Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (32)

Search Parameters:
Keywords = micro–mesoporous carbon electrode

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2721 KiB  
Article
Conjugated Polyaniline–Phytic Acid Polymer Derived 3D N, P-Doped Porous Carbon as a Metal-Free Electrocatalyst for Zn–Air Batteries
by Wanting Xiong, Yifan Kong, Jiangrong Xiao, Tingting Wang and Xiaoli Chen
Catalysts 2025, 15(7), 683; https://doi.org/10.3390/catal15070683 - 14 Jul 2025
Viewed by 383
Abstract
The development of cost-effective and scalable air/oxygen electrode materials is crucial for the advancement of Zn–air batteries (ZABs). Porous carbon materials doped with heteroatoms have attracted considerable attention in energy and environmental fields because of their tunable nanoporosity and high electrical conductivity. In [...] Read more.
The development of cost-effective and scalable air/oxygen electrode materials is crucial for the advancement of Zn–air batteries (ZABs). Porous carbon materials doped with heteroatoms have attracted considerable attention in energy and environmental fields because of their tunable nanoporosity and high electrical conductivity. In this work, we report the synthesis of a three-dimensional (3D) N and P co-doped porous carbon (PA@pDC-1000), derived from a conjugated polyaniline–phytic acid polymer. The cross-linked, rigid conjugated polymeric framework plays a crucial role in maintaining the integrity of micro- and mesoporous structures and promoting graphitization during carbonization. As a result, the material exhibits a hierarchical pore structure, a high specific surface area (1045 m2 g−1), and a large pore volume (1.02 cm3 g−1). The 3D N, P co-doped PA@pDC-1000 catalyst delivers a half-wave potential of 0.80 V (vs. RHE) and demonstrates a higher current density compared to commercial Pt/C. A primary ZAB utilizing this material achieves an open-circuit voltage of 1.51 V and a peak power density of 217 mW cm−2. This metal-free, self-templating presents a scalable route for the generating and producing of high-performance oxygen reduction reaction catalysts for ZABs. Full article
(This article belongs to the Special Issue Electrocatalysis and Photocatalysis in Redox Flow Batteries)
Show Figures

Figure 1

12 pages, 1203 KiB  
Article
Electrochemical Investigations of the Suitability of 1-Propyl-2,3-dimethylidazolium bis(trifluoromethylsulfonyl)imide as the Electrolyte for Application in Micro–Mesoporous Carbon-Electrode-Based Supercapacitors and Other Electrochemical Systems
by Jaanus Kruusma and Enn Lust
Electrochem 2025, 6(1), 4; https://doi.org/10.3390/electrochem6010004 - 13 Feb 2025
Viewed by 1054
Abstract
The electrochemical properties of the hydrophobic room-temperature ionic liquid 1-propyl-2,3-dimethylimidazolium bis(trifluoromethylsulfonyl)imide (PMMIm(TFSI)) were investigated, for the first time, using an electrochemical double-layer capacitor-mimicking cell containing two identical-sized micro–mesoporous molybdenum carbide-derived carbon electrodes (MMP-C(Mo2C)), by applying cyclic voltammetry (CV) and electrochemical impedance [...] Read more.
The electrochemical properties of the hydrophobic room-temperature ionic liquid 1-propyl-2,3-dimethylimidazolium bis(trifluoromethylsulfonyl)imide (PMMIm(TFSI)) were investigated, for the first time, using an electrochemical double-layer capacitor-mimicking cell containing two identical-sized micro–mesoporous molybdenum carbide-derived carbon electrodes (MMP-C(Mo2C)), by applying cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques. Surprisingly, despite the substitution of the slightly acidic hydrogen atom with a methyl group at the carbon atom located between two nitrogen atoms in the imidazolium cation, the EIS and CV measurements demonstrated that PMMIm(TFSI) began to decompose electrochemically at the same cell potential (ΔE) as 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIm(BF4)), specifically at ΔE = 2.75 V. However, the CV and EIS data indicated that PMMIm(TFSI) decomposed with a significantly lower intensity than EMIm(BF4). Therefore, we believe that the use of PMMIm(TFSI) as the electrolyte will enable the construction of safer supercapacitors that can tolerate short periods of over-polarization up to ΔE = 4.0 V. However, when the ΔE ≤ 3.2 V was applied, EMIm(BF4) offered higher maximum power compared to PMMIm(TFSI). We found that the calculated maximum gravimetric power precisely describes the maximum ΔE applicable for a supercapacitor candidate. Full article
Show Figures

