Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (123)

Search Parameters:
Keywords = methane hydrate sediments

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 5533 KB  
Article
Sedimentary Processes of Gas Hydrate-Bearing Layers in the Dongsha Area, South China Sea: Implications for Hydrate Accumulation
by Yuhan Wang, Chenyang Bai, Zhe Wang, Wenlin Chen, Xiaolei Xu, Hongyuan Xu and Hongbin Wang
J. Mar. Sci. Eng. 2025, 13(8), 1550; https://doi.org/10.3390/jmse13081550 - 12 Aug 2025
Viewed by 377
Abstract
The methane flux in the Dongsha area in the northern South China Sea is relatively high. The results indicate the presence of both shallow and deep gas hydrate reservoirs at the Site DS-W08. The gas hydrate reservoir in this area is mainly composed [...] Read more.
The methane flux in the Dongsha area in the northern South China Sea is relatively high. The results indicate the presence of both shallow and deep gas hydrate reservoirs at the Site DS-W08. The gas hydrate reservoir in this area is mainly composed of fine-grained sediments, and high-saturation gas hydrates are present. The shallow-GHR (8–24 mbsf) exhibits a maximum hydrate saturation of 14% (pore volume). The deep-GHR (below 65 mbsf) shows a maximum hydrate saturation of 33% The suspended sedimentation process on the banks of turbidity currents and the deep-water traction current sedimentation process play potentially important roles in the enrichment of gas hydrates. To investigate the influence of sedimentary processes on gas hydrate accumulation, this study analyzed gas hydrate saturation, sediment grain size, grain compositions, biological components, and geochemical characteristics of hydrate-bearing and adjacent layers at Site DS-W08. Sediment grain size analysis suggests that the studied layer was formed through the interaction of turbidity current-induced overbank suspended deposition and traction current deposition. By comprehensively analyzing the comparison of sediment Sr/Ba ratios and the data of foraminifera and calcareous nannofossils, it is found that the bank deposits and traction current deposits triggered by turbidity currents correspond to glacial periods and interglacial periods, respectively. Analysis of biological components shows that layers with high foraminifera content and traction current-modified sediments are more favorable for gas hydrate accumulation. Hydrate reservoirs are all composed of traction current deposits, and the cap rock rich in foraminifera fossils at the top promotes hydrate formation; while the fine-grained turbidites formed during the turbidite deposition process inhibit hydrate accumulation. This study aims to deepen the understanding of the enrichment mechanism of natural gas hydrates and support the commercial development of fine-grained sediments in the northern South China Sea. Full article
Show Figures

Figure 1

16 pages, 3152 KB  
Article
Determining the Minimum Detection Limit of Methane Hydrate Using Associated Alpha Particle Technique
by Josip Batur, Davorin Sudac, Ilker Meric, Vladivoj Valković, Karlo Nađ and Jasmina Obhođaš
J. Mar. Sci. Eng. 2025, 13(6), 1050; https://doi.org/10.3390/jmse13061050 - 27 May 2025
Viewed by 613
Abstract
Methane hydrate is a crystalline compound in which methane is trapped within a water lattice under high-pressure, low-temperature conditions. Its presence in oceanic and permafrost sediments makes it a promising alternative energy source, but also a potential contributor to climate change. Accurate in [...] Read more.
Methane hydrate is a crystalline compound in which methane is trapped within a water lattice under high-pressure, low-temperature conditions. Its presence in oceanic and permafrost sediments makes it a promising alternative energy source, but also a potential contributor to climate change. Accurate in situ detection remains a major challenge due to hydrate’s dispersed occurrence and the limitations of conventional geophysical methods. This study investigates the feasibility of using the associated alpha particle (AAP) technique for the direct detection of methane hydrate. A series of laboratory measurements was conducted on sand-based samples with varying levels of methane hydrate simulant. Using a 14 MeV neutron generator and a LaBr3 gamma detector, the 4.44 MeV carbon peak was monitored and calibrated against volumetric hydrate saturation. The minimum detection limit (MDL) was experimentally determined to be (67±25)%. Although the result is subject to high uncertainty, it provides a preliminary benchmark for evaluating the method’s sensitivity and highlights the potential of AAP-based gamma spectroscopy for in situ detection, especially when supported by higher neutron flux in future applications. Full article
(This article belongs to the Special Issue Advances in Marine Gas Hydrates)
Show Figures

