Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (90)

Search Parameters:
Keywords = methane seepage

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 21628 KiB  
Article
Key Controlling Factors of Deep Coalbed Methane Reservoir Characteristics in Yan’an Block, Ordos Basin: Based on Multi-Scale Pore Structure Characterization and Fluid Mobility Research
by Jianbo Sun, Sijie Han, Shiqi Liu, Jin Lin, Fukang Li, Gang Liu, Peng Shi and Hongbo Teng
Processes 2025, 13(8), 2382; https://doi.org/10.3390/pr13082382 - 27 Jul 2025
Viewed by 282
Abstract
The development of deep coalbed methane (buried depth > 2000 m) in the Yan’an block of Ordos Basin is limited by low permeability, the pore structure of the coal reservoir, and the gas–water occurrence relationship. It is urgent to clarify the key control [...] Read more.
The development of deep coalbed methane (buried depth > 2000 m) in the Yan’an block of Ordos Basin is limited by low permeability, the pore structure of the coal reservoir, and the gas–water occurrence relationship. It is urgent to clarify the key control mechanism of pore structure on gas migration. In this study, based on high-pressure mercury intrusion (pore size > 50 nm), low-temperature N2/CO2 adsorption (0.38–50 nm), low-field nuclear magnetic resonance technology, fractal theory and Pearson correlation coefficient analysis, quantitative characterization of multi-scale pore–fluid system was carried out. The results show that the multi-scale pore network in the study area jointly regulates the occurrence and migration process of deep coalbed methane in Yan’an through the ternary hierarchical gas control mechanism of ‘micropore adsorption dominant, mesopore diffusion connection and macroporous seepage bottleneck’. The fractal dimensions of micropores and seepage are between 2.17–2.29 and 2.46–2.58, respectively. The shape of micropores is relatively regular, the complexity of micropore structure is low, and the confined space is mainly slit-like or ink bottle-like. The pore-throat network structure is relatively homogeneous, the difference in pore throat size is reduced, and the seepage pore shape is simple. The bimodal structure of low-field nuclear magnetic resonance shows that the bound fluid is related to the development of micropores, and the fluid mobility mainly depends on the seepage pores. Pearson’s correlation coefficient showed that the specific surface area of micropores was strongly positively correlated with methane adsorption capacity, and the nanoscale pore-size dominated gas occurrence through van der Waals force physical adsorption. The specific surface area of mesopores is significantly positively correlated with the tortuosity. The roughness and branch structure of the inner surface of the channel lead to the extension of the migration path and the inhibition of methane diffusion efficiency. Seepage porosity is linearly correlated with gas permeability, and the scale of connected seepage pores dominates the seepage capacity of reservoirs. This study reveals the pore structure and ternary grading synergistic gas control mechanism of deep coal reservoirs in the Yan’an Block, which provides a theoretical basis for the development of deep coalbed methane. Full article
Show Figures