Figure 1

15 pages, 11911 KiB  
Article
Transition Metal-Mediated Preparation of Nitrogen-Doped Porous Carbon for Advanced Zinc-Ion Hybrid Capacitors
by Mingcheng Li, Zheng Liu, Dan Wu, Huihao Wu and Kuikui Xiao
Nanomaterials 2025, 15(2), 83; https://doi.org/10.3390/nano15020083 - 7 Jan 2025
Cited by 3 | Viewed by 930
Abstract
Carbon is predominantly used in zinc-ion hybrid capacitors (ZIHCs) as an electrode material. Nitrogen doping and strategic design can enhance its electrochemical properties. Melamine formaldehyde resin, serving as a hard carbon precursor, synthesizes nitrogen-doped porous carbon after annealing. Incorporating transition metal catalysts like [...] Read more.
Carbon is predominantly used in zinc-ion hybrid capacitors (ZIHCs) as an electrode material. Nitrogen doping and strategic design can enhance its electrochemical properties. Melamine formaldehyde resin, serving as a hard carbon precursor, synthesizes nitrogen-doped porous carbon after annealing. Incorporating transition metal catalysts like Ni, Co, and Fe alters the morphology, pore structure, graphitization degree, and nitrogen doping types/proportions. Electrochemical tests reveal a superior capacitance of 159.5 F g−1 at a scan rate of 1 mV s−1 and rate performance in Fe-catalyzed N-doped porous carbon (Fe-NDPC). Advanced analysis shows Fe-NDPC’s high graphitic nitrogen content and graphitization degree, boosting its electric double-layer capacitance (EDLC) and pseudocapacitance. Its abundant micro- and mesopores increase the surface area fourfold compared to non-catalyzed samples, favoring EDLC and fast electrolyte transport. This study guides catalyst application in carbon materials for supercapacitors, illuminating how catalysts influence nitrogen-doped porous carbon structure and performance. Full article
Show Figures

Graphical abstract

42 pages, 16521 KiB  
Review
Macromolecular Architecture in the Synthesis of Micro- and Mesoporous Polymers
by Ilsiya M. Davletbaeva and Oleg O. Sazonov
Polymers 2024, 16(23), 3267; https://doi.org/10.3390/polym16233267 - 24 Nov 2024
Cited by 1 | Viewed by 1529
Abstract
Polymers with micro- and mesoporous structure are promising as materials for gas storage and separation, encapsulating agents for controlled drug release, carriers for catalysts and sensors, precursors of nanostructured carbon materials, carriers for biomolecular immobilization and cellular scaffolds, as materials with a low [...] Read more.
Polymers with micro- and mesoporous structure are promising as materials for gas storage and separation, encapsulating agents for controlled drug release, carriers for catalysts and sensors, precursors of nanostructured carbon materials, carriers for biomolecular immobilization and cellular scaffolds, as materials with a low dielectric constant, filtering/separating membranes, proton exchange membranes, templates for replicating structures, and as electrode materials for energy storage. Sol–gel technologies, track etching, and template synthesis are used for their production, including in micelles of surfactants and microemulsions and sublimation drying. The listed methods make it possible to obtain pores with variable shapes and sizes of 5–50 nm and achieve a narrow pore size distribution. However, all these methods are technologically multi-stage and require the use of consumables. This paper presents a review of the use of macromolecular architecture in the synthesis of micro- and mesoporous polymers with extremely high surface area and hierarchical porous polymers. The synthesis of porous polymer frameworks with individual functional capabilities, the required chemical structure, and pore surface sizes is based on the unique possibilities of developing the architecture of the polymer matrix. Full article
(This article belongs to the Special Issue Polyurethane Composites: Properties and Applications)
Show Figures

