Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,243)

Search Parameters:
Keywords = miR-129-5p

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1715 KB  
Article
Subcytotoxic Exposure to Avobenzone and Ethylhexyl Salicylate Induces microRNA Modulation and Stress-Responsive PI3K/AKT and MAPK Signaling in Differentiated SH-SY5Y Cells
by Agnese Graziosi, Luca Ghelli, Camilla Corrieri, Lisa Iacenda, Maria Chiara Manfredi, Sabrina Angelini, Giulia Sita, Patrizia Hrelia and Fabiana Morroni
Int. J. Mol. Sci. 2026, 27(3), 1134; https://doi.org/10.3390/ijms27031134 - 23 Jan 2026
Abstract
Avobenzone (AVO) and ethylhexyl salicylate (EHS) are widely used organic UV filters with distinct photochemical properties and reported biological effects. Experimental and predictive evidence suggests that some lipophilic UV filters may reach systemic circulation and potentially cross the blood–brain barrier (BBB), raising concerns [...] Read more.
Avobenzone (AVO) and ethylhexyl salicylate (EHS) are widely used organic UV filters with distinct photochemical properties and reported biological effects. Experimental and predictive evidence suggests that some lipophilic UV filters may reach systemic circulation and potentially cross the blood–brain barrier (BBB), raising concerns about possible central nervous system effects, although direct evidence for AVO and EHS remains limited. This study evaluated the effects of subcytotoxic concentrations (0.01–1 µM) of AVO and EHS on differentiated SH-SY5Y human neuroblastoma cells, focusing on early stress-related molecular responses. Cell viability and reactive oxygen species production were not significantly affected at any tested concentration. Integrated analyses of microRNA, gene, and protein expression revealed modest and variable modulation of miR-200a-3p and miR-29b-3p. Western blot analysis showed increased phosphorylation of AKT and ERK, no significant changes in mTOR activation, and an increased Bax/Bcl-2 ratio. Overall, these findings indicate that AVO and EHS trigger an early stress-adaptive response involving PI3K/AKT and MAPK/ERK signaling and modulation of apoptosis-related pathways. Such responses reflect a dynamic balance between cellular adaptation and pro-apoptotic signaling, which may become relevant under prolonged or higher-intensity exposure conditions. Full article
(This article belongs to the Section Molecular Toxicology)
Show Figures

Figure 1

20 pages, 10143 KB  
Article
Plasma EV miR-186-5p as an Early Biomarker and Regulator of IFN-α-Mediated Oxidative and β-Cell Dysfunction in Prediabetes
by Jae-Hyung Park, Thi Nhi Nguyen, Hye Min Shim, Yun-Ui Bae, Gyeong Im Yu, Junho Kang, Eun Yeong Ha and Hochan Cho
Antioxidants 2026, 15(2), 150; https://doi.org/10.3390/antiox15020150 - 23 Jan 2026
Abstract
Prediabetes is accompanied by early β-cell stress and oxidative imbalance before overt hyperglycemia. Circulating extracellular vesicle (EV) microRNAs (miRNAs) may capture early metabolic disturbances, but their mechanistic relevance remains unclear. Plasma EV miRNA profiles were analyzed across normoglycemia, prediabetes, and newly diagnosed type [...] Read more.
Prediabetes is accompanied by early β-cell stress and oxidative imbalance before overt hyperglycemia. Circulating extracellular vesicle (EV) microRNAs (miRNAs) may capture early metabolic disturbances, but their mechanistic relevance remains unclear. Plasma EV miRNA profiles were analyzed across normoglycemia, prediabetes, and newly diagnosed type 2 diabetes, with validation in an independent cohort (n = 150). Functional studies were performed in pancreatic β-cells exposed to glucolipotoxic stress to examine miRNA regulation, IFN-α signaling, mitochondrial redox status, and insulin secretion. Six EV miRNAs, including miR-186-5p, were consistently reduced in prediabetes and correlated with glycemic and insulin resistance indices. In β-cells, glucolipotoxic stress selectively suppressed miR-186-5p, leading to derepression of IFNA2, activation of IFN-α–JAK/STAT signaling, increased mitochondrial ROS, impaired ATP/ADP dynamics, and reduced glucose-stimulated insulin secretion. Restoration of miR-186-5p or pharmacologic JAK inhibition mitigated these defects, and luciferase assays confirmed IFNA2 as a direct target of miR-186-5p. EV-associated miR-186-5p represents an early marker of metabolic stress in prediabetes and provides mechanistic insight into IFN-α–driven oxidative and secretory dysfunction in β-cells. Full article
Show Figures