Figure 1

18 pages, 6428 KB  
Article
Mohr–Coulomb-Model-Based Study on Gas Hydrate-Bearing Sediments and Associated Variance-Based Global Sensitivity Analysis
by Chenglang Li, Jie Yuan, Jie Cui, Yi Shan and Shuman Yu
J. Mar. Sci. Eng. 2025, 13(3), 440; https://doi.org/10.3390/jmse13030440 - 26 Feb 2025
Cited by 2 | Viewed by 659
Abstract
Different gas hydrate types, such as methane hydrate and carbon dioxide hydrate, exhibit distinct geomechanical responses and hydrate morphologies in gas-hydrate-bearing sediments (GHBSs). However, most constitutive models for GHBSs focus on methane-hydrate-bearing sediments (MHBSs), while largely overlooking carbon-dioxide-hydrate-bearing sediments (CHBSs). This paper proposes [...] Read more.
Different gas hydrate types, such as methane hydrate and carbon dioxide hydrate, exhibit distinct geomechanical responses and hydrate morphologies in gas-hydrate-bearing sediments (GHBSs). However, most constitutive models for GHBSs focus on methane-hydrate-bearing sediments (MHBSs), while largely overlooking carbon-dioxide-hydrate-bearing sediments (CHBSs). This paper proposes a modified Mohr–Coulomb (M-C) model for GHBSs that incorporates the geomechanical effects of both MHBSs and CHBSs. The model integrates diverse hydrate morphologies—cementing, load-bearing, and pore-filling—into hydrate saturation and incorporates an effective confining pressure. Its validity was demonstrated through simulations of reported triaxial compression tests for both MHBSs and CHBSs. Moreover, a variance-based sensitivity analysis using Sobol’s method evaluated the effects of hydrate-related soil properties on the geomechanical behavior of GHBSs. The results indicate that the shear modulus influences the yield axial strain of the CHBSs and could be up to 1.15 times more than that of the MHBSs. Similarly, the bulk modulus showed an approximate 5% increase in its impact on the yield volumetric strain of the CHBSs compared with the MHBSs. These findings provide a unified framework for modeling GHBSs and have implications for CO2-injection-induced methane production from deep sediments, advancing the understanding and simulation of GHBS geomechanical behavior. Full article
(This article belongs to the Section Geological Oceanography)
Show Figures

Figure 1

25 pages, 5642 KB  
Article
Effect of Methane Gas Hydrate Content of Marine Sediment on Ocean Wave-Induced Oscillatory Excess Pore Water Pressure and Geotechnical Implications
by Adango Miadonye and Mumuni Amadu
Fuels 2025, 6(1), 4; https://doi.org/10.3390/fuels6010004 - 8 Jan 2025
Viewed by 1613
Abstract
Methane gas hydrate-bearing sediments hold substantial natural gas reserves, and to understand their potential roles in the energy sector as the next generation of energy resources, considerable research is being conducted in industry and academia. Consequently, safe and economically feasible extraction methods are [...] Read more.
Methane gas hydrate-bearing sediments hold substantial natural gas reserves, and to understand their potential roles in the energy sector as the next generation of energy resources, considerable research is being conducted in industry and academia. Consequently, safe and economically feasible extraction methods are being vigorously researched, as are methods designed to estimate site-specific reserves. In addition, the presence of methane gas hydrates and their dissociation have been known to impact the geotechnical properties of submarine foundation soils and slopes. In this paper, we advance research on gas hydrate-bearing sediments by theoretically studying the effect of the hydromechanical coupling process related to ocean wave hydrodynamics. In this regard, we have studied two geotechnically and theoretically relevant situations related to the oscillatory wave-induced hydromechanical coupling process. Our results show that the presence of initial methane gas pressure leads to excessively high oscillatory pore pressure, which confirms the instability of submarine slopes with methane gas hydrate accumulation originally reported in the geotechnical literature. In addition, our results show that neglecting the presence of initial methane gas pressure in gas hydrate-bearing sediments in the theoretical description of the oscillatory excess pore pressure can lead to improper geotechnical planning. Moreover, the theoretical evolution of oscillatory excess pore water pressure with depth indicates a damping trend in magnitude, leading to a stable value with depth. Full article
(This article belongs to the Special Issue Feature Papers in Fuels)
Show Figures