Graphical abstract

20 pages, 3074 KiB  
Article
Tailored Porous Carbon Xerogels for Fe-N-C Catalysts in Proton Exchange Membrane Fuel Cells
by Laura Álvarez-Manuel, Cinthia Alegre, David Sebastián, Pedro F. Napal and María Jesús Lázaro
Nanomaterials 2024, 14(1), 14; https://doi.org/10.3390/nano14010014 - 20 Dec 2023
Cited by 2 | Viewed by 1471
Abstract
Atomically dispersed Fe-N-C catalysts for the oxygen reduction reaction (ORR) have been synthesized with a template-free method using carbon xerogels (CXG) as a porous matrix. The porosity of the CXGs is easily tunable through slight variations in the synthesis procedure. In this work, [...] Read more.
Atomically dispersed Fe-N-C catalysts for the oxygen reduction reaction (ORR) have been synthesized with a template-free method using carbon xerogels (CXG) as a porous matrix. The porosity of the CXGs is easily tunable through slight variations in the synthesis procedure. In this work, CXGs are prepared by formaldehyde and resorcinol polymerization, modifying the pH during the process. Materials with a broad range of porous structures are obtained: from non-porous to micro-/meso-/macroporous materials. The porous properties of CXG have a direct effect on Fe-N-CXG activity against ORR in an acidic medium (0.5 M H2SO4). Macropores and wide mesopores are vital to favor the mass transport of reagents to the active sites available in the micropores, while narrower mesopores can generate additional tortuosity. The role of microporosity is investigated by comparing two Fe-N-C catalysts using the same CXG as the matrix but following a different Fe and N doping procedure. In one case, the carbonization of CXG occurs rapidly and simultaneously with Fe and N doping, whereas in the other case it proceeds slowly, under controlled conditions and before the doping process, resulting in the formation of more micropores and active sites and achieving higher activity in a three-electrode cell and a better durability during fuel cell measurements. This work proves the feasibility of the template-free method using CXG as a carbon matrix for Fe-N-C catalysts, with the novelty of the controlled porous properties of the carbon material and its effect on the catalytic activity of the Fe-N-C catalyst. Moreover, the results obtained highlight the importance of the carbon matrix’s porous structure in influencing the activity of Fe-N-C catalysts against ORR. Full article
(This article belongs to the Special Issue Nanoelectrocatalysts for Energy and Environmental Applications)
Show Figures

Figure 1

15 pages, 1885 KiB  
Article
Effect of Pore Size Distribution on Energy Storage of Nanoporous Carbon Materials in Neat and Dilute Ionic Liquid Electrolytes
by Maike Käärik, Mati Arulepp, Anti Perkson and Jaan Leis
Molecules 2023, 28(20), 7191; https://doi.org/10.3390/molecules28207191 - 20 Oct 2023
Cited by 4 | Viewed by 2037
Abstract
This study investigates three carbide-derived carbon (CDC) materials (TiC, NbC, and Mo2C) characterized by uni-, bi-, and tri-modal pore sizes, respectively, for energy storage in both neat and acetonitrile-diluted 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. A distribution of micro- and mesopores was studied through low-temperature [...] Read more.
This study investigates three carbide-derived carbon (CDC) materials (TiC, NbC, and Mo2C) characterized by uni-, bi-, and tri-modal pore sizes, respectively, for energy storage in both neat and acetonitrile-diluted 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. A distribution of micro- and mesopores was studied through low-temperature N2 and CO2 adsorption. To elucidate the relationships between porosity and the electrochemical properties of carbon materials, cyclic voltammetry, galvanostatic cycling, and electrochemical impedance spectroscopy measurements were conducted using three-electrode test cells. The ultramicroporous TiC-derived carbon is characterized by a high packing density of 0.85 g cm−3, resulting in superior cathodic and anodic capacitances for both neat ionic liquid (IL) and a 1.9 M IL/acetonitrile electrolyte (93.6 and 75.8 F cm−3, respectively, in the dilute IL). However, the bi-modal pore-sized microporous NbC-derived carbon, with slightly lower cathodic and anodic capacitances (i.e., 85.0 and 73.7 F cm−3 in the dilute IL, respectively), has a lower pore resistance, making it more suitable for real-world applications. A symmetric two-electrode capacitor incorporating microporous CDC-NbC electrodes revealed an acceptable cycle life. After 10,000 cycles, the cell retained approximately 75% of its original capacitance, while the equivalent series resistance (ESR) only increased by 13%. Full article
(This article belongs to the Special Issue Advanced Nanomaterials for Energy Storage Devices)
Show Figures