Figure 1

13 pages, 370 KB  
Review
Beyond the Genome: Can Epigenetics Forecast Therapeutic Success in Graves’ Disease and Thyroid Eye Disease?
by Jacopo Manso, Dario Sardone, Vincenzo Marotta, Antonio Stefano Salcuni, Alessandro Brunetti, Claudia Cipri, Silvia Maria Sciannimanico, Lorenzo Piva, Maria Carpentieri, Alberto Falchetti and Fabio Vescini
Int. J. Mol. Sci. 2026, 27(2), 1116; https://doi.org/10.3390/ijms27021116 - 22 Jan 2026
Abstract
Graves’ disease (GD) and Thyroid Eye Disease (TED) are autoimmune disorders characterized by significant heterogeneity in treatment response. Up to 50% of GD patients relapse after antithyroid drug (ATD) withdrawal, and a substantial portion of TED patients (20–50%) are resistant to first-line glucocorticoid [...] Read more.
Graves’ disease (GD) and Thyroid Eye Disease (TED) are autoimmune disorders characterized by significant heterogeneity in treatment response. Up to 50% of GD patients relapse after antithyroid drug (ATD) withdrawal, and a substantial portion of TED patients (20–50%) are resistant to first-line glucocorticoid (GC) therapy. This review evaluates the current evidence on epigenetic modifications as predictive biomarkers to guide personalized treatment. We synthesized recent findings (up to 2025) from PubMed, focusing on DNA methylation and microRNAs (miRNAs). For GD, ATD relapse risk is linked to a persistent “epigenetic memory” in T cells, notably the hypomethylation of Th17-associated genes. Circulating miRNA signatures, including miR-346, miR-23b-5p, and miR-92a-3p, also show promise in predicting remission. For TED, GC sensitivity is strongly correlated with specific circulating miRNAs. High pre-treatment levels of miR-146a predict a positive response (100% positive predictive value), while low levels of miR-224-5p predict non-responsiveness. While DNA methylation is confirmed in TED pathogenesis, its predictive role is unstudied. Major research gaps persist, particularly the near-total absence of data on histone modifications as predictive markers and the lack of epigenetic predictors for new biologics treatments, which currently rely on genetic or pharmacokinetic markers. Epigenetic biomarkers represent a promising frontier for stratifying patients and optimizing therapeutic strategies in Graves’ autoimmunity. Full article
(This article belongs to the Special Issue Gene Regulation in Endocrine Disease, 2nd Edition)
Show Figures

Figure 1

19 pages, 6228 KB  
Article
Time-Dependent Loss of miR-548c-3p and Activation of E2F3/FOXM1 in Breast Cancer: In Vitro and TCGA-Based Evidence for a Post-Transcriptional Mechanism
by Buket Bozkurt, Durmus Ayan and Seyyid Mehmet Bulut
Int. J. Mol. Sci. 2026, 27(2), 1052; https://doi.org/10.3390/ijms27021052 - 21 Jan 2026
Abstract
MicroRNAs are key post-transcriptional regulators in breast cancer, but their time-dependent dynamics and downstream oncogenic effects are not fully understood. miR-548c-3p has been proposed as a tumor suppressor, yet its temporal behavior and impact on cell cycle drivers remain unclear. This study investigated [...] Read more.
MicroRNAs are key post-transcriptional regulators in breast cancer, but their time-dependent dynamics and downstream oncogenic effects are not fully understood. miR-548c-3p has been proposed as a tumor suppressor, yet its temporal behavior and impact on cell cycle drivers remain unclear. This study investigated the time-dependent expression of miR-548c-3p and its post-transcriptional regulation of E2F3 and FOXM1 in MCF-7 breast cancer cells. Cells were analyzed at multiple time points (2–72 h) by quantitative real-time PCR to assess dynamic changes in miR-548c-3p, E2F3, and FOXM1 mRNA levels. Bioinformatic validation using TCGA-BRCA datasets and public platforms evaluated gene expression, promoter methylation, and prognostic significance. miR-548c-3p showed a progressive time-dependent decline, with the lowest levels at 72 h, whereas E2F3 and FOXM1 were significantly upregulated over time, supporting a post-transcriptional derepression mechanism. TCGA-based analyses confirmed overexpression and hypomethylation of E2F3 and FOXM1 in breast cancer, particularly in triple-negative tumors, and high expression of both genes was associated with poor survival. These findings indicate that time-dependent loss of miR-548c-3p contributes to E2F3 and FOXM1 activation through a post-transcriptional regulatory mechanism, highlighting this miRNA–oncogene axis as a potential prognostic signature and therapeutic target in breast cancer. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Graphical abstract

