this research field. Full article
(This article belongs to the Special Issue Novel Surface and Bulk Acoustic Wave Devices)
Show Figures

Graphical abstract

12 pages, 6811 KB  
Article
The Fabrication and Characterization of Surface-Acoustic-Wave and Resistive Types of Ozone Sensors Based on Zinc Oxide: A Comparative Study
by Sheng-Hua Yan and Chia-Yen Lee
Sensors 2025, 25(9), 2723; https://doi.org/10.3390/s25092723 - 25 Apr 2025
Viewed by 2566
Abstract
Micro-Electro-Mechanical System (MEMS) technology is employed to fabricate surface acoustic wave (SAW)-type and resistive-type ozone sensors on quartz glass (SiO2) substrates. The fabrication process commences by using a photolithography technique to define interdigitated electrodes (IDEs) on the substrates. Electron-beam evaporation (EBE) [...] Read more.
Micro-Electro-Mechanical System (MEMS) technology is employed to fabricate surface acoustic wave (SAW)-type and resistive-type ozone sensors on quartz glass (SiO2) substrates. The fabrication process commences by using a photolithography technique to define interdigitated electrodes (IDEs) on the substrates. Electron-beam evaporation (EBE) followed by radio frequency (RF) magnetron sputtering is then used to deposit platinum (Pt) and chromium (Cr) electrode layers as well as a zinc oxide (ZnO) sensing layer, respectively. Finally, annealing is performed to improve the crystallinity and sensing performance of the ZnO films. The experimental results reveal that the ZnO thin films provide an excellent ozone-concentration sensing capability in both sensors. The SAW-type sensor demonstrates a peak sensitivity at a frequency of 200 kHz, with a rapid response time of just 35 s. Thus, it is suitable for applications requiring a quick response and high sensitivity, such as real-time monitoring and high-precision environmental detection. The resistive-type sensor shows optimal sensitivity at a relatively low operating temperature of 180 °C, but has a longer response time of approximately 103 s. Therefore, it is better suited for low-cost and large-scale applications such as industrial-gas-concentration monitoring. Full article
(This article belongs to the Special Issue Advanced Sensors for Gas Monitoring)
Show Figures

Figure 1

14 pages, 2650 KB  
Article
A2-Mode Lamb Passive-Wireless Surface-Acoustic-Wave Micro-Pressure Sensor Based on Cantilever Beam Structure
by Zhuoyue Duan, Tao Wang, Wei Ji, Lihui Feng, Peng Yin, Jihua Lu and Litong Yin
Sensors 2025, 25(6), 1873; https://doi.org/10.3390/s25061873 - 18 Mar 2025
Cited by 1 | Viewed by 2601
Abstract
Passive-wireless surface-acoustic-wave (SAW) micro-pressure sensors are suitable for extreme scenarios where wired sensors are not applicable. However, as the measured pressure decreases, conventional SAW micro-pressure sensors struggle to meet expected performance due to insufficient sensitivity. This article proposes a a method of using [...] Read more.
Passive-wireless surface-acoustic-wave (SAW) micro-pressure sensors are suitable for extreme scenarios where wired sensors are not applicable. However, as the measured pressure decreases, conventional SAW micro-pressure sensors struggle to meet expected performance due to insufficient sensitivity. This article proposes a a method of using an A2-mode Lamb SAW sensor and introduces an inertial structure in the form of a cantilever beam to enhance sensitivity. An MEMS-compatible manufacturing process was employed to create a multi-layer structure of SiO2, AlN, and SOI for the SAW micro-pressure sensor. To investigate the operational performance of the SAW micro-pressure sensor, a micro-pressure testing system was established. The experimental results demonstrate that the sensor exhibits high sensitivity to micro-pressure, validating the effectiveness of the proposed design. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