Graphical abstract

11 pages, 2852 KiB  
Article
Fabrication of N-Doped Porous Carbon with Micro/Mesoporous Structure from Furfural Residue for Supercapacitors
by Xia Meng, Xiaohui Wang, Wei Li, Fangong Kong and Fengshan Zhang
Polymers 2023, 15(19), 3976; https://doi.org/10.3390/polym15193976 - 3 Oct 2023
Cited by 4 | Viewed by 1523
Abstract
N-doping is a very useful method to improve the electrochemical performance of porous carbon (PC) materials. In this study, the potential of furfural residue (FR), a solid waste in furfural production, as a precursor to producing PC materials for supercapacitors was highlighted. To [...] Read more.
N-doping is a very useful method to improve the electrochemical performance of porous carbon (PC) materials. In this study, the potential of furfural residue (FR), a solid waste in furfural production, as a precursor to producing PC materials for supercapacitors was highlighted. To obtain an N-doped PC with a high specific surface area (SSA) and hierarchical porous structure, the urea-KOH synergistic activation method was proposed. The obtained FRPCK-Urea showed a high SSA of 1850 m2 g−1, large pore volume of 0.9973 cm3 g−1, and interconnected micro/mesoporous structure. Besides, urea can also serve as a nitrogen source, resulting in a high N content of 5.31% in FRPCK-Urea. These properties endow FRPCK-Urea with an excellent capacitance of 222.7 F g−1 at 0.5 A g−1 in 6 mol L−1 KOH aqueous electrolyte in a three-electrode system. The prepared FRPCK-Urea possessed a well capacitance retention at current densities from 0.5 to 20 A g−1 (81.90%) and cycle durability (96.43% after 5000 cycles), leading to FRPCK-Urea to be a potential electrode material for supercapacitors. Therefore, this work develops an effective way for the high-valued utilization of FR. Full article
(This article belongs to the Special Issue Preparation and Application of Biomass-Based Materials)
Show Figures

Graphical abstract

12 pages, 2584 KiB  
Article
“Sweetwoods” Lignin as Promising Raw Material to Obtain Micro-Mesoporous Carbon Materials
by Ance Plavniece, Galina Dobele, Dmitrijs Djachkovs, Lilija Jashina, Oskars Bikovens, Aleksandrs Volperts and Aivars Zhurinsh
Materials 2023, 16(17), 6024; https://doi.org/10.3390/ma16176024 - 1 Sep 2023
Cited by 4 | Viewed by 1512
Abstract
Biorefineries with the significant amounts of lignin as a by-product have a potential to increase business revenues by using this residue to produce high value-added materials. The carbon materials from biomass waste increases the profitability of the production of porous carbon used for [...] Read more.
Biorefineries with the significant amounts of lignin as a by-product have a potential to increase business revenues by using this residue to produce high value-added materials. The carbon materials from biomass waste increases the profitability of the production of porous carbon used for sorbents and energy production. The purpose of this research is to study the chemical properties of lignin from “Sweetwoods” biorefinery as well as to characterize lignin carbonizates and activated carbons synthesized from them. This paper describes the effect of carbonization conditions (thermal or hydrothermal) on the properties of activated carbon material. It can be concluded that, depending on the carbonization method, the three-dimensional hierarchical porous structure of activated carbon materials based on “Sweetwoods” lignin, has micro- and mesopores of various sizes and can be used for number of purposes: both for high-quality sorbents, catalysts for electrochemical reduction reactions, providing sufficient space for ion mass transfer in electrodes for energy storage and transfer. Full article
(This article belongs to the Collection Advanced Biomass-Derived Carbon Materials)
Show Figures