16 pages, 3852 KB  
Article
Integrated Transcriptomic and Machine Learning Analysis Reveals Immune-Related Regulatory Networks in Anti-NMDAR Encephalitis
by Kechi Fang, Xinming Li and Jing Wang
Int. J. Mol. Sci. 2026, 27(2), 1044; https://doi.org/10.3390/ijms27021044 - 21 Jan 2026
Abstract
Anti-N-methyl-D-aspartate receptor (anti-NMDAR) encephalitis is an immune-mediated neurological disorder driven by dysregulated neuroimmune interactions, yet the molecular architecture linking tumor-associated immune activation, peripheral immunity, and neuronal dysfunction remains insufficiently understood. In this study, we established an integrative computational framework that combines multi-tissue transcriptomic [...] Read more.
Anti-N-methyl-D-aspartate receptor (anti-NMDAR) encephalitis is an immune-mediated neurological disorder driven by dysregulated neuroimmune interactions, yet the molecular architecture linking tumor-associated immune activation, peripheral immunity, and neuronal dysfunction remains insufficiently understood. In this study, we established an integrative computational framework that combines multi-tissue transcriptomic profiling, weighted gene co-expression network analysis, immune deconvolution, and machine learning-based feature prioritization to systematically characterize the regulatory landscape of the disease. Joint analysis of three independent GEO datasets spanning ovarian teratoma tissue and peripheral blood transcriptomes identified 2001 consistently dysregulated mRNAs, defining a shared tumor–immune–neural transcriptional axis. Across multiple feature selection algorithms, ACVR2B and MX1 were reproducibly prioritized as immune-associated candidate genes and were consistently downregulated in anti-NMDAR encephalitis samples, showing negative correlations with neutrophil infiltration. Reconstruction of an integrated mRNA-miRNA-lncRNA regulatory network further highlighted a putative core axis (ENSG00000262580–hsa-miR-22-3p–ACVR2B), proposed as a hypothesis-generating regulatory module linking non-coding RNA regulation to immune-neuronal signaling. Pathway and immune profiling analyses demonstrated convergence of canonical immune signaling pathways, including JAK-STAT and PI3K-Akt, with neuronal communication modules, accompanied by enhanced innate immune signatures. Although limited by reliance on public datasets and small sample size, these findings delineate a systems-level neuroimmune regulatory program in anti-NMDAR encephalitis and provide a scalable, network-based multi-omics framework for investigating immune-mediated neurological and autoimmune disorders and for guiding future experimental validation. Full article
(This article belongs to the Section Molecular Informatics)
Show Figures

Graphical abstract

23 pages, 3923 KB  
Article
Investigating Sex-Linked miRNAs for Potential Osteoarthritis Therapy Biomarkers
by Viviana Costa, Giulia Sacchi, Luca Andriolo, Giuseppe Filardo, Gianluca Giavaresi and Francesca Veronesi
Int. J. Mol. Sci. 2026, 27(2), 1019; https://doi.org/10.3390/ijms27021019 - 20 Jan 2026
Abstract
Sex-specific factors can influence the onset and progression of osteoarthritis (OA), yet the molecular mechanisms underlying their impact remain poorly defined. This study investigated whether plasma microRNAs (miRNAs) correlate to sex-dependent OA progression, based on evidence of enhanced spontaneous osteoclastogenesis in peripheral blood [...] Read more.
Sex-specific factors can influence the onset and progression of osteoarthritis (OA), yet the molecular mechanisms underlying their impact remain poorly defined. This study investigated whether plasma microRNAs (miRNAs) correlate to sex-dependent OA progression, based on evidence of enhanced spontaneous osteoclastogenesis in peripheral blood mononuclear cells (PBMCs) derived from OA patients. miRNAs were evaluated on OA-plasma (n = 20 men, 20 women with knee OA; KL grade I–II) and their role on OA signaling was investigated through bioinformatic analysis. Seven miRNAs were identified as significantly upregulated in men’ vs. women’ samples: hsa-miR-107, hsa-miR-23a-3p, hsa-miR-103a-3p, hsa-let-7g-5p, hsa-miR-22-3p, hsa-miR-106a-5p, hsa-miR-142-3p, and were associated with OA-related tissues and pathways. Notably, two common targets were identified: Adenosine Triphosphate Citrate Lyase (ACLY), a key enzyme linking citrate metabolism to epigenetic regulation, and phosphoinositide-3-kinase regulatory subunit 1 (PIK3R1), a component of the phosphatidylinositol-3-kinase PI3K/AKT/mTOR pathway. In men, increased miRNA expression may repress ACLY and PIK3R1, affecting catabolic gene expression, inflammation, and OA progression. Conversely, their lower expression in women may mitigate these effects by counterbalancing the OA-promoting influences driven by sex hormones. A functional validation is needed to confirm miRNA–ACLY/PIK3R1 interactions and their sex-specific roles in early OA pathophysiology. Full article
Show Figures