27 pages, 2758 KB  
Review
A Review of SAW-Based Micro- and Nanoparticle Manipulation in Microfluidics
by Débora Amorim, Patrícia C. Sousa, Carlos Abreu and Susana O. Catarino
Sensors 2025, 25(5), 1577; https://doi.org/10.3390/s25051577 - 4 Mar 2025
Cited by 4 | Viewed by 2552
Abstract
Surface acoustic wave (SAW)-based microfluidics has emerged as a promising technology for precisely manipulating particles and cells at the micro- and nanoscales. Acoustofluidic devices offer advantages such as low energy consumption, high throughput, and label-free operation, making them suitable for particle manipulation tasks [...] Read more.
Surface acoustic wave (SAW)-based microfluidics has emerged as a promising technology for precisely manipulating particles and cells at the micro- and nanoscales. Acoustofluidic devices offer advantages such as low energy consumption, high throughput, and label-free operation, making them suitable for particle manipulation tasks including pumping, mixing, sorting, and separation. In this review, we provide an overview and discussion of recent advancements in SAW-based microfluidic devices for micro- and nanoparticle manipulation. Through a thorough investigation of the literature, we explore interdigitated transducer designs, materials, fabrication techniques, microfluidic channel properties, and SAW operational modes of acoustofluidic devices. SAW-based actuators are mainly based on lithium niobate piezoelectric transducers, with a plethora of wavelengths, microfluidic dimensions, and transducer configurations, applied for different fluid manipulation methods: mixing, sorting, and separation. We observed the accuracy of particle sorting across different size ranges and discussed different alternative device configurations to enhance sensitivity. Additionally, the collected data show the successful implementation of SAW devices in real-world applications in medical diagnostics and environmental monitoring. By critically analyzing different approaches, we identified common trends, challenges, and potential areas for improvement in SAW-based microfluidics. Furthermore, we discuss the current state-of-the-art and opportunities for further research and development in this field. Full article
Show Figures

Figure 1

28 pages, 2193 KB  
Review
Recent Advances in SAW Sensors for Detection of Cancer Biomarkers
by Manuel Aleixandre and Mari Carmen Horrillo
Biosensors 2025, 15(2), 88; https://doi.org/10.3390/bios15020088 - 5 Feb 2025
Cited by 9 | Viewed by 3403
Abstract
Surface acoustic wave (SAW) sensor technology is a promising approach to diagnosing cancer through the detection of cancer biomarkers due to its high sensitivity, potential label-free operation, and fast response times, and, fundamentally, because it is a non-invasive technique in comparison with the [...] Read more.
Surface acoustic wave (SAW) sensor technology is a promising approach to diagnosing cancer through the detection of cancer biomarkers due to its high sensitivity, potential label-free operation, and fast response times, and, fundamentally, because it is a non-invasive technique in comparison with the current traditional diagnostic techniques for cancer. This review focuses on this application, and for this purpose, the recent literature on cancer biomarkers detected by this advanced technology has been compiled, including that on volatile organic compounds (VOCs) from exhaled breath and larger biomolecules such as proteins, DNA, and microRNAs in body fluids, which demonstrates its great versatility. The conventional techniques for cancer biomarker detection in biofluids, such as ELISA, PCR, SPR, and UV absorbance, exhibit limitations including high costs, slow response times, a reduced sensitivity, the need for specialized instrumentation, and the requirement for highly trained personnel. Different SAW sensor configurations are discussed with attention paid to their specific properties, wave propagation modes, and suitability for different environments. Detailed studies are reviewed, highlighting biomarkers for lung, colorectal, prostate, breast, and ovarian cancer diagnostics, as well as the detection of circulating tumor cells and cancerous cell growth. This review identifies current challenges, including optimizing sensitivity, addressing environmental interferences, and the need for clinical validation. Finally, future research directions are proposed, emphasizing the use of VOC biomarkers and the integration of SAW technology into hybrid systems and microfluidic platforms to enable the creation of scalable, non-invasive diagnostic tools for the detection of cancer in early stages, and, in this way, to minimize the morbidity and mortality associated with this disease. Full article
(This article belongs to the Special Issue Innovative Strategies for Cancer Biosensing)
Show Figures

Graphical abstract

13 pages, 5460 KB  
Article
Effects of Tall Buildings on Visually Morphological Traits of Urban Trees
by Yongxin Xue, Jiheng Li, Xiaofan Nan, Chengyang Xu and Bingqian Ma
Forests 2024, 15(12), 2053; https://doi.org/10.3390/f15122053 - 21 Nov 2024
Cited by 3 | Viewed by 969
Abstract
The visual morphology of trees significantly impacts urban green micro-landscape aesthetics. Proximity to tall buildings affects tree form due to competition for space and light. The study investigates the impact of tall buildings on six visually morphological traits of eight common ornamental species [...] Read more.
The visual morphology of trees significantly impacts urban green micro-landscape aesthetics. Proximity to tall buildings affects tree form due to competition for space and light. The study investigates the impact of tall buildings on six visually morphological traits of eight common ornamental species in urban micro-landscapes in Beijing, with the distance and direction between trees and buildings as variables. It found that as trees grow closer to buildings, most angiosperms show increased crown asymmetry degree and crown loss, and reduced crown round degree and crown stretch degree (i.e., Sophora japonica L. and Acer truncatum Bunge saw a 52.26% and 47.62% increase in crown asymmetry degree, and a 20.35% and 21.59% decrease in crown round degree, respectively). However, the pattern of crown morphological changes in gymnosperms is poor (the closer the distance, the lower the height-to-diameter ratio of Pinus tabuliformis Carr., while the height-to-diameter ratio of Juniperus chinensis Roxb. significantly increases). In terms of orientation, gymnosperms on the west side of buildings have a greater crown asymmetry degree. It suggests that planting positions relative to buildings affect tree morphology. Recommendations include planting J. chinensis closer to buildings but keeping angiosperms like Fraxinus velutina Torr., S. japonica, and A. truncatum more than 3 m away to ensure healthy crown development. Full article
(This article belongs to the Special Issue Structure, Function, and Value of Urban Forest)
Show Figures