Graphical abstract

17 pages, 4729 KiB  
Article
Effect of Pretreatment on the Nitrogen Doped Activated Carbon Materials Activity towards Oxygen Reduction Reaction
by Galina Dobele, Ance Plavniece, Aleksandrs Volperts, Aivars Zhurinsh, Daina Upskuviene, Aldona Balciunaite, Vitalija Jasulaitiene, Gediminas Niaura, Martynas Talaikis, Loreta Tamasauskaite-Tamasiunaite, Eugenijus Norkus, Jannicke Kvello and Luis César Colmenares-Rausseo
Materials 2023, 16(17), 6005; https://doi.org/10.3390/ma16176005 - 31 Aug 2023
Cited by 3 | Viewed by 1714
Abstract
Nitrogen-doped activated carbons with controlled micro- and mesoporosity were obtained from wood and wastes via chemical processing using pre-treatment (pyrolysis at 500 °C and hydrothermally carbonization at 250 °C) and evaluated as oxygen reduction catalysts for further application in fuel cells. The elemental [...] Read more.
Nitrogen-doped activated carbons with controlled micro- and mesoporosity were obtained from wood and wastes via chemical processing using pre-treatment (pyrolysis at 500 °C and hydrothermally carbonization at 250 °C) and evaluated as oxygen reduction catalysts for further application in fuel cells. The elemental and chemical composition, structure and porosity, and types of nitrogen bonds of obtained catalyst materials were studied. The catalytic activity was evaluated in an alkaline medium using the rotating disk electrode method. It was shown that an increase in the volume of mesopores in the porous structure of a carbon catalyst promotes the diffusion of reagents and the reactions proceed more efficiently. The competitiveness of the obtained carbon materials compared to Pt/C for the reaction of catalytic oxygen reduction is shown. Full article
(This article belongs to the Special Issue Design and Characterization of Energy Catalytic Materials)
Show Figures

Figure 1

19 pages, 4267 KiB  
Article
Preparation and Characterization of Asphalt Pitch-Derived Activated Carbons with Enhanced Electrochemical Performance as EDLC Electrode Materials
by Ju-Hwan Kim, Young-Jun Kim, Seok-Chang Kang, Hye-Min Lee and Byung-Joo Kim
Minerals 2023, 13(6), 802; https://doi.org/10.3390/min13060802 - 12 Jun 2023
Cited by 10 | Viewed by 2778
Abstract
This study used a physical activation method to prepare asphalt-pitch-derived activated carbon (Pitch AC) for an electric double-layer capacitor (EDLC) electrode. X-ray diffraction analysis and Raman spectroscopy were used to estimate the change in the crystal structure of Pitch AC with activation time. [...] Read more.
This study used a physical activation method to prepare asphalt-pitch-derived activated carbon (Pitch AC) for an electric double-layer capacitor (EDLC) electrode. X-ray diffraction analysis and Raman spectroscopy were used to estimate the change in the crystal structure of Pitch AC with activation time. In addition, the textural properties of Pitch AC were studied by Brunauer-Emmett-Teller (BET), Dubinin-Radushkevich (DR) and non-localized density functional theory (NLDFT) equations with N2/77K isotherm adsorption-desorption curves. The electrochemical performance of the Pitch AC was analyzed using a coin-type EDLC with 1 M SBPBF4/PC via galvanostatic charge/discharge, cyclic voltammetry and electrochemical impedance spectroscopy. The specific surface area and total pore volume were 990–2040 m2/g and 0.42–1.51 cm3/g, respectively. The pore characteristics of the Pitch AC varied according to the activation time and changed from a microporous structure to a micro-mesoporous structure as the activation time increased. The electrochemical performance analysis also found that the specific capacity was increased from 43.6 F/g to 84.5 F/g at 0.1 A/g as activation time increased. In particular, Pitch AC-9 exhibited the best electrochemical performance (rectangular CV curve, reversible GCD, lowest ion charge transfer resistance and Warburg impedance). In addition, Pitch AC-9 was confirmed to have a specific capacitance similar to commercial activated carbon for EDLC (YP-50F). Therefore, it was considered that Pitch AC could replace commercial activated carbon for EDLC because it has excellent pore characteristics and electrochemical performance despite being manufactured through a very low-cost precursor and a simple process (physical activation method). Full article
(This article belongs to the Special Issue Graphite Minerals and Graphene)
Show Figures