Figure 1

29 pages, 6922 KB  
Article
Protection by Vitis vinifera L. Against Cisplatin-Induced Testicular Injury: Oxidative Stress, Inflammation, and Ferroptosis
by Salman A. A. Mohammed, Hebatallah M. Saad, Kariman A. Esmail, Duaa Eliwa, Aya H. Rohiem, Amal A. Awad, Samar A. El-Adawy, Shimaa S. Amer and Ehab Y. Abdelhiee
Pharmaceuticals 2026, 19(1), 178; https://doi.org/10.3390/ph19010178 - 20 Jan 2026
Abstract
Background/Objectives: Testicular toxicity is one of the most important chemotherapeutic adverse effects of Cisplatin (Cisp), which restricts its use and effectiveness. This study investigated the preventive effects of Vitis vinifera L. extract on Cisp-induced testicular injury in rats. Methods: Forty adult [...] Read more.
Background/Objectives: Testicular toxicity is one of the most important chemotherapeutic adverse effects of Cisplatin (Cisp), which restricts its use and effectiveness. This study investigated the preventive effects of Vitis vinifera L. extract on Cisp-induced testicular injury in rats. Methods: Forty adult albino male rats were allocated into four groups: control, Vitis vinifera L. extract, Cisp, and co-treated (Vitis vinifera L. extract + Cisp). Sperm motility and count, serum reproductive hormones, oxidative/antioxidant biomarkers, pro-inflammatory cytokines, ferroptosis biomarkers, and gene expression profiles were evaluated. Results: Cisp administration markedly impaired reproductive performance, as evidenced by significant declines in serum FSH, LH, testosterone, and sperm motility and count. Cisp also induced oxidative stress by elevating MDA, GSSG, GPx, and 8-OHdG, while reducing SOD, Catalase, NRF2, and Ho-1 along with total and reduced GSH levels. Moreover, it triggered strong inflammatory responses and ferroptosis activation, with notable up-regulation of NFκB, TNF-α, IL-1β, ferritin, and cathepsin. Gene expression analysis revealed down-regulation of ARNTL, PI3K, and miR-125b and up-regulation of ASCL4, GSK3B, and COX2 following Cisp exposure. Conversely, co-treatment with Vitis vinifera L. extract significantly ameliorated these alterations, restoring sperm quality, hormone balance, antioxidant defenses, and modulating inflammatory, ferroptosis, and genetic responses toward normalcy in addition to restoring testicular and epididymal histoarchitecture without any significant effect in NRF2 and ARNTL expression. Additionally, co-treated groups with Vitis vinifera L. extract showed a significant decline in NF-kB p65 and increased PCNA testicular immunoreactivity with a substantial down-regulation in NF-kB p65 and PCNA epididymal immunoreactivity. Vitis vinifera L. extract alone did not affect any studied parameters as compared to the control group. Conclusions: These findings suggested that Vitis vinifera L. extract has a significant protective effect against Cisp-related testicular injury through antioxidative, anti-inflammatory, and anti-ferroptotic mechanisms. Full article
(This article belongs to the Section Natural Products)
Show Figures

Figure 1

17 pages, 1796 KB  
Article
Optical Genome Mapping Enhances Structural Variant Detection and Refines Risk Stratification in Chronic Lymphocytic Leukemia
by Soma Roy Chakraborty, Michelle A. Bickford, Narcisa A. Smuliac, Kyle A. Tonseth, Jing Bao, Farzana Murad, Irma G. Domínguez Vigil, Heather B. Steinmetz, Lauren M. Wainman, Parth Shah, Elizabeth M. Bengtson, Swaroopa PonnamReddy, Gabriella A. Harmon, Liam L. Donnelly, Laura J. Tafe, Jeremiah X. Karrs, Prabhjot Kaur and Wahab A. Khan
Genes 2026, 17(1), 106; https://doi.org/10.3390/genes17010106 - 19 Jan 2026
Viewed by 42
Abstract
Background: Optical genome mapping (OGM) detects genome-wide structural variants (SVs), including balanced rearrangements and complex copy-number alterations beyond standard-of-care cytogenomic assays. In chronic lymphocytic leukemia (CLL), cytogenetic and genomic risk stratification is traditionally based on fluorescence in situ hybridization (FISH), karyotyping, targeted next-generation [...] Read more.
Background: Optical genome mapping (OGM) detects genome-wide structural variants (SVs), including balanced rearrangements and complex copy-number alterations beyond standard-of-care cytogenomic assays. In chronic lymphocytic leukemia (CLL), cytogenetic and genomic risk stratification is traditionally based on fluorescence in situ hybridization (FISH), karyotyping, targeted next-generation sequencing (NGS), and immunogenetic assessment of immunoglobulin heavy chain variable region (IGHV) somatic hypermutation status, each of which interrogates only a limited aspect of disease biology. Methods: We retrospectively evaluated fifty patients with CLL using OGM and integrated these findings with cytogenomics, targeted NGS, IGHV mutational status, and clinical time-to-first-treatment (TTFT) data. Structural variants were detected using OGM and pathogenic NGS variants were derived from a clinical heme malignancy panel. Clinical outcomes were extracted from the electronic medical record. Results: OGM identified reportable structural variants in 82% (41/50) of cases. The most frequent abnormality was del(13q), observed in 29/50 (58%) and comprising 73% (29/40) of all OGM-detected deletions with pathologic significance. Among these, 12/29 (42%) represented large RB1-spanning deletions, while 17/29 (58%) were focal deletions restricted to the miR15a/miR16-1 minimal region, mapping to the non-coding host gene DLEU2. Co-occurrence of adverse lesions, including deletion 11q/ATM, BIRC3 loss, trisomy 12, and deletion 17p/TP53, were recurrent and strongly associated with shorter TTFT. OGM also uncovered multiple cryptic rearrangements involving chromosomal loci that are not represented in the canonical CLL FISH probe panel, including IGL::CCND1, IGH::BCL2, IGH::BCL11A, IGH::BCL3, and multi-chromosomal copy-number complexity. IGHV data were available in 37/50 (74%) of patients; IGHV-unmutated status frequently co-segregated with OGM-defined high-risk profiles (del(11q), del(17p), trisomy 12 with secondary hits, and complex genomes whereas mutated IGHV predominated in OGM-negative or structurally simple del(13q) cases and aligned with indolent TTFT. Integration of OGM with NGS further improved genomic risk classification, particularly in cases with discordant or inconclusive routine testing. Conclusions: OGM provides a comprehensive, genome-wide view of structural variation in CLL, resolving deletion architecture, identifying cryptic translocations, and defining complex multi-hit genomic profiles that tracked closely with clinical behavior. Combining OGM and NGS analysis refined risk stratification beyond standard FISH panels and supports more precise, individualized management strategies in CLL. Prospective studies are warranted to evaluate the clinical utility of OGM-guided genomic profiling in contemporary treatment paradigms. Full article
Show Figures