Figure 1

14 pages, 3656 KB  
Article
Isolation and Characterization of Exosomes from Cancer Cells Using Antibody-Functionalized Paddle Screw-Type Devices and Detection of Exosomal miRNA Using Piezoelectric Biosensor
by Su Bin Han and Soo Suk Lee
Sensors 2024, 24(16), 5399; https://doi.org/10.3390/s24165399 - 21 Aug 2024
Cited by 2 | Viewed by 2011
Abstract
Exosomes are small extracellular vesicles produced by almost all cell types in the human body, and exosomal microRNAs (miRNAs) are small non-coding RNA molecules that are known to serve as important biomarkers for diseases such as cancer. Given that the upregulation of miR-106b [...] Read more.
Exosomes are small extracellular vesicles produced by almost all cell types in the human body, and exosomal microRNAs (miRNAs) are small non-coding RNA molecules that are known to serve as important biomarkers for diseases such as cancer. Given that the upregulation of miR-106b is closely associated with several types of malignancies, the sensitive and accurate detection of miR-106b is important but difficult. In this study, a surface acoustic wave (SAW) biosensor was developed to detect miR-106b isolated from cancer cells based on immunoaffinity separation technique using our unique paddle screw device. Our novel SAW biosensor could detect a miR-106b concentration as low as 0.0034 pM in a linear range from 0.1 pM to 1.0 μM with a correlation coefficient of 0.997. Additionally, we were able to successfully detect miR-106b in total RNA extracted from the exosomes isolated from the MCF-7 cancer cell line, a model system for human breast cancer, with performance comparable to commercial RT-qPCR methods. Therefore, the exosome isolation by the paddle screw method and the miRNA detection using the SAW biosensor has the potential to be used in basic biological research and clinical diagnosis as an alternative to RT-qPCR. Full article
(This article belongs to the Special Issue Research Progress in Electrochemical Aptasensors and Biosensors)
Show Figures

Figure 1

12 pages, 33504 KB  
Article
Effects of Er,Cr:YSGG Laser Surface Treatments and Composites with Different Viscosities on the Repair Bond Strength of CAD/CAM Resin Nanoceramic
by Alperen Degirmenci and Beyza Unalan Degirmenci
Polymers 2024, 16(15), 2212; https://doi.org/10.3390/polym16152212 - 2 Aug 2024
Cited by 3 | Viewed by 2033
Abstract
This study aims to evaluate the repair micro-shear bond strength of the CAD/CAM resin nanoceramic block treated using four different surface treatments and composite resins of different viscosities. For the current study, 96 samples with dimensions of 14 × 12 × 2 mm [...] Read more.
This study aims to evaluate the repair micro-shear bond strength of the CAD/CAM resin nanoceramic block treated using four different surface treatments and composite resins of different viscosities. For the current study, 96 samples with dimensions of 14 × 12 × 2 mm were obtained from a CAD/CAM resin nanoceramic block (Cerasmart) with a low-speed precision cutting saw under water cooling. The relevant samples were randomly divided into four groups according to the surface treatment processes: grinding with diamond bur, aluminum oxide airborne-particle abrasion, long-pulse laser, and short-pulse laser. Following silane application, universal adhesive was applied to all surface-treated samples and cured with an LED for 10 s. The samples prepared for the repair procedure were divided into two subgroups (microhybrid composite and injectable composite) according to the viscosity of the repair material to be used (n = 12). After the repair procedure, care was taken to keep the samples in distilled water in an incubator at 37 °C for 24 h. The repair micro-shear bond strength values (μSBSs) of CAD/CAM resin nanoceramic-composite resin complexes were tested. In addition, randomly selected samples from each group were examined with a scanning electron microscope to evaluate the surface topography after both surface treatments and the micro-shear bond strength test. Data were analyzed by two-way ANOVA and Bonferroni test. It was determined that the surface treatment preferred in the repair protocol significantly affected the μSBS value (p < 0.001). While the highest μSBS value was obtained with the short-pulse laser airradiation group, the lowest μSBS values were found in samples with long pulse laser irradiation. However, samples grinded with a bur and airborne-particle abrasion showed similar μSBS values (p > 0.05). The preferred composite viscosity in the repair procedure has a significant effect on the μSBS value (p < 0.001). However, the interaction between the surface treatment and the viscosity of the repair composite does not affect the μSBS values in a statistically significant way (p = 0.193). It may be recommended to clinicians to repair CAD/CAM resin nanoceramic restoration surfaces with injectable composites or after treatment with short-pulse lasers. Full article
(This article belongs to the Special Issue Polymer Composites for Dental Applications)
Show Figures