Figure 1

19 pages, 5451 KiB  
Article
Asymmetric Supercapacitors Using Porous Carbons and Iron Oxide Electrodes Derived from a Single Fe Metal-Organic Framework (MIL-100 (Fe))
by Seong Cheon Kim, Siyoung Q. Choi and Jeasung Park
Nanomaterials 2023, 13(12), 1824; https://doi.org/10.3390/nano13121824 - 8 Jun 2023
Cited by 13 | Viewed by 2900
Abstract
MOF-derived carbon (MDC) and metal oxide (MDMO) are superior materials for supercapacitor electrodes due to their high specific capacitances, which can be attributed to their high porosity, specific surface area (SSA), and pore volume. To improve the electrochemical performance, the environmentally friendly and [...] Read more.
MOF-derived carbon (MDC) and metal oxide (MDMO) are superior materials for supercapacitor electrodes due to their high specific capacitances, which can be attributed to their high porosity, specific surface area (SSA), and pore volume. To improve the electrochemical performance, the environmentally friendly and industrially producible MIL-100 (Fe) was prepared using three different Fe sources through hydrothermal synthesis. MDC-A with micro- and mesopores and MDC-B with micropores were synthesized through carbonization and an HCl washing process, and MDMO (α-Fe2O3) was obtained by a simple sintering in air. The electrochemical properties in a three-electrode system using a 6 M KOH electrolyte were investigated. These novel MDC and MDMO were applied to an asymmetric supercapacitor (ASC) system to overcome the disadvantages of traditional supercapacitors, enhancing energy density, power density, and cyclic performance. High SSA materials (MDC-A nitrate and MDMO iron) were selected for negative and positive electrode material to fabricate ASC with KOH/PVP gel electrolyte. As-fabricated ASC resulted in high specific capacitance 127.4 Fg−1 at 0.1 Ag−1 and 48.0 Fg−1 at 3 Ag−1, respectively, and delivered superior energy density (25.5 Wh/kg) at a power density 60 W/kg. The charging/discharging cycling test was also conducted, indicating 90.1% stability after 5000 cycles. These results indicate that ASC with MDC and MDMO derived from MIL-100 (Fe) has promising potential in high-performance energy storage devices. Full article
(This article belongs to the Special Issue Nanomaterials for Supercapacitors)
Show Figures

Figure 1

13 pages, 11353 KiB  
Article
Biomass Derived N-Doped Porous Carbon Made from Reed Straw for an Enhanced Supercapacitor
by Yuyi Liao, Zhongtao Shang, Guangrui Ju, Dingke Wang, Qiao Yang, Yuan Wang and Shaojun Yuan
Molecules 2023, 28(12), 4633; https://doi.org/10.3390/molecules28124633 - 8 Jun 2023
Cited by 28 | Viewed by 2861
Abstract
Developing advanced carbon materials by utilizing biomass waste has attracted much attention. However, porous carbon electrodes based on the electronic-double-layer-capacitor (EDLC) charge storage mechanism generally presents unsatisfactory capacitance and energy density. Herein, an N-doped carbon material (RSM-0.33-550) was prepared by directly pyrolyzing reed [...] Read more.
Developing advanced carbon materials by utilizing biomass waste has attracted much attention. However, porous carbon electrodes based on the electronic-double-layer-capacitor (EDLC) charge storage mechanism generally presents unsatisfactory capacitance and energy density. Herein, an N-doped carbon material (RSM-0.33-550) was prepared by directly pyrolyzing reed straw and melamine. The micro- and meso-porous structure and the rich active nitrogen functional group offered more ion transfer and faradaic capacitance. X-ray diffraction (XRD), Raman, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Brunauer–Emmett–Teller (BET) measurements were used to characterize the biomass-derived carbon materials. The prepared RSM-0.33-550 possessed an N content of 6.02% and a specific surface area of 547.1 m2 g−1. Compared with the RSM-0-550 without melamine addition, the RSM-0.33-550 possessed a higher content of active nitrogen (pyridinic-N) in the carbon network, thus presenting an increased number of active sites for charge storage. As the anode for supercapacitors (SCs) in 6 M KOH, RSM-0.33-550 exhibited a capacitance of 202.8 F g−1 at a current density of 1 A g−1. At a higher current density of 20 A g−1, it still retained a capacitance of 158 F g−1. Notably, it delivered excellent stability with capacity retention of 96.3% at 20 A g−1 after 5000 cycles. This work not only offers a new electrode material for SCs, but also gives a new insight into rationally utilizing biomass waste for energy storage. Full article
(This article belongs to the Special Issue Feature Papers in Applied Chemistry 2.0)
Show Figures

