Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = metazoan phylogeny

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 1669 KiB  
Communication
The Diversity of Metazoan Parasites of South American Stromateidae (Pisces: Teleostei) Is Related to Marine Biogeography
by Marcelo E. Oliva, Luis A. Ñacari, Ruben Escribano and José L. Luque
Diversity 2024, 16(2), 108; https://doi.org/10.3390/d16020108 - 7 Feb 2024
Viewed by 1779
Abstract
The diversity of parasite communities is mainly driven by evolutionary history, as well as the ecology of the host species. To test whether the diversity of the parasite community of four related Stromateidae (Pisces: Scombriformes) is related to evolutionary history (the host phylogeny) [...] Read more.
The diversity of parasite communities is mainly driven by evolutionary history, as well as the ecology of the host species. To test whether the diversity of the parasite community of four related Stromateidae (Pisces: Scombriformes) is related to evolutionary history (the host phylogeny) or the host’s geographical distribution, we analyzed the metazoan parasite fauna of four species of fishes of this family, from the Pacific and Atlantic coasts of South America. Studied species were Peprilus