Figure 1

12 pages, 2744 KB  
Article
Concentration of Microparticles/Cells Based on an Ultra-Fast Centrifuge Virtual Tunnel Driven by a Novel Lamb Wave Resonator Array
by Wei Wei, Zhaoxun Wang, Bingnan Wang, Wei Pang, Qingrui Yang and Xuexin Duan
Biosensors 2024, 14(6), 280; https://doi.org/10.3390/bios14060280 - 29 May 2024
Viewed by 1776
Abstract
The µTAS/LOC, a highly integrated microsystem, consolidates multiple bioanalytical functions within a single chip, enhancing efficiency and precision in bioanalysis and biomedical operations. Microfluidic centrifugation, a key component of LOC devices, enables rapid capture and enrichment of tiny objects in samples, improving sensitivity [...] Read more.
The µTAS/LOC, a highly integrated microsystem, consolidates multiple bioanalytical functions within a single chip, enhancing efficiency and precision in bioanalysis and biomedical operations. Microfluidic centrifugation, a key component of LOC devices, enables rapid capture and enrichment of tiny objects in samples, improving sensitivity and accuracy of detection and diagnosis. However, microfluidic systems face challenges due to viscosity dominance and difficulty in vortex formation. Acoustic-based centrifugation, particularly those using surface acoustic waves (SAWs), have shown promise in applications such as particle concentration, separation, and droplet mixing. However, challenges include accurate droplet placement, energy loss from off-axis positioning, and limited energy transfer from low-frequency SAW resonators, restricting centrifugal speed and sample volume. In this work, we introduce a novel ring array composed of eight Lamb wave resonators (LWRs), forming an Ultra-Fast Centrifuge Tunnel (UFCT) in a microfluidic system. The UFCT eliminates secondary vortices, concentrating energy in the main vortex and maximizing acoustic-to-streaming energy conversion. It enables ultra-fast centrifugation with a larger liquid capacity (50 μL), reduced power usage (50 mW) that is one order of magnitude smaller than existing devices, and greater linear speed (62 mm/s), surpassing the limitations of prior methods. We demonstrate successful high-fold enrichment of 2 μm and 10 μm particles and explore the UFCT’s potential in tissue engineering by encapsulating cells in a hydrogel-based micro-organ with a ring structure, which is of great significance for building more complex manipulation platforms for particles and cells in a bio-compatible and contactless manner. Full article
(This article belongs to the Special Issue Application of Microfluidics in Cell Manipulation and Biosensing)
Show Figures