Figure 1

12 pages, 4120 KiB  
Article
Nitrogen-Doped Hierarchical Porous Carbon Derived from Coal for High-Performance Supercapacitor
by Leiming Cai, Yanzhe Zhang, Rui Ma, Xia Feng, Lihua Yan, Dianzeng Jia, Mengjiao Xu, Lili Ai, Nannan Guo and Luxiang Wang
Molecules 2023, 28(9), 3660; https://doi.org/10.3390/molecules28093660 - 23 Apr 2023
Cited by 19 | Viewed by 2918
Abstract
The surface properties and the hierarchical pore structure of carbon materials are important for their actual application in supercapacitors. It is important to pursue an integrated approach that is both easy and cost-effective but also challenging. Herein, coal-based hierarchical porous carbon with nitrogen [...] Read more.
The surface properties and the hierarchical pore structure of carbon materials are important for their actual application in supercapacitors. It is important to pursue an integrated approach that is both easy and cost-effective but also challenging. Herein, coal-based hierarchical porous carbon with nitrogen doping was prepared by a simple dual template strategy using coal as the carbon precursor. The hierarchical pores were controlled by incorporating different target templates. Thanks to high conductivity, large electrochemically active surface area (483 m2 g−1), hierarchical porousness with appropriate micro-/mesoporous channels, and high surface nitrogen content (5.34%), the resulting porous carbon exhibits a high specific capacitance in a three-electrode system using KOH electrolytes, reaching 302 F g−1 at 1 A g−1 and 230 F g−1 at 50 A g−1 with a retention rate of 76%. At 250 W kg−1, the symmetrical supercapacitor assembled at 6 M KOH shows a high energy density of 8.3 Wh kg−1, and the stability of the cycling is smooth. The energy density of the symmetric supercapacitor assembled under ionic liquids was further increased to 48.3 Wh kg−1 with a power output of 750 W kg−1 when the operating voltage was increased to 3 V. This work expands the application of coal-based carbon materials in capacitive energy storage. Full article
Show Figures