Figure 1

23 pages, 7231 KB  
Article
Dysregulation of miRNAs in Sicilian Patients with Autism Spectrum Disorder
by Michele Salemi, Francesca A. Schillaci, Maria Grazia Salluzzo, Giuseppe Lanza, Mariagrazia Figura, Donatella Greco, Pietro Schinocca, Giovanna Marchese, Angela Cordella, Raffaele Ferri and Corrado Romano
Biomedicines 2026, 14(1), 217; https://doi.org/10.3390/biomedicines14010217 (registering DOI) - 19 Jan 2026
Viewed by 29
Abstract
Background: Autism spectrum disorder (ASD) is a highly prevalent neurodevelopmental condition influenced by both genetic and non-genetic factors, although the underlying pathomechanisms remain unclear. We systematically analyzed microRNA (miRNA) expression and associated functional pathways in ASD to evaluate their potential as prenatal/postnatal, diagnostic, [...] Read more.
Background: Autism spectrum disorder (ASD) is a highly prevalent neurodevelopmental condition influenced by both genetic and non-genetic factors, although the underlying pathomechanisms remain unclear. We systematically analyzed microRNA (miRNA) expression and associated functional pathways in ASD to evaluate their potential as prenatal/postnatal, diagnostic, and prognostic biomarkers. Methods: Peripheral blood mononuclear cells from 12 Sicilian patients with ASD (eight with normal cognitive function) and 15 healthy controls were analyzed using small RNA sequencing. Differential expression analysis was performed with DESeq2 (|fold change| ≥ 1.5; adjusted p ≤ 0.05). Functional enrichment and network analyses were conducted using Ingenuity Pathway Analysis, focusing on Diseases and Biofunctions. Results: 998 miRNAs were differentially expressed in ASD, 424 upregulated and 553 downregulated. Enriched pathways were primarily associated with psychological and neurological disorders. Network analysis highlighted three principal interaction clusters related to inflammation, cell survival and mechanotransduction, synaptic plasticity, and neuronal excitability. Four miRNAs (miR-296-3p, miR-27a, miR-146a-5p, and miR-29b-3p) emerged as key regulatory candidates. Conclusions: The marked divergence in miRNA expression between ASD and controls suggests distinct regulatory patterns, thus reinforcing the central involvement of inflammatory, autoimmune, and infectious mechanisms in ASD, mediated by miRNAs regulating S100 family genes, neuronal migration, and synaptic communication. However, rather than defining a predictive biomarker panel, this study identified candidate miRNAs and regulatory networks that may be relevant to ASD pathophysiology. As such, further validation in appropriately powered cohorts with predictive modeling frameworks are warranted before any biomarker or diagnostic implications can be inferred. Full article
(This article belongs to the Section Molecular Genetics and Genetic Diseases)
Show Figures