Figure 1

21 pages, 7785 KB  
Article
Experiences Using MEMS Accelerometers on Railway Bearers at Switches and Crossings to Obtain Displacement—Awkward Situations
by Jou-Yi Shih, Paul Weston, Mani Entezami, Clive Roberts and Mark O’Callaghan
Infrastructures 2024, 9(6), 91; https://doi.org/10.3390/infrastructures9060091 - 28 May 2024
Cited by 2 | Viewed by 4781
Abstract
A sleeper, or more generally a “bearer”, moves vertically under a passing train load. The extent of this motion depends on the static and dynamic load of the train, the train speed, and the support conditions at the bearer and its neighbours. Excessive [...] Read more.
A sleeper, or more generally a “bearer”, moves vertically under a passing train load. The extent of this motion depends on the static and dynamic load of the train, the train speed, and the support conditions at the bearer and its neighbours. Excessive motion, typically from voiding see-sawing, low support stiffness or possibly excessive stiffness, or even too little stiffness, are all of interest to maintainers. Typically, problems arise around transition zones, switches and crossings, but plain track with poor support can also be a problem. Within the last decade, low-cost micro-electro-mechanical system (MEMS) accelerometers have been used to capture the time history of vertical motion for use in condition monitoring. Existing condition monitoring systems often overlook or sometimes even ignore the possibility of problematic data, which seem to be common in monitored locations. It is essential to understand whether such “bad” data require further attention. Three problematic sites are presented, focussing on examples where the acceleration was higher than expected or the computed displacement was not as expected. Potential causes include wheel defects, hammering of the ballast by a hanging bearer, or high acceleration at some structural resonant frequency. The present paper aims to show the challenges of using MEMS accelerometers to collect data for condition monitoring and offers insights into the sort of problematic data that may be collected from real sites. Full article
Show Figures

Figure 1

12 pages, 21037 KB  
Article
Grooving and Absorption on Substrates to Reduce the Bulk Acoustic Wave for Surface Acoustic Wave Micro-Force Sensors
by Yang Feng, Haoda Yu, Wenbo Liu, Keyong Hu, Shuifa Sun, Zhen Yang and Ben Wang
Micromachines 2024, 15(5), 637; https://doi.org/10.3390/mi15050637 - 9 May 2024
Cited by 1 | Viewed by 1398
Abstract
Improving measurement accuracy is the core issue with surface acoustic wave (SAW) micro-force sensors. An electrode transducer can stimulate not only the SAW but also the bulk acoustic wave (BAW). A portion of the BAW can be picked up by the receiving transducer, [...] Read more.
Improving measurement accuracy is the core issue with surface acoustic wave (SAW) micro-force sensors. An electrode transducer can stimulate not only the SAW but also the bulk acoustic wave (BAW). A portion of the BAW can be picked up by the receiving transducer, leading to an unwanted or spurious signal. This can harm the device’s frequency response characteristics, thereby potentially reducing the precision of the micro-force sensor’s measurements. This paper examines the influence of anisotropy on wave propagation, and it also performs a phase-matching analysis between interdigital transducers (IDTs) and bulk waves. Two solutions are shown to reduce the influence of BAW for SAW micro sensors, which are arranged with acoustic absorbers at the ends of the substrate and in grooving in the piezoelectric substrate. Three different types of sensors were manufactured, and the test results showed that the sidelobes of the SAW micro-force sensor could be effectively inhibited (3.32 dB), thereby enhancing the sensitivity and performance of sensor detection. The SAW micro-force sensor manufactured using the new process was tested and the following results were obtained: the center frequency was 59.83 MHz, the fractional bandwidth was 1.33%, the range was 0–1000 mN, the linearity was 1.02%, the hysteresis was 0.59%, the repeatability was 1.11%, and the accuracy was 1.34%. Full article
(This article belongs to the Special Issue Recent Advances in SAW Resonators)
Show Figures

Figure 1

15 pages, 3462 KB  
Article
Simultaneous Detection of Exosomal microRNAs Isolated from Cancer Cells Using Surface Acoustic Wave Sensor Array with High Sensitivity and Reproducibility
by Su Bin Han and Soo Suk Lee
Micromachines 2024, 15(2), 249; https://doi.org/10.3390/mi15020249 - 7 Feb 2024
Cited by 9 | Viewed by 2339
Abstract
We present a surface acoustic wave (SAW) sensor array for microRNA (miRNA) detection that utilizes photocatalytic silver staining on titanium dioxide (TiO2) nanoparticles as a signal enhancement technique for high sensitivity with an internal reference sensor for high reproducibility. A sandwich [...] Read more.
We present a surface acoustic wave (SAW) sensor array for microRNA (miRNA) detection that utilizes photocatalytic silver staining on titanium dioxide (TiO2) nanoparticles as a signal enhancement technique for high sensitivity with an internal reference sensor for high reproducibility. A sandwich hybridization was performed on working sensors of the SAW sensor array that could simultaneously capture and detect three miRNAs (miRNA-21, miRNA-106b, and miRNA-155) known to be upregulated in cancer. Sensor responses due to signal amplification varied depending on the concentration of synthetic miRNAs. It was confirmed that normalization (a ratio of working sensor response to reference sensor response) screened out background interferences by manipulating data and minimized non-uniformity in the photocatalytic silver staining step by suppressing disturbances to both working sensor signal and reference sensor signal. Finally, we were able to successfully detect target miRNAs in cancer cell-derived exosomal miRNAs with performance comparable to the detection of synthetic miRNAs. Full article
(This article belongs to the Special Issue Recent Advances in SAW Resonators)
Show Figures