Figure 1

21 pages, 2249 KiB  
Article
Multifractal Characterization of Full-Scale Pore Structure in Middle-High-Rank Coal Reservoirs: Implications for Permeability Modeling in Western Guizhou–Eastern Yunnan Basin
by Fangkai Quan, Yanhui Zhang, Wei Lu, Chongtao Wei, Xuguang Dai and Zhengyuan Qin
Processes 2025, 13(6), 1927; https://doi.org/10.3390/pr13061927 - 18 Jun 2025
Viewed by 438
Abstract
This study presents a comprehensive multifractal characterization of full-scale pore structures in middle- to high-rank coal reservoirs from the Western Guizhou–Eastern Yunnan Basin and establishes a permeability prediction model integrating fractal heterogeneity and pore throat parameters. Eight coal samples were analyzed using mercury [...] Read more.
This study presents a comprehensive multifractal characterization of full-scale pore structures in middle- to high-rank coal reservoirs from the Western Guizhou–Eastern Yunnan Basin and establishes a permeability prediction model integrating fractal heterogeneity and pore throat parameters. Eight coal samples were analyzed using mercury intrusion porosimetry (MIP), low-pressure gas adsorption (N2/CO2), and multifractal theory to quantify multiscale pore heterogeneity and its implications for fluid transport. Results reveal weak correlations (R2 < 0.39) between conventional petrophysical parameters (ash yield, volatile matter, porosity) and permeability, underscoring the inadequacy of bulk properties in predicting flow behavior. Full-scale pore characterization identified distinct pore architecture regimes: Laochang block coals exhibit microporous dominance (0.45–0.55 nm) with CO2 adsorption capacities 78% higher than Tucheng samples, while Tucheng coals display enhanced seepage pore development (100–5000 nm), yielding 2.5× greater stage pore volumes. Multifractal analysis demonstrated significant heterogeneity (Δα = 0.98–1.82), with Laochang samples showing superior pore uniformity (D1 = 0.86 vs. 0.82) but inferior connectivity (D2 = 0.69 vs. 0.71). A novel permeability model was developed through multivariate regression, integrating the heterogeneity index (Δα) and effective pore throat diameter (D10), achieving exceptional predictive accuracy. The strong negative correlation between Δα and permeability (R = −0.93) highlights how pore complexity governs flow resistance, while D10’s positive influence (R = 0.72) emphasizes throat size control on fluid migration. This work provides a paradigm shift in coal reservoir evaluation, demonstrating that multiscale fractal heterogeneity, rather than conventional bulk properties, dictates permeability in anisotropic coal systems. The model offers critical insights for optimizing hydraulic fracturing and enhanced coalbed methane recovery in structurally heterogeneous basins. Full article
Show Figures

Figure 1

22 pages, 4926 KiB  
Article
Study on Air Injection to Enhance Coalbed Gas Extraction
by Yongpeng Fan, Longyong Shu, Xin Song and Haoran Gong
Processes 2025, 13(6), 1882; https://doi.org/10.3390/pr13061882 - 13 Jun 2025
Viewed by 290
Abstract
Gas extraction is an important means to reduce coalbed gas and ensure safe coal production. Injecting N2/CO2 into a coalbed can enhance coal seam gas extraction, but problems with N2/CO2 sources underground have prevented the wide application [...] Read more.
Gas extraction is an important means to reduce coalbed gas and ensure safe coal production. Injecting N2/CO2 into a coalbed can enhance coal seam gas extraction, but problems with N2/CO2 sources underground have prevented the wide application of this technology in coal mines. The air contains a large amount of N2, but only a few studies have investigated the injection of air into coalbeds to facilitate gas extraction. In this study, a thermal–hydraulic–solid coupling model for air-enhanced coalbed gas extraction (Air-ECGE) was established. Additionally, the impact of air injection on coalbed methane extraction was simulated, and field experiments were conducted on air injection to enhance gas extraction. The results showed that injecting high-pressure air into a coalbed can effectively facilitate gas desorption and gas migration within the coalbed, greatly improving the efficiency of gas extraction in the coalbed. In addition, owing to the large pressure gradient that can lead to fast coalbed gas seepage, the gas production rate of the extraction borehole is directly proportional to the gas injection pressure. Further, the spacing of the boreholes limits the influence range of the gas injection: the larger the spacing, the larger the influence range, and the higher the gas extraction rate of the extraction borehole. After injecting air into the coalbed of the Liuzhuang coal mine, the extraction flow rate and concentration of gas from the extraction boreholes both increased significantly. A certain delay effect was also observed in the gas injection effect, and the gas extraction flow rate only decreased after a period of time after the gas injection had stopped. Full article
Show Figures