Figure 1

17 pages, 580 KB  
Article
Early Detection of Pacing-Induced Cardiomyopathy Using MicroRNA-208b-3p and MicroRNA-9: A Prospective Cohort Analysis
by Onoufrios Malikides, Aleksi Sallo, Andria Papazachariou, Ioannis Kopidakis, Angeliki Alifragki, Joanna Kontaraki, Konstantinos Fragkiadakis, Gregory Chlouverakis, Eleftherios Kallergis, Emmanuel Simantirakis and Maria Marketou
Genes 2026, 17(1), 103; https://doi.org/10.3390/genes17010103 - 19 Jan 2026
Viewed by 59
Abstract
Background/Objectives: Pacing-induced cardiomyopathy (PiCM) is a recognized complication of chronic right ventricular pacing (RVP), characterized by left ventricular (LV) dysfunction, adverse remodeling, and progression to heart failure. MicroRNAs (miRs) regulate gene expression and play an important role in ventricular remodeling. This study aimed [...] Read more.
Background/Objectives: Pacing-induced cardiomyopathy (PiCM) is a recognized complication of chronic right ventricular pacing (RVP), characterized by left ventricular (LV) dysfunction, adverse remodeling, and progression to heart failure. MicroRNAs (miRs) regulate gene expression and play an important role in ventricular remodeling. This study aimed to observe whether dynamic changes in miRs according to a novel peripheral blood mononuclear cell (PBMC)-based approach could serve as early predictive biomarkers of PiCM. Methods: A prospective, single-center cohort study was conducted in adult patients undergoing pacemaker implantation. Clinical characteristics, echocardiographic parameters and expression levels of miR-208b-3p and miR-9 were assessed immediately and 3 months post-pacemaker implantation. PiCM was defined as a ≥10% reduction in LVEF at one year, with no alternative cause. Statistical analyses included correlation testing, ROC curve analysis, and multivariate regression to identify factors associated with PiCM. Results: Among 126 patients, 11.1% developed PiCM. Compared with the non-PiCM group, those who developed PiCM exhibited more pronounced 3-month changes in miR-208b-3p (median Δ3log miR: +1.3 vs. −0.4, p = 0.013) and miR-9 (median Δ3log miR: −1.7 vs. +0.21, p = 0.011). In multivariate analyses, Δ3LV-GLS, Δ3logmiR-208b-3p, and Δ3logmiR-9 were associated with a higher likelihood of PiCM. Among PiCM patients, Δ3logmiR-208b-3p correlated inversely with Δ3LV-GLS (r = −0.73, p = 0.016), while Δ3logmiR-9 correlated positively (r = 0.88, p < 0.001). ROC analyses demonstrated good predictive ability for Δ3LV-GLS (AUC = 0.924), Δ3log miR-208b-3p (AUC = 0.783), and Δ3log miR-9 (AUC = 0.835), with no significant differences between curves. Conclusions: Early LV-GLS deterioration and dynamic changes in expression of miR-208b-3p and miR-9 in PBMCs precede overt LV systolic dysfunction. These miRs may serve as early predictive biomarkers for PiCM. Full article
Show Figures

Figure 1

19 pages, 1018 KB  
Review
TG221: An Experimental Model for Liver Cancer Prevention and Treatment Approaches
by Elisa Callegari, Angelo Michilli, Farzaneh Moshiri, Bruno De Siena, Laura Gramantieri, Massimo Negrini and Silvia Sabbioni
BioTech 2026, 15(1), 9; https://doi.org/10.3390/biotech15010009 - 19 Jan 2026
Viewed by 29
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer mortality. It usually arises in cirrhotic liver, where chronic inflammation and fibrosis create a tumor-permissive microenvironment. Dysregulation of microRNAs (miRNAs), particularly upregulation of the oncomiR miR-221 and loss of the tumor suppressor miR-199a-3p represent [...] Read more.
Hepatocellular carcinoma (HCC) is a leading cause of cancer mortality. It usually arises in cirrhotic liver, where chronic inflammation and fibrosis create a tumor-permissive microenvironment. Dysregulation of microRNAs (miRNAs), particularly upregulation of the oncomiR miR-221 and loss of the tumor suppressor miR-199a-3p represent key drivers of liver carcinogenesis. The TG221 transgenic mouse, designed to overexpress miR-221 in hepatocytes, provides a relevant in vivo platform for mechanistic studies and for testing preventive and therapeutic approaches. The TG221 model recapitulates miR-221-driven tumorigenesis, including suppression of p27, p57 and Bmf. It is characterized by steatohepatitic injury and accelerated tumor formation after genotoxic challenge. In the cirrhotic CCl4-induced background, TG221 mice develop fibrosis and cirrhosis followed by dysplastic and malignant lesions, mirroring the natural history of human HCC. Metformin administered during early fibrosis prevented macroscopic tumor formation and suppressed PI3K/AKT/mTOR signaling. Anti-miR-221 and miR-199a-3p mimics reduced tumor burden, restored tumor-suppressive pathways and improved liver integrity, thus indicating feasible chemopreventive strategies. From a therapeutic point of view, miR-199a-3p replacement synergized with palbociclib and overcame sorafenib resistance. A miR-199a-3p-responsive oncolytic adenovirus achieved tumor-selective replication with minimal toxicity. This review highlights the importance of the TG221 transgenic mouse as a powerful model for studying miRNA-driven hepatocarcinogenesis and enables preclinical evaluation of RNA-based chemopreventive and therapeutic approaches. Metformin, miRNA inhibition, miRNA replacement and miRNA-guided viral therapies emerge as promising approaches for advancing precision prevention and treatment strategies in HCC. Full article
(This article belongs to the Special Issue BioTech: 5th Anniversary)
Show Figures