Figure 1

16 pages, 6328 KB  
Article
Gas Transport Arising from the Decomposition of Methane Hydrates in the Sediments of the Arctic Shelf to the Atmosphere: Numerical Modeling
by Mariia Trimonova, Nikolay Baryshnikov and Sergey Turuntaev
Atmosphere 2025, 16(1), 9; https://doi.org/10.3390/atmos16010009 - 26 Dec 2024
Viewed by 923
Abstract
This study investigates the transport of methane released from gas hydrate decomposition through sedimentary layers to quantify its flux into the atmosphere, a critical process given methane’s role as a major greenhouse gas. A novel methodology was developed to model two-phase, unsteady gas [...] Read more.
This study investigates the transport of methane released from gas hydrate decomposition through sedimentary layers to quantify its flux into the atmosphere, a critical process given methane’s role as a major greenhouse gas. A novel methodology was developed to model two-phase, unsteady gas flow in regions of hydrate decomposition, incorporating key factors such as relative permeability curves, capillary pressure, hydrostatics, and gas diffusion. Numerical simulations revealed that to achieve a gas front rise rate of 7 m/year, the gas accumulation rate must not exceed 10−8 kg/m3·s. At higher accumulation rates (10−6 kg/m3·s), gas diffusion has minimal impact on the saturation front movement, whereas at lower rates (10−8 kg/m3·s), diffusion significantly affects the front’s behavior. The study also established that the critical gas accumulation rate required to trigger sediment blowout in the hydrate decomposition zone is approximately 10−6 kg/m3·s, several orders of magnitude greater than typical bubble gas fluxes observed at the ocean surface. The proposed model improves the ability to predict the contribution of Arctic shelf methane hydrate decomposition to atmospheric methane concentrations. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

15 pages, 15237 KB  
Article
Uncertainty Analysis of Biogas Generation and Gas Hydrate Accumulations in the Baiyun Sag, South China Sea
by Pibo Su, Jinqiang Liang, Huai Cheng, Yaoyao Lv, Wei Zhang and Zuofei Zhu
Microorganisms 2025, 13(1), 5; https://doi.org/10.3390/microorganisms13010005 - 24 Dec 2024
Viewed by 777
Abstract
In this study, we use petroleum systems modeling (PSM) to quantitatively simulate the uncertainty of biogenic gas generation modes and their impact on the spatial distribution and resource assessment of gas hydrates in the Baiyun Sag, South China Sea. The results are as [...] Read more.
In this study, we use petroleum systems modeling (PSM) to quantitatively simulate the uncertainty of biogenic gas generation modes and their impact on the spatial distribution and resource assessment of gas hydrates in the Baiyun Sag, South China Sea. The results are as follows: (1) Biogenic gas generation is significantly affected by thermal state and organic matter type. Low temperature is a primary reason for gas hydrate occurrence in shallower sediments when sufficient methane gas is present. This may be due to higher thermal conductivity of the overlying sediments, slower sediment burial rates, or other geological processes. (2) Natural gas hydrate resources are significantly controlled by biogenic gas generation. In addition to the thermal conditions of the source rock or sediment, the nature of the organic matter is another crucial factor. Generally, low-temperature methanogens produce more methane gas because they require less energy, whereas high-temperature methanogens require more energy and thus produce less methane gas. (3) The biogas generation thermal model is key to controlling the location and quantity of natural gas hydrate resources. The three possible gas-phase models, K0, K1, and K2 (representing different methanogens), produce varying amounts of methane gas over time, resulting in different amounts of natural gas hydrate resources. Additionally, the preservation of various methanogens in biogas source rocks can alter reservoir formation locations, influencing the scale and genetic model of natural gas hydrate resources. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