Figure 1

21 pages, 5124 KiB  
Article
Full-Scale Pore Structure and Gas Adsorption Characteristics of the Medium-Rank Coals from Qinshui Basin, North China
by Yingchun Hu, Shan He, Feng Qiu, Yidong Cai, Haipeng Wei and Bin Li
Processes 2025, 13(6), 1862; https://doi.org/10.3390/pr13061862 - 12 Jun 2025
Viewed by 522
Abstract
To elucidate the gas adsorption characteristics of medium-rank coal, this study collected samples from fresh mining faces in the Qinshui Basin. A series of experiments were conducted, including low-temperature carbon dioxide adsorption, low-temperature liquid nitrogen adsorption, mercury intrusion, and methane isothermal adsorption experiments, [...] Read more.
To elucidate the gas adsorption characteristics of medium-rank coal, this study collected samples from fresh mining faces in the Qinshui Basin. A series of experiments were conducted, including low-temperature carbon dioxide adsorption, low-temperature liquid nitrogen adsorption, mercury intrusion, and methane isothermal adsorption experiments, which clarify the pore structure characteristics of medium-rank coals, reveal the gas adsorption behavior in medium-rank coal, and identify the control mechanism. The results demonstrate that the modified Dubinin–Radushkevich (D-R) isothermal adsorption model accurately describes the gas adsorption in medium-rank coal, with fitting errors remaining below 1%. Comprehensive pore structure analysis reveals that the coal pore volume consists primarily of absorption pores (<2 nm), transitional pores (10–100 nm), and seepage pores (>100 nm), while the specific surface area is predominantly contributed by absorption pores (<2 nm). At low pressures, gas molecules form monolayer adsorption on absorption pore (<2 nm) and adsorption pore (2–10 nm) surfaces. With increasing pressure, multilayer adsorption dominates. As pore filling approaches the maximum capacity, the adsorption rate decreases progressively until reaching an equilibrium, at which point the adsorption capacity attains its saturation limit. The adsorption data of the gas in medium-rank coal can be explained by the improved D-R isothermal adsorption model. The priority of gas filling in pores is different, and the absorption pore is normally better than the adsorption pore. The results provide a new idea and understanding for the further study of the coalbed gas adsorption mechanism. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

20 pages, 8410 KiB  
Review
CO2-ECBM from a Full-Chain Perspective: Mechanism Elucidation, Demonstration Practices, and Future Outlook
by Yinan Cui, Chao Li, Yuchen Tian, Bin Miao, Yanzhi Liu, Zekun Yue, Xuguang Dai, Jinghui Zhao, Hequn Gao, Hui Li, Yaozu Zhang, Guangrong Zhang, Bei Zhang, Shiqi Liu and Sijian Zheng
Energies 2025, 18(11), 2841; https://doi.org/10.3390/en18112841 - 29 May 2025
Viewed by 444
Abstract
CO2-enhanced coalbed methane recovery (CO2-ECBM) represents a promising pathway within carbon capture, utilization, and storage (CCUS) technologies, offering dual benefits of methane production and long-term CO2 sequestration. This review provides a comprehensive analysis of CO2-ECBM from [...] Read more.
CO2-enhanced coalbed methane recovery (CO2-ECBM) represents a promising pathway within carbon capture, utilization, and storage (CCUS) technologies, offering dual benefits of methane production and long-term CO2 sequestration. This review provides a comprehensive analysis of CO2-ECBM from a full-chain perspective (Mechanism, Practices, and Outlook), covering fundamental mechanisms and key engineering practices. It highlights the complex multi-physics processes involved, including competitive adsorption–desorption, diffusion and seepage, thermal effects, stress responses, and geochemical interactions. Recent progress in laboratory experiments, capacity assessments, site evaluations, monitoring techniques, and numerical simulations are systematically reviewed. Field studies indicate that CO2-ECBM performance is strongly influenced by reservoir pressure, temperature, injection rate, and coal seam properties. Structural conditions and multi-field coupling further affect storage efficiency and long-term security. This work also addresses major technical challenges such as real-time monitoring limitations, environmental risks, injection-induced seismicity, and economic constraints. Future research directions emphasize the need to deepen understanding of coupling mechanisms, improve monitoring frameworks, and advance integrated engineering optimization. By synthesizing recent advances and identifying research priorities, this review aims to provide theoretical support and practical guidance for the scalable deployment of CO2-ECBM, contributing to global energy transition and carbon neutrality goals. Full article
(This article belongs to the Special Issue Advances in Unconventional Reservoirs and Enhanced Oil Recovery)
Show Figures