Figure 1

17 pages, 2761 KB  
Article
Plasma miRNA-Metabolite Dysregulation in People with HIV with Cirrhosis Despite Successful HCV Cure
by Ana Virseda-Berdices, Raquel Behar-Lagares, Juan Berenguer, Juan González-García, Belen Requena, Oscar Brochado-Kith, Cristina Díez, Victor Hontañon, Sergio Grande-García, Carolina González-Riano, Coral Barbas, Salvador Resino, Amanda Fernández-Rodríguez, María Ángeles Jiménez-Sousa and the Marathon Study Group
Pharmaceuticals 2026, 19(1), 170; https://doi.org/10.3390/ph19010170 - 19 Jan 2026
Viewed by 46
Abstract
Background: Persistent liver pathology despite a sustained virologic response (SVR) to hepatitis C virus (HCV) therapy is a major clinical concern. This is particularly relevant for people with HIV (PWH) with HCV coinfection, a population prone to accelerated liver disease progression. This [...] Read more.
Background: Persistent liver pathology despite a sustained virologic response (SVR) to hepatitis C virus (HCV) therapy is a major clinical concern. This is particularly relevant for people with HIV (PWH) with HCV coinfection, a population prone to accelerated liver disease progression. This study aimed to characterize the plasma miRNA profile in PWH with cirrhosis one year after successful completion of HCV therapy, and to explore their relationship with metabolite alterations. Methods: This cross-sectional study enrolled 47 PWH who achieved HCV clearance with antiviral therapy. Using plasma samples collected approximately one year after completion of HCV therapy, participants were stratified into two groups based on liver stiffness measurement (LSM): compensated cirrhosis (n = 32, LSM ≥ 12.5 kPa) and non-cirrhosis (n = 15, LSM < 12.5 kPa). Plasma miRNAs and metabolites were determined using small RNA sequencing and untargeted capillary electrophoresis-mass spectrometry (CE-MS), respectively. Significantly differentially expressed (SDE) miRNAs were identified using generalized linear models (GLM) with a negative binomial distribution, and their correlation with metabolite levels was quantified using Spearman’s correlation. Results: In the cirrhosis group (n = 32), we identified a distinct signature of 15 SDE miRNAs (9 upregulated, 6 downregulated) compared to the non-cirrhotic group (n = 15), showing hsa-miR-10401-3p, hsa-miR-548ak, hsa-miR-141-3p, and hsa-miR-3940-3p the largest expression changes. miRNA-gene interaction and pathway enrichment analysis suggested that these 15 SDE miRNAs potentially regulate multiple genes involved in immune response and amino acid metabolism. In addition, correlation analyses with our metabolomic data revealed significant associations between specific SDE miRNAs and amino acids and their derivatives. Specifically, the expression of upregulated miRNAs (e.g., hsa-miR-10401-3p and hsa-miR-16-5p) was positively correlated with plasma levels of L-methionine and its derivatives, while downregulated miRNAs (e.g., hsa-miR-625-5p) were inversely correlated with L-tryptophan. Conclusions: In cirrhotic PWH with history of HCV coinfection, a distinct plasma miRNA signature linked to dysregulated amino acid metabolism is found one year after completion of HCV therapy. This underscores that the HCV cure does not equate to complete hepatic recovery, highlighting the critical need for long-term monitoring in this high-risk population. Full article
Show Figures

Figure 1

13 pages, 853 KB  
Article
Dysregulated MicroRNAs in Parkinson’s Disease: Pathogenic Mechanisms and Biomarker Potential
by Yasemin Ünal, Dilek Akbaş, Çilem Özdemir and Tuba Edgünlü
Int. J. Mol. Sci. 2026, 27(2), 930; https://doi.org/10.3390/ijms27020930 - 17 Jan 2026
Viewed by 124
Abstract
Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized by dopaminergic neuronal loss and abnormal α-synuclein aggregation. Circulating microRNAs (miRNAs) have emerged as promising biomarkers and potential modulators of PD-related molecular pathways. In this study, we investigated the expression levels of four candidate [...] Read more.
Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized by dopaminergic neuronal loss and abnormal α-synuclein aggregation. Circulating microRNAs (miRNAs) have emerged as promising biomarkers and potential modulators of PD-related molecular pathways. In this study, we investigated the expression levels of four candidate miRNAs—miR-15a-5p, miR-16-5p, miR-139-5p, and miR-34a-3p—in patients with PD compared with healthy controls. A total of 47 PD patients and 45 age- and sex-matched controls were enrolled. Plasma miRNA levels were quantified using standardized RNA extraction, cDNA synthesis, and qPCR protocols. We observed marked upregulation of miR-15a-5p and robust downregulation of both miR-139-5p and miR-34a-3p in PD patients, whereas miR-16-5p showed no significant difference between groups. Target gene prediction and functional enrichment analysis identified 432 unique genes, with enrichment in biological processes related to protein ubiquitination and catabolic pathways, and signaling cascades such as mTOR, PI3K-Akt, MAPK, and Hippo pathways, all of which are implicated in neurodegeneration. Elevated miR-15a-5p may contribute to pro-apoptotic mechanisms, while reduced miR-139-5p and miR-34a-3p expression may reflect impaired mitochondrial function, diminished neuroprotection, or compensatory regulatory responses. Together, these dysregulated circulating miRNAs provide novel insight into PD pathophysiology and highlight their potential as accessible, non-invasive biomarkers. Further longitudinal studies in larger and more diverse cohorts are warranted to validate their diagnostic and prognostic value and to explore their utility as therapeutic targets. Full article
Show Figures