14 pages, 4728 KB  
Article
Experimental Analysis of Elastic Property Variations in Methane Hydrate-Bearing Sediments with Different Porosities
by Weiping Xu, Bangrang Di, Haifeng Chen and Jianxin Wei
J. Mar. Sci. Eng. 2024, 12(12), 2370; https://doi.org/10.3390/jmse12122370 - 23 Dec 2024
Cited by 1 | Viewed by 900
Abstract
Natural gas hydrates, a promising clean energy resource, hold substantial potential. Porosity plays a crucial role in hydrate systems by influencing formation processes and physical properties. To clarify the effects of porosity on hydrate elasticity, we examined methane hydrate formation and its acoustic [...] Read more.
Natural gas hydrates, a promising clean energy resource, hold substantial potential. Porosity plays a crucial role in hydrate systems by influencing formation processes and physical properties. To clarify the effects of porosity on hydrate elasticity, we examined methane hydrate formation and its acoustic characteristics. Experiments were conducted on sediment samples with porosities of 23%, 32%, and 37%. P- and S-wave velocities were measured to assess acoustic responses. Results show that as hydrate saturation increases, sample acoustic velocity also rises. However, high-porosity samples consistently exhibit lower acoustic velocities compared to low-porosity samples and reach a lower maximum hydrate saturation. This behavior is attributed to rapid pore filling in high-porosity samples, which blocks flow pathways and limits further hydrate formation. In contrast, hydrate formation in low-porosity sediments progresses more gradually, maintaining clearer pore channels and resulting in relatively higher hydrate saturation. Higher porosity also accelerates the shift of hydrates from cementing to load-bearing morphologies. These findings underscore porosity’s significant influence on hydrate formation and provide insights into observed variations in hydrate saturation and acoustic velocity across different experimental conditions. Full article
(This article belongs to the Section Marine Energy)
Show Figures

Figure 1

21 pages, 7616 KB  
Article
Numerical Simulation of a Marine Landslide in Gas Hydrate-Bearing Sediments Using L-GSM
by Da Hui, Guangyao Wang, Yilin Huang, Guixun Zhu and Wenming Li
J. Mar. Sci. Eng. 2024, 12(12), 2274; https://doi.org/10.3390/jmse12122274 - 11 Dec 2024
Viewed by 887
Abstract
The marine gas hydrates within seabed sediments and their subsequent extraction may cause landslides. Predicting landslides in hydrate-bearing sediments is particularly challenging due to the intricate nature of the marine environment. To address this issue, we have developed a Lagrangian gradient smoothing method [...] Read more.
The marine gas hydrates within seabed sediments and their subsequent extraction may cause landslides. Predicting landslides in hydrate-bearing sediments is particularly challenging due to the intricate nature of the marine environment. To address this issue, we have developed a Lagrangian gradient smoothing method (L-GSM) based on gradient smoothing techniques. This approach effectively eliminates the tensile instability inherent in the original Smoothed Particle Hydrodynamics (SPH) method used for modeling solid flow. Then, we applied the L-GSM to investigate the mechanics of hydrate-bearing sediments by integrating a constitutive equation specific to these sediments, which were modeled based on the artificial methane-hydrate-bearing sediment. The robustness and precision of the L-GSM were verified through various numerical examples. Furthermore, we modeled the landslides associated with hydrate-bearing sediments under varying hydrate saturation levels. The numerical findings revealed that hydrate saturation significantly affects the dynamics of landslide movement. These satisfactory results suggest that the L-GSM has the potential to be applied to geotechnical problems associated with hydrate-bearing sediment. Full article
Show Figures