Figure 1

28 pages, 13795 KiB  
Article
Research on Seepage and Phase Change Characteristics During Multi-Cycle Injection–Production in Oil Reservoir-Based Underground Gas Storage
by Yong Tang, Zhitao Tang, Jiazheng Qin, Youwei He, Yulong Luo, Minmao Cheng and Ziyan Wang
Energies 2025, 18(10), 2550; https://doi.org/10.3390/en18102550 - 14 May 2025
Cited by 1 | Viewed by 345
Abstract
China’s natural gas demand is growing under the “dual carbon” goal. However, the peaking capacity of gas storage remains insufficient. Oil reservoir-based underground gas storage (UGS) has, thus, emerged as a critical research focus due to its potential for efficient capacity expansion. The [...] Read more.
China’s natural gas demand is growing under the “dual carbon” goal. However, the peaking capacity of gas storage remains insufficient. Oil reservoir-based underground gas storage (UGS) has, thus, emerged as a critical research focus due to its potential for efficient capacity expansion. The complexity of seepage and phase change characteristics during the multi-cycle injection–production process has not been systematically elucidated. This study combines experimental and numerical simulations to examine the seepage and phase change characteristics. This study innovatively reveals the synergistic mechanism of permeability, pressure, and cycle. The control law of multi-factor coupling on the dynamic peaking capacity of UGS is first expounded. Oil–water mutual drive reduced oil displacement efficiency by 2.5–4.7%. Conversely, oil–gas mutual drive improved oil displacement efficiency by 3.0–4.5% and storage capacity by 4.7–6.5%. The fifth-cycle oil–gas mutual displacement in high-permeability cores (74 mD) under high pressure (22 MPa) exhibited reductions in irreducible water saturation (7.06 percentage points) and residual oil saturation (6.38 percentage points) compared with the first-cycle displacement in low-permeability cores (8.36 mD) under low pressure (16 MPa). Meanwhile, the gas storage capacity increased by 13.44 percentage points, and the displacement efficiency improved by 10.62 percentage points. Multi-cycle huff-and-puff experiments and numerical simulations revealed that post-depletion multi-cycle huff-and-puff operations can enhance the oil recovery factor by 2.74–4.22 percentage points compared to depletion. After five-cycle huff-and-puff, methane content in the produced gas increased from 80.2% to 87.3%, heavy components (C8+) in the remaining oil rose by 2.7%, and the viscosity of the remaining oil increased from 2.0 to 4.6 mPa·s. The deterioration of the physical properties of the remaining oil leads to a reduction in the recovery factor in the cycle stage. This study elucidates seepage mechanisms and phase evolution during multi-cycle injection–production, demonstrating the synergistic optimization of high-permeability reservoirs and high-pressure injection techniques for enhanced gas storage design and efficiency. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

17 pages, 3328 KiB  
Article
Effects of Supercritical CO2 Immersion Time on CO2/CH4 Gas Seepage Characteristics in Coal
by Ning Wang, Wengang Liu, Tuanjie Li, Shixing Fan, Rijun Li and Lin Li
Processes 2025, 13(5), 1419; https://doi.org/10.3390/pr13051419 - 7 May 2025
Viewed by 435
Abstract
Low permeability has always limited the efficient extraction of coalbed methane (CBM) in China. To investigate the permeability enhancement effect of supercritical CO2 on coal seams, experiments were conducted using a self-developed supercritical CO2 immersion system and a single-component gas (CO [...] Read more.
Low permeability has always limited the efficient extraction of coalbed methane (CBM) in China. To investigate the permeability enhancement effect of supercritical CO2 on coal seams, experiments were conducted using a self-developed supercritical CO2 immersion system and a single-component gas (CO2 and CH4) seepage experimental apparatus, considering different immersion times and injection pressures. The gas seepage characteristics of CO2 and CH4 in coal seams were studied under various conditions. Additionally, nuclear magnetic resonance (NMR) was used to obtain the porosity components of the coal samples at different immersion times. The changes in permeability before and after the experiment were compared to analyze the permeability enhancement effect of supercritical CO2 on the coal samples. The results show that the original porosity of the coal sample was 2.06%. After 5, 10, 15, and 20 days of immersion, the porosity of the coal samples increased by 2.78%, 3.26%, 3.22%, and 2.86%, respectively. After immersion in supercritical CO2, the porosity exhibited a trend of initially increasing and then decreasing. During the single-component gas seepage experiment following supercritical CO2 immersion, the outlet flow rates of both CO2 and CH4 reached their maximum on the 10th day of immersion. Compared with the 0-day immersion, the outlet flow rates of CO2 and CH4 increased by 4.49 times and 3.23 times, respectively. After immersion, the CH4 permeability within the coal sample was stronger than that of CO2. Full article
Show Figures