Figure 1

17 pages, 5327 KiB  
Article
Nanoporous Hollow Carbon Spheres Derived from Fullerene Assembly as Electrode Materials for High-Performance Supercapacitors
by Lok Kumar Shrestha, Zexuan Wei, Gokulnath Subramaniam, Rekha Goswami Shrestha, Ravi Singh, Marappan Sathish, Renzhi Ma, Jonathan P. Hill, Junji Nakamura and Katsuhiko Ariga
Nanomaterials 2023, 13(5), 946; https://doi.org/10.3390/nano13050946 - 5 Mar 2023
Cited by 9 | Viewed by 5853
Abstract
The energy storage performances of supercapacitors are expected to be enhanced by the use of nanostructured hierarchically micro/mesoporous hollow carbon materials based on their ultra-high specific surface areas and rapid diffusion of electrolyte ions through the interconnected channels of their mesoporous structures. In [...] Read more.
The energy storage performances of supercapacitors are expected to be enhanced by the use of nanostructured hierarchically micro/mesoporous hollow carbon materials based on their ultra-high specific surface areas and rapid diffusion of electrolyte ions through the interconnected channels of their mesoporous structures. In this work, we report the electrochemical supercapacitance properties of hollow carbon spheres prepared by high-temperature carbonization of self-assembled fullerene-ethylenediamine hollow spheres (FE-HS). FE-HS, having an average external diameter of 290 nm, an internal diameter of 65 nm, and a wall thickness of 225 nm, were prepared by using the dynamic liquid-liquid interfacial precipitation (DLLIP) method at ambient conditions of temperature and pressure. High temperature carbonization (at 700, 900, and 1100 °C) of the FE-HS yielded nanoporous (micro/mesoporous) hollow carbon spheres with large surface areas (612 to 1616 m2 g−1) and large pore volumes (0.925 to 1.346 cm3 g−1) dependent on the temperature applied. The sample obtained by carbonization of FE-HS at 900 °C (FE-HS_900) displayed optimum surface area and exhibited remarkable electrochemical electrical double-layer capacitance properties in aq. 1 M sulfuric acid due to its well-developed porosity, interconnected pore structure, and large surface area. For a three-electrode cell setup, a specific capacitance of 293 F g−1 at a 1 A g−1 current density, which is approximately 4 times greater than the specific capacitance of the starting material, FE-HS. The symmetric supercapacitor cell was assembled using FE-HS_900 and attained 164 F g−1 at 1 A g−1 with sustained 50% capacitance at 10 A g−1 accompanied by 96% cycle life and 98% coulombic efficiency after 10,000 consecutive charge/discharge cycles. The results demonstrate the excellent potential of these fullerene assemblies in the fabrication of nanoporous carbon materials with the extensive surface areas required for high-performance energy storage supercapacitor applications. Full article
(This article belongs to the Special Issue Carbon Nanostructures as Promising Future Materials: 2nd Edition)
Show Figures

Graphical abstract

18 pages, 7101 KiB  
Article
Phyllanthus emblica Seed-Derived Hierarchically Porous Carbon Materials for High-Performance Supercapacitor Applications
by Lok Kumar Shrestha, Sabina Shahi, Chhabi Lal Gnawali, Mandira Pradhananga Adhikari, Rinita Rajbhandari, Bhadra P. Pokharel, Renzhi Ma, Rekha Goswami Shrestha and Katsuhiko Ariga
Materials 2022, 15(23), 8335; https://doi.org/10.3390/ma15238335 - 23 Nov 2022
Cited by 12 | Viewed by 2629
Abstract
The electrical double-layer supercapacitance performance of the nanoporous carbons prepared from the Phyllanthus emblica (Amala) seed by chemical activation using the potassium hydroxide (KOH) activator is reported. KOH activation was carried out at different temperatures (700–1000 °C) under nitrogen gas atmosphere, and in [...] Read more.
The electrical double-layer supercapacitance performance of the nanoporous carbons prepared from the Phyllanthus emblica (Amala) seed by chemical activation using the potassium hydroxide (KOH) activator is reported. KOH activation was carried out at different temperatures (700–1000 °C) under nitrogen gas atmosphere, and in a three-electrode cell set-up the electrochemical measurements were performed in an aqueous 1 M sulfuric acid (H2SO4) solution. Because of the hierarchical pore structures with well-defined micro- and mesopores, Phyllanthus emblica seed-derived carbon materials exhibit high specific surface areas in the range of 1360 to 1946 m2 g−1, and the total pore volumes range from 0.664 to 1.328 cm3 g−1. The sample with the best surface area performed admirably as the supercapacitor electrode-material, achieving a high specific capacitance of 272 F g−1 at 1 A g−1. Furthermore, it sustained 60% capacitance at a high current density of 50 A g−1, followed by a remarkably long cycle-life of 98% after 10,000 subsequent charging/discharging cycles, demonstrating the electrode’s excellent rate-capability. These results show that the Phyllanthus emblica seed would have significant possibilities as a sustainable carbon-source for the preparing high-surface-area activated-carbons desired in high-energy-storage supercapacitors. Full article
(This article belongs to the Section Carbon Materials)
Show Figures

Graphical abstract

Back to TopTop