Figure 1

18 pages, 2817 KB  
Article
A Comparative Study on Acoustic Characteristics of Methane and Tetrahydrofuran Hydrate-Bearing Sediments
by Wengao Zhao, Qingtao Bu, Zihao Wang, Tong Liu, Qingguo Meng, Yapeng Zhao and Gaowei Hu
J. Mar. Sci. Eng. 2024, 12(12), 2239; https://doi.org/10.3390/jmse12122239 - 5 Dec 2024
Viewed by 1054
Abstract
Laboratory acoustic measurements of hydrate-bearing sediments serve as an important reference for the geological interpretation of seismic exploration data. Tetrahydrofuran (THF) hydrates are relatively easy to form with precise control of hydrate saturation, and they overcome the long time it takes for methane [...] Read more.
Laboratory acoustic measurements of hydrate-bearing sediments serve as an important reference for the geological interpretation of seismic exploration data. Tetrahydrofuran (THF) hydrates are relatively easy to form with precise control of hydrate saturation, and they overcome the long time it takes for methane in sediments to form hydrate. However, when THF hydrates are used as a substitute for methane hydrate, their acoustic properties yield different results. This study reports the results of a series of laboratory experiments on the formation of methane and THF hydrate in quartz sand and the evaluation of their acoustic properties. It compares the experimental results with the results of calculations from micro-distribution models of the four hydrates using effective medium theory (EMT). Methane hydrate formed by the excess gas method has higher acoustic velocities than THF hydrate at 0–80% saturation, but at 80–100% saturation, the situation reverses, with THF hydrate having a higher wave velocity. The methane hydrate synthesis process follows a mixed micro-distribution, with grain coating predominating at low saturations, the pore-filling mixing mode dominating at medium saturations, and grain coating dominating at high saturations. In addition, THF hydrate has a slow-velocity growth at low saturation and is dominated by a pore-filling model and a load-bearing model at high saturation. We compared our experimental data with a compilation of similar published results to confirm their reliability and support our conclusions. Both hydrate types exhibit distinct micro-distributions across different saturations. Therefore, when testing the elastic characteristics of hydrate sediments, the distinct hydrate synthesis methods and micro-distribution should be considered, especially when using THF hydrate as an alternative to methane hydrate. Full article
(This article belongs to the Section Geological Oceanography)
Show Figures

Figure 1

16 pages, 2909 KB  
Article
Evaluation of Gas Hydrate Saturation Based on Joint Acoustic–Electrical Properties and Neural Network Ensemble
by Donghui Xing, Hongfeng Lu, Lanchang Xing, Chenlu Xu, Jinwen Du, Xinmin Ge and Qiang Chen
J. Mar. Sci. Eng. 2024, 12(12), 2163; https://doi.org/10.3390/jmse12122163 - 27 Nov 2024
Viewed by 863
Abstract
Natural gas hydrates have great strategic potential as an energy source and have become a global energy research hotspot because of their large reserves and clean and pollution-free characteristics. Hydrate saturation affecting the electrical and acoustic properties of sediments significantly is one of [...] Read more.
Natural gas hydrates have great strategic potential as an energy source and have become a global energy research hotspot because of their large reserves and clean and pollution-free characteristics. Hydrate saturation affecting the electrical and acoustic properties of sediments significantly is one of the important parameters for the quantitative evaluation of natural gas hydrate reservoirs. The accurate calculation of hydrate saturation has guiding significance for hydrate exploration and development. In this paper, experiments regarding methane hydrate formation and dissociation in clay-bearing sediments were carried out based on the Ultrasound Combined with Electrical Impedance (UCEI) system, and the measurements of the joint electrical and acoustic parameters were collected. A machine learning (ML)-based model for evaluating hydrate saturation was established based on electrical–acoustic properties and a neural network ensemble. It was demonstrated that the average relative error of hydrate saturation calculated by the ML-based model is 0.48%, the average absolute error is 0.0005, and the root mean square error is 0.76%. The three errors of the ensemble network are lower than those of the Archie formula and Lee weight equation. The ML-based modeling method presented in this paper provides insights into developing new models for estimating the hydrate saturation of reservoirs. Full article
(This article belongs to the Special Issue Analytical and Experimental Technology for Marine Gas Hydrate)
Show Figures

Figure 1

17 pages, 4292 KB  
Article
Deviation of Phase Boundary Conditions for Hydrates of Small-Chain Hydrocarbons (CH4, C2H6 and C3H8) When Formed Within Porous Sediments
by Alberto Maria Gambelli
Energies 2024, 17(22), 5574; https://doi.org/10.3390/en17225574 - 7 Nov 2024
Viewed by 813
Abstract
This research deals with gas hydrates formation and dissociation within a marine quartz-based porous sediment and in batch conditions. Hydrates were formed with small-chain hydrocarbons included in natural gas mixtures: methane and also ethane and propane. The dissociation values were collected and provided [...] Read more.
This research deals with gas hydrates formation and dissociation within a marine quartz-based porous sediment and in batch conditions. Hydrates were formed with small-chain hydrocarbons included in natural gas mixtures: methane and also ethane and propane. The dissociation values were collected and provided both graphically and numerically. The results were then compared with the theoretical hydrate-liquid-vapor phase boundary equilibrium for the same species, defined according to the existing literature. The deviation of the experimental results from the ideal ones, associated with the porous sediment, was quantified and discussed. For the scope, the grain size distribution and chemical composition of the sediment were provided along with the text. The results proved that the different size of guest species and, consequently, the different hydrate structures formed, played a relevant role in determining the promoting, inhibiting or neutral behavior of the porous sediment during the process. Full article
(This article belongs to the Section H: Geo-Energy)
Show Figures