Figure 1

13 pages, 4049 KB  
Article
High-Performance SAW Resonator with Spurious Mode Suppression Using Hexagonal Weighted Electrode Structure
by Yulong Liu, Hongliang Wang, Feng Zhang, Luhao Gou, Shengkuo Zhang, Gang Cao and Pengcheng Zhang
Sensors 2023, 23(24), 9895; https://doi.org/10.3390/s23249895 - 18 Dec 2023
Cited by 3 | Viewed by 2620
Abstract
Surface acoustic wave resonators are widely applied in electronics, communication, and other engineering fields. However, the spurious modes generally present in resonators can cause deterioration in device performance. Therefore, this paper proposes a hexagonal weighted structure to suppress them. With the construction of [...] Read more.
Surface acoustic wave resonators are widely applied in electronics, communication, and other engineering fields. However, the spurious modes generally present in resonators can cause deterioration in device performance. Therefore, this paper proposes a hexagonal weighted structure to suppress them. With the construction of a finite element resonator model, the parameters of the interdigital transducer (IDT) and the area of the dummy finger weighting are determined. The spurious waves are confined within the dummy finger area, whereas the main mode is less affected by this structure. To verify the suppression effect of the simulation, resonators with conventional and hexagonal weighted structures are fabricated using the micro-electromechanical systems (MEMS) process. After the S-parameter test of the prepared resonators, the hexagonal weighted resonators achieve a high level of spurious mode suppression. Their properties are superior to those of the conventional structure, with a higher Q value (10,406), a higher minimum return loss (25.7 dB), and a lower ratio of peak sidelobe (19%). This work provides a feasible solution for the design of SAW resonators to suppress spurious modes. Full article
(This article belongs to the Section Sensor Materials)
Show Figures

Figure 1

16 pages, 3768 KB  
Article
Evaluation of Alternative-Design Cotton Gin Lint Cleaning Machines on Fiber Length Uniformity Index
by Carlos B. Armijo, Christopher D. Delhom, Derek P. Whitelock, Jaya Shankar Tumuluru, Kathleen M. Yeater, Cody D. Blake, Chandler Rowe, John D. Wanjura, Ruixiu Sui, Gregory A. Holt, Vikki B. Martin and Neha Kothari
AgriEngineering 2023, 5(4), 2123-2138; https://doi.org/10.3390/agriengineering5040130 - 8 Nov 2023
Cited by 2 | Viewed by 2965
Abstract
Developing cotton ginning methods that improve fiber length uniformity index to levels that are compatible with newer and more efficient spinning technologies would expand market share and increase the demand for cotton products and give U.S. cotton a competitive edge to synthetic fibers. [...] Read more.
Developing cotton ginning methods that improve fiber length uniformity index to levels that are compatible with newer and more efficient spinning technologies would expand market share and increase the demand for cotton products and give U.S. cotton a competitive edge to synthetic fibers. Older studies on lint cleaning machines showed that the most widely used feed mechanism that places fiber on the cleaning cylinder damages the fiber and reduces uniformity. The present study evaluates how conventional and experimental feed mechanisms affect uniformity. The lint cleaners were used with both saw and roller gin stands. Four diverse cotton cultivars from the Far West, Southwest, and Mid-South were used in the test. Statistical analysis used a random effects modeling approach which included constructing a 95% confidence interval for each ginning treatment around the predicted mean for the fiber property of interest, and then examining which treatments overlap (for comparison). Results show that the micro-saw gin with the direct-feed lint cleaner had the best uniformity at 85.8%. Prior research has shown that roller ginning is consistently higher in uniformity than any type of saw ginning. In this study, the roller ginning treatments had uniformities of 85.3 and 85.6%, so it is encouraging that the saw gin stand with the direct-feed lint cleaner had very high uniformity. This suggests that it may be beneficial to place fiber directly onto the lint cleaning saw without changing direction. Additionally, the saw gin-coupled lint cleaner had a uniformity of 84.3% which is also a respectable level of uniformity. These results indicate that the direct-feed lint cleaner and coupled lint cleaner warrant further testing under better controlled conditions. Full article
(This article belongs to the Section Agricultural Mechanization and Machinery)
Show Figures

Figure 1

Back to TopTop