Figure 1

21 pages, 8468 KiB  
Article
Study on the Expansion Law of Pressure Drop Funnel in Unsaturated Low-Permeability Coalbed Methane Wells
by Lei Zhang, Qingfeng Zhang, Yuan Wang, Ziling Li, Haikun Lin, Xiaoguang Sun, Wei Sun, Junpeng Zou, Xiaofeng Chen and Quan Zhang
Processes 2025, 13(3), 826; https://doi.org/10.3390/pr13030826 - 12 Mar 2025
Viewed by 631
Abstract
In China, most medium- and shallow-depth coalbed methane (CBM) reservoirs are in the middle to late stages of development. Exploiting CBM in unsaturated low-permeability reservoirs remains particularly challenging. This study investigates the evolution of reservoir pressure in rock strata during CBM extraction from [...] Read more.
In China, most medium- and shallow-depth coalbed methane (CBM) reservoirs are in the middle to late stages of development. Exploiting CBM in unsaturated low-permeability reservoirs remains particularly challenging. This study investigates the evolution of reservoir pressure in rock strata during CBM extraction from a low-permeability coal seam in the Ordos Basin. By integrating the seepage equation, material balance equation, and fluid pressure theory, we establish a theoretical and numerical model of reservoir pressure dynamics under varying bottom-hole flowing pressures. The three-dimensional surface of reservoir pressure is characterized by the formation of a stable pressure drop funnel. The results show that gas–liquid flow capacity is significantly constrained in low-permeability reservoirs. A slower drainage control rate facilitates the formation of stable seepage channels and promotes the expansion of the seepage radius. Under ultra-low permeability (0.5 mD) to low permeability (2.5 mD) conditions, controlling the bottom-hole flowing pressure below the average value aids the effective expansion of the pressure drop funnel. Numerical simulations indicate that the seepage and desorption radii expand more effectively under low decline rates in low-permeability zones. Calculations based on production data reveal that, under ultra-low permeability conditions, Well V1 exhibits a narrower and more elongated pressure drop funnel than Well V2, which operates in a low permeability zone. Furthermore, well interference has a lesser effect on the expansion of the pressure drop funnel under ultra-low permeability conditions. These differences in the steady-state morphology of the pressure drop funnel ultimately lead to variations in production capacity. These findings provide a theoretical foundation and practical guidance for the rational development of low-permeability CBM reservoirs. Full article
(This article belongs to the Special Issue Oil and Gas Drilling Processes: Control and Optimization)
Show Figures

Figure 1

16 pages, 9046 KiB  
Article
Study on Pore Structure of Tectonically Deformed Coals by Carbon Dioxide Adsorption and Nitrogen Adsorption Methods
by Jinbo Zhang, Huazhou Huang, Wenbing Zhou, Lin Sun and Zaixing Huang
Energies 2025, 18(4), 887; https://doi.org/10.3390/en18040887 - 13 Feb 2025
Cited by 2 | Viewed by 549
Abstract
The study of pore characteristics in tectonic coal is essential for a deeper understanding of gas diffusion, seepage, and other transport processes within coal seams, and plays a crucial role in the development of coalbed methane resources. Based on low-temperature N2 and [...] Read more.
The study of pore characteristics in tectonic coal is essential for a deeper understanding of gas diffusion, seepage, and other transport processes within coal seams, and plays a crucial role in the development of coalbed methane resources. Based on low-temperature N2 and CO2 adsorption experiments, this study investigated the pore structure characteristics of four tectonic coal samples collected from the Hegang and Jixi basins in China. The results show that the mylonitic coal sample exhibits a clear capillary condensation and evaporation phenomenon around a relative pressure (P/P0) of 0.5. The degree of tectonic deformation in coal has a significant impact on its pore characteristics. As the degree of deformation increases, both the pore volume and specific surface area of the coal gradually increase. The pore volume and specific surface area of micropores are primarily concentrated in pores with diameters of 0.5–0.7 nm and 0.8–0.9 nm, while those of mesopores are mainly distributed in pores with diameters of 2.3–6.2 nm. The proportion of pore volume and specific surface area contributed by micropores is much greater than that of mesopores. The fractal dimension is positively correlated with the degree of tectonic deformation in coal. As the fractal dimension increases, the average pore diameter decreases, closely tied to the destruction and reconstruction of the coal’s pore structure under tectonic stress. These findings will contribute to a deeper understanding of the pore structure characteristics of tectonic coal and effectively advance coalbed methane development. Full article
(This article belongs to the Collection Feature Papers in Carbon Capture, Utilization, and Storage)
Show Figures