Figure 1

18 pages, 10772 KB  
Article
Properties and Model of Pore-Scale Methane Displacing Water in Hydrate-Bearing Sediments
by Dongfeng Ge, Jicheng Zhang, Youxun Cao, Cheng Liu, Bin Wu, Haotian Chu, Jialin Lu and Wentao Li
J. Mar. Sci. Eng. 2024, 12(8), 1320; https://doi.org/10.3390/jmse12081320 - 5 Aug 2024
Cited by 4 | Viewed by 1236
Abstract
The flow characteristics of methane and water in sedimentary layers are important factors that affect the beneficial exploitation of marine hydrates. To study the influencing factors of methane drive-off water processes in porous media, we constructed nonhomogeneous geometric models using MATLAB 2020a random [...] Read more.
The flow characteristics of methane and water in sedimentary layers are important factors that affect the beneficial exploitation of marine hydrates. To study the influencing factors of methane drive-off water processes in porous media, we constructed nonhomogeneous geometric models using MATLAB 2020a random distribution functions. We developed a mathematical model of gas–water two-phase flow based on the Navier–Stokes equation. The gas-driven water processes in porous media were described using the level-set method and solved through the finite element method. We investigated the effects of the nonhomogeneous structure of pore media, wettability, and repulsion rate on gas-driven water channeling. The nonhomogeneity of the pore medium is the most critical factor influencing the flow. The size of the throat within the hydrophilic environment determines the level of difficulty of gas-driven water flow. In regions with a high concentration of narrow passages, the formation of extensive air-locked areas is more likely, leading to a decrease in the efficiency of the flow channel. In the gas–water drive process, water saturation changes over time according to a negative exponential function relationship. The more hydrophilic the pore medium, the more difficult the gas-phase drive becomes, and this correlation is particularly noticeable at higher drive rates. The significant pressure differentials caused by the high drive-off velocities lead to quicker methane breakthroughs. Instantaneous flow rates at narrow throats can be up to two orders of magnitude higher than average. Additionally, there is a susceptibility to vortex flow in the area where the throat connects to the orifice. The results of this study can enhance our understanding of gas–water two-phase flow in porous media and help commercialize the exploitation of clean energy in the deep ocean. Full article
(This article belongs to the Special Issue Exploration and Drilling Technology of Deep-Sea Natural Gas Hydrate)
Show Figures

Figure 1

15 pages, 6453 KB  
Article
A Study on the Heterogeneity and Anisotropy of the Porous Grout Body Created in the Stabilization of a Methane Hydrate Reservoir through Grouting
by Yuchen Liu and Masanori Kurihara
Methane 2024, 3(2), 331-345; https://doi.org/10.3390/methane3020018 - 21 May 2024
Viewed by 1371
Abstract
To solve the sand problem during the depressurization of methane hydrate (MH), we proposed a method to build a porous grout body with sufficient permeability and strength around the wellbore through inhibitor pre-injection and grouting, and verified its effectiveness and potential in our [...] Read more.
To solve the sand problem during the depressurization of methane hydrate (MH), we proposed a method to build a porous grout body with sufficient permeability and strength around the wellbore through inhibitor pre-injection and grouting, and verified its effectiveness and potential in our previous research using artificial cores created with silica sand and alternative hydrates such as TBAB- hydrate and iso-butane hydrate. However, all of the artificial cores mentioned above were created with high homogeneity, injected, cured, and had their physical properties measured in the vertical direction, which differs from real reservoir conditions. To investigate the effects of grouting in a more realistic fluid flow, we conducted further experiments using horizontal 1D cores, 1D cubic models, and a 2D cross-sectional model mimicking the near wellbore. These experiments revealed that (1) the generated gas somewhat suppressed the effects of grouting as in the case of previous experiments, and (2) grouted reservoirs would be heterogenous and anisotropic due to the fluid densities and the distribution of grout particles and turbidite sediments, but sufficient permeability and satisfactory strength could still be attained. The above series of experiments demonstrated that our method has the potential to effectively produce actual MH, preventing sand problems even in heterogeneous and anisotropic grouted reservoirs. Full article
Show Figures