Figure 1

17 pages, 568 KB  
Article
Liquid Biopsy in Clear Cell Renal Cell Carcinoma: Diagnostic Potential of Urinary miRNAs
by Giacomo Vannuccini, Alessio Paladini, Matteo Mearini, Francesca Cocci, Giuseppe Giardino, Paolo Mangione, Vincenza Maulà, Daniele Mirra, Ettore Mearini and Giovanni Cochetti
Cancers 2026, 18(2), 285; https://doi.org/10.3390/cancers18020285 - 16 Jan 2026
Viewed by 238
Abstract
Background: Clear cell renal cell carcinoma (ccRCC) is the most prevalent kidney cancer subtype and, in most cases, it is incidentally diagnosed, as early-stage disease is often asymptomatic. Therefore, the identification of stable, noninvasive biomarkers is a major unmet clinical need. Urinary microRNAs [...] Read more.
Background: Clear cell renal cell carcinoma (ccRCC) is the most prevalent kidney cancer subtype and, in most cases, it is incidentally diagnosed, as early-stage disease is often asymptomatic. Therefore, the identification of stable, noninvasive biomarkers is a major unmet clinical need. Urinary microRNAs (miRNAs) have emerged as promising candidates since they are extraordinarily stable in urine and show a close relationship with tumour biology. Methods: In this study, urinary expression levels of five miRNAs (miR-15a, miR-15b, miR-16, miR-210, and miR-let-7b) were analysed in RCC patients before surgery, 5 days after, and one month after surgery, and compared to healthy controls. Results: Non-parametric analyses revealed significant postoperative decreases for miR-15a (p = 0.002), miR-16 (p = 0.025), miR-210 (p = 0.030), and in the overall miRNA Sum (p = 0.002), suggesting that these miRNAs are directly linked to tumour presence. In the comparison between preoperative and one-month postoperative samples, miR-let-7b (p = 0.049) and the global miRNA Sum (p = 0.037) remained significantly reduced after intervention, indicating a partial normalisation of urinary miRNA profiles. Correlation analyses demonstrated positive associations between specific miRNAs and clinical parameters such as age, ischemia time, and surgical time, reinforcing their potential relevance to tumour biology and treatment response. Conclusions: These findings support urinary miRNAs as promising, minimally invasive biomarkers for ccRCC diagnosis and postoperative monitoring. Full article
(This article belongs to the Special Issue miRNAs in Targeted Cancer Therapy)
Show Figures

Figure 1

18 pages, 14186 KB  
Article
Modulation of Cancer-Associated Fibroblasts via the miR-624-5p/FAP Axis Drives Progression and Metastasis in Non-Small Cell Lung Cancer
by Yan Zhao, Shuman Zhen, Xiaoxu Li, Xiaolin Chen, Xue Zhang, Xinming Zhao and Lihua Liu
Cancers 2026, 18(2), 279; https://doi.org/10.3390/cancers18020279 - 16 Jan 2026
Viewed by 99
Abstract
Background: Cancer-associated fibroblasts (CAFs) are key mediators of metastatic progression in non-small cell lung cancer (NSCLC). Fibroblast activation protein (FAP) serves as the hallmark of CAF activation. However, the upstream regulation of FAP remains elusive, limiting stroma-targeted therapy development. Methods: 68Ga-FAP inhibitor [...] Read more.
Background: Cancer-associated fibroblasts (CAFs) are key mediators of metastatic progression in non-small cell lung cancer (NSCLC). Fibroblast activation protein (FAP) serves as the hallmark of CAF activation. However, the upstream regulation of FAP remains elusive, limiting stroma-targeted therapy development. Methods: 68Ga-FAP inhibitor (FAPI)-04 PET/CT imaging was performed on 61 NSCLC patients to evaluate the clinical significance of FAP. CAFs and normal fibroblasts (NFs) were isolated from patient tissues. Bioinformatic analysis and qRT-PCR were employed to screen and validate miRNAs. Functional assays (CCK-8, collagen contraction, wound healing, transwell co-culture) were utilized to investigate the role of miR-624-5p in regulating fibroblast activation and the effects on the metastatic potential of NSCLC cells. The targeting relationship between miR-624-5p and FAP was validated using FISH, dual-luciferase assay, and Western blotting. Results: 68Ga-FAPI-04 uptake was higher in advanced NSCLC (p < 0.001) and correlated with tumor size, lymph node metastases, and distant metastases (p < 0.05). Isolated primary CAFs significantly enhanced the migration and invasion of A549 and PC9 cells compared to NFs (p < 0.001). We identified miR-624-5p as a significantly downregulated miRNA in CAFs (p < 0.001). Functionally, miR-624-5p overexpression inhibited CAF proliferation and collagen contraction (p < 0.01) and reduced the proliferation, migration, and invasion capabilities of A549 and PC9 cells (p < 0.001). Mechanistically, miR-624-5p bound to FAP mRNA and negatively regulated FAP expression (p < 0.001), thus suppressing CAF activation and tumor metastasis. Conclusions: Our findings establish miR-624-5p as a novel upstream regulator that suppresses FAP expression, consequently inhibiting CAF activation and its pro-metastatic function. Targeting the miR-624-5p/FAP axis represents a promising therapeutic strategy for NSCLC metastasis. Full article
(This article belongs to the Special Issue Lung Cancer: Updates on Therapy and Prognostic Prediction)
Show Figures

Figure 1

Back to TopTop