Figure 1

19 pages, 5031 KiB  
Article
Fractal Characterization and Pore Evolution in Coal Under Tri-Axial Cyclic Loading–Unloading: Insights from Low-Field NMR Imaging and Analysis
by Zelin Liu, Senlin Xie, Yajun Yin and Teng Su
Fractal Fract. 2025, 9(2), 93; https://doi.org/10.3390/fractalfract9020093 - 1 Feb 2025
Viewed by 805
Abstract
Coal resource extraction and utilization are essential for sustainable development and economic growth. This study integrates a pseudo-triaxial mechanical loading system with low-field nuclear magnetic resonance (NMR) to enable the preliminary visualization of coal’s pore-fracture structure (PFS) under mechanical stress. Pseudo-triaxial and cyclic [...] Read more.
Coal resource extraction and utilization are essential for sustainable development and economic growth. This study integrates a pseudo-triaxial mechanical loading system with low-field nuclear magnetic resonance (NMR) to enable the preliminary visualization of coal’s pore-fracture structure (PFS) under mechanical stress. Pseudo-triaxial and cyclic loading–unloading tests were combined with real-time NMR monitoring to model porosity recovery, pore size evolution, and energy dissipation, while also calculating the fractal dimensions of pores in relation to stress. The results show that during the compaction phase, primary pores are compressed with limited recovery after unloading. In the elastic phase, both adsorption and seepage pores transform significantly, with most recovering post-unloading. After yield stress, new fractures and pores form, and unloading enhances fracture connectivity. Seepage pore porosity shows a negative exponential relationship with axial strain before yielding, and a logarithmic relationship afterward. The fractal dimension of adsorption pores decreases during compaction and increases afterward, while the fractal dimension of seepage pores decreases before yielding and increases post-yielding. These findings provide new insights into the flow patterns of methane in coal seams. Full article
(This article belongs to the Special Issue Fractal Dimensions with Applications in the Real World)
Show Figures

Figure 1

18 pages, 4351 KiB  
Article
Influences of Different Factors and Sensitivity Analysis of Permeability of Gassy Coal
by Bo Li, Yong Yuan, Yunpei Liang and Zhenghan Qin
Appl. Sci. 2025, 15(2), 808; https://doi.org/10.3390/app15020808 - 15 Jan 2025
Viewed by 681
Abstract
Influencing factors and sensitivity analysis of coal permeability are significant for reasonably setting coalbed methane (CBM) extraction parameters and increasing CBM output. Seepage tests were conducted on gassy coal using a seepage test system for damaged coal and rock mass under various conditions [...] Read more.
Influencing factors and sensitivity analysis of coal permeability are significant for reasonably setting coalbed methane (CBM) extraction parameters and increasing CBM output. Seepage tests were conducted on gassy coal using a seepage test system for damaged coal and rock mass under various conditions of axial pressure, confining pressure, and gas pressure. Moreover, the influences of different factors on the permeability of gassy coal and the sensitivity of permeability to these factors were analyzed. Research results show that under the same confining pressure, the relationship between permeability and axial pressure of gassy coal meets the quadratic polynomial function; under the same axial pressure, the permeability changes with the confining pressure as a power function. The permeability of gassy coal is far more sensitive to confining pressure than to axial pressure during axial seepage. Under the same axial pressure and confining pressure (same stress), the permeability of gassy coal reduces at first and then increases in a V-shaped trend with growing gas pressure. There is a turning point in the seepage tests, that is, the critical gas pressure. When the gas pressure is lower than the critical value, the slippage effect plays the leading role in the variation of permeability of the coal; on the contrary, effective stress plays the dominant role. In the non-isobaric deviatoric stress state, the permeability of gassy coal is most sensitive to the confining pressure, followed successively by gas pressure and axial pressure. The research results provide a theoretical basis for precise gas extraction and control in coal seams. Full article
Show Figures