Figure 1

18 pages, 9265 KB  
Article
Representative Dynamic Accumulation of Hydrate-Bearing Sediments in Gas Chimney System since 30 Kyr BP in the QiongDongNan Area, Northern South China Sea
by Jinan Guan, Menghe Wang, Wei Zhang, Lihua Wan, Matthias Haeckel and Qi Wu
J. Mar. Sci. Eng. 2024, 12(5), 834; https://doi.org/10.3390/jmse12050834 - 17 May 2024
Cited by 1 | Viewed by 1807
Abstract
A stratigraphic complex composed of mass transport deposits (MTDs), where the gas occurrence allows for the formation of a gas chimney and pipe structure, is identified based on seismic interpretation in the QiongDongNan area of the northern South China Sea. During the Fifth [...] Read more.
A stratigraphic complex composed of mass transport deposits (MTDs), where the gas occurrence allows for the formation of a gas chimney and pipe structure, is identified based on seismic interpretation in the QiongDongNan area of the northern South China Sea. During the Fifth Gas Hydrate Drilling Expedition of the Guangzhou Marine Geological Survey, this type of complex morphology that has close interaction with local gas hydrate (GH) distribution was eventually confirmed. A flow-reaction model is built to explore the spatial–temporal matching evolution process of massive GH reservoirs since 30 kyr before the present (BP). Five time snapshots, including 30, 20, 10, and 5 kyr BP, as well as the present, have been selected to exhibit key strata-evolving information. The results of in situ tensile estimation imply fracturing emergence occurs mostly at 5 kyr BP. Six other environmental scenarios and three cases of paleo-hydrate existence have been compared. The results almost coincide with field GH distribution below the bottom MTD from drilling reports, and state layer fracturing behaviors always feed and probably propagate in shallow sediments. It can be concluded that this complex system with 10% pre-existing hydrates results in the exact distribution and occurrence in local fine-grained silty clay layers adjacent to upper MTDs. Full article
(This article belongs to the Special Issue Advances in Marine Gas Hydrate Exploration and Discovery)
Show Figures

Figure 1

16 pages, 3879 KB  
Article
Experimental Study on the Effect of Mixed Thermodynamic Inhibitors with Different Concentrations on Natural Gas Hydrate Synthesis
by Hengjie Luan, Mingkang Liu, Qinglin Shan, Yujing Jiang, Peng Yan and Xiaoyu Du
Energies 2024, 17(9), 2078; https://doi.org/10.3390/en17092078 - 26 Apr 2024
Cited by 4 | Viewed by 1414
Abstract
Natural gas hydrate (NGH) is a potential future energy resource. More than 90% of NGH resources exist in the pore medium of seafloor sediments. During the development of deep-sea oil and gas fields, wellbore pipelines are often clogged due to the synthesis of [...] Read more.
Natural gas hydrate (NGH) is a potential future energy resource. More than 90% of NGH resources exist in the pore medium of seafloor sediments. During the development of deep-sea oil and gas fields, wellbore pipelines are often clogged due to the synthesis of gas hydrates, and the addition of thermodynamic inhibitors is a common solution to prevent hydrate synthesis. In this paper, the effects of two single inhibitors, sodium chloride and ethylene glycol, as well as hybrid inhibitors combining these two inhibitors on the synthesis of methane hydrates were investigated using the self-developed one-dimensional gas hydrate exploitation simulation test apparatus. The effects of single and hybrid inhibitors were investigated in terms of the hydrate synthesis volume and gas–water two-phase conversion rate. The results show that the hybrid inhibitor has a better inhibitory effect on hydrate synthesis with the same initial synthesis driving force. When the concentration of inhibitors is low, salt inhibitors can have a better inhibitory effect than alcohol inhibitors. However, in the mixed inhibitor experiment, increasing the proportion of ethylene glycol in the mixed inhibitor can more effectively inhibit the synthesis of hydrates than increasing the proportion of sodium chloride in the mixed inhibitor. Full article
Show Figures

Figure 1

Back to TopTop