Figure 1

24 pages, 5031 KiB  
Article
Effect of the Heterogeneity of Coal on Its Seepage Anisotropy: A Micro Conceptual Model
by Xiuling Chen, Guanglei Cui, Jiaming Luo, Chunguang Wang and Jian Zhang
Energies 2024, 17(24), 6484; https://doi.org/10.3390/en17246484 - 23 Dec 2024
Viewed by 720
Abstract
Coal is a typical dual-porosity structural material. The injection of CO2 into coal seams has been shown to be an effective method for storing greenhouse gasses and extracting coal bed methane. In light of the theory of dual-porosity media, we investigate the [...] Read more.
Coal is a typical dual-porosity structural material. The injection of CO2 into coal seams has been shown to be an effective method for storing greenhouse gasses and extracting coal bed methane. In light of the theory of dual-porosity media, we investigate the impact of non-homogeneity on seepage anisotropy and examine the influence of CO2 gas injection on the anisotropy of coal and the permeability of fractures. The results demonstrate that under constant pressure conditions, coal rock has the greatest permeability variation in the direction of face cleats and the smallest changes in the direction of vertical bedding. The more pronounced the heterogeneity, the more evident the change in permeability and the less pronounced the decreasing stage of permeability. Additionally, the larger the diffusion coefficient is, the less pronounced the permeability change. The change in permeability is inversely proportional to the size of the adsorption constant and directly proportional to the size of the fracture. As the matrix block size increases, the permeability also increases, whereas the decrease in permeability becomes less pronounced. The findings of this study offer a theoretical basis for further research into methods for enhancing the CO2 sequestration rate. Full article
(This article belongs to the Special Issue Advances in the Development of Geoenergy: 2nd Edition)
Show Figures

Figure 1

17 pages, 3965 KiB  
Article
Investigation into Enhancing Methane Recovery and Sequestration Mechanism in Deep Coal Seams by CO2 Injection
by Xiongwei Sun, Hongya Wang, Bin Gong, Heng Zhao, Haoqiang Wu, Nan Wu, Wei Sun, Shizhao Zhang and Ke Jiang
Energies 2024, 17(22), 5659; https://doi.org/10.3390/en17225659 - 13 Nov 2024
Cited by 2 | Viewed by 1115
Abstract
Injecting CO2 into coal seams to enhance coal bed methane (ECBM) recovery has been identified as a viable method for increasing methane extraction. This process also has significant potential for sequestering large volumes of CO2, thereby reducing the concentration of [...] Read more.
Injecting CO2 into coal seams to enhance coal bed methane (ECBM) recovery has been identified as a viable method for increasing methane extraction. This process also has significant potential for sequestering large volumes of CO2, thereby reducing the concentration of greenhouse gases in the atmosphere. However, for deep coal seams where formation pressure is relatively high, there is limited research on CO2 injection into systems with higher methane adsorption equilibrium pressure. Existing studies, mostly confined to the low-pressure stage, fail to effectively reveal the impact of factors such as temperature, high-pressure CO2 injection, and coal types on enhancing the recovery and sequestration of CO2-displaced methane. Thus, this study aims to investigate the influence of temperature, pressure, and coal types on ECBM recovery and CO2 sequestration in deep coal seams. A series of CO2 core flooding tests were conducted on various coal cores, with CO2 injection pressures ranging from 8 to 18 MPa. The CO2 and methane adsorption rates, as well as methane displacement efficiency, were calculated and recorded to facilitate result interpretation. Based on the results of these physical experiments, numerical simulation was conducted to study multi-component competitive adsorption, desorption, and seepage flow under high temperature and high pressure in a deep coal seam’s horizontal well. Finally, the optimization of the total injection amount (0.7 PV) and injection pressure (approximately 15.0 MPa) was carried out for the plan of CO2 displacement of methane in a single well in the later stage. Full article
(This article belongs to the Special Issue CO2 Capture, Utilization and Storage)
Show Figures

Figure 1

13 pages, 2366 KiB  
Article
Numerical Simulation of the Coal Measure Gas Accumulation Process in Well Z-7 in Qinshui Basin
by Gaoyuan Yan, Yu Song, Fangkai Quan, Qiangqiang Cheng and Peng Wu
Processes 2024, 12(11), 2491; https://doi.org/10.3390/pr12112491 - 9 Nov 2024
Viewed by 911
Abstract
The process of coal measure gas accumulation is relatively complex, involving multiple physicochemical processes such as migration, adsorption, desorption, and seepage of multiphase fluids (e.g., methane and water) in coal measure strata. This process is constrained by multiple factors, including geological structure, reservoir [...] Read more.
The process of coal measure gas accumulation is relatively complex, involving multiple physicochemical processes such as migration, adsorption, desorption, and seepage of multiphase fluids (e.g., methane and water) in coal measure strata. This process is constrained by multiple factors, including geological structure, reservoir physical properties, fluid pressure, and temperature. This study used Well Z-7 in the Qinshui Basin as the research object as well as numerical simulations to reveal the processes of methane generation, migration, accumulation, and dissipation in the geological history. The results indicate that the gas content of the reservoir was basically zero in the early stage (before 25 Ma), and the gas content peaks all appeared after the peak of hydrocarbon generation (after 208 Ma). During the peak gas generation stage, the gas content increased sharply in the early stages. In the later stage, because of the pressurization of the hydrocarbon generation, the caprock broke through and was lost, and the gas content decreased in a zigzag manner. The reservoirs in the middle and upper parts of the coal measure were easily charged, which was consistent with the upward trend of diffusion and dissipation and had a certain relationship with the cumulative breakout and seepage dissipation. The gas contents of coal, shale, and tight sandstone reservoirs were positively correlated with the mature hydrocarbon generation of organic matter in coal seams, with the differences between different reservoirs gradually narrowing over time. Full article
Show Figures

Figure 1

18 pages, 8503 KiB  
Article
Characterization of Gas Seepage in the Mining Goaf Area for Sustainable Development: A Numerical Simulation Study
by Bing Li, Hao Li, Yuchen Tian, Helong Zhang, Qingfa Liao, Shiheng Chen, Yinghai Liu, Yanzhi Liu, Shiqi Liu, Shuxun Sang and Sijian Zheng
Sustainability 2024, 16(20), 8978; https://doi.org/10.3390/su16208978 - 17 Oct 2024
Viewed by 1036
Abstract
An in-depth understanding of gas (oxygen and methane) seepage characteristics in coal mine goafs is essential for the safe production of mines and for advancing sustainable development practices within the mining industry. However, the gas distribution and its flow processes still remain ambiguous. [...] Read more.
An in-depth understanding of gas (oxygen and methane) seepage characteristics in coal mine goafs is essential for the safe production of mines and for advancing sustainable development practices within the mining industry. However, the gas distribution and its flow processes still remain ambiguous. In this article, we developed a three-dimensional porous media mining goaf mathematical model (considering the heterogeneity) to analyze the methane and oxygen flow features. Firstly, based on the variation laws of the “three zones”—the free caving zone, fracture zone, and subsidence zone—porosity changes in the vertical direction were set. A three-dimensional physical model of a fully mechanized caving mining area with a “U”-shaped ventilation system was established as the basis, and a COMSOL Multiphysics multi-field coupled model was built. Secondly, based on the established model, the characteristics of porosity distribution, mixed gas pressure changes, and the volume fraction of oxygen in the goaf were analyzed. The results show that as the distance from the working face increases, the compaction intensity in the mined-out area gradually rises, resulting in a decreasing porosity trend. The porosity distribution characteristics significantly impact the mechanical behavior and gas flow. The gas pressure inside the mined-out area is much higher than the surroundings, decreasing with depth. The upper and middle parts have the highest-pressure concentrations, requiring focused assessment and targeted monitoring measures based on the pressure characteristics of different regions. The oxygen concentration gradually decreases with depth due to poor ventilation, leading to potential explosive gas mixtures, necessitating ventilation system optimization, enhanced monitoring, and emergency preparedness. The gas exhibits vertical stratification, with higher concentrations in the upper and deep regions. Targeted drainage and ventilation methods can effectively control the gas concentration and ensure production safety. Full article
Show Figures

Figure 1

Back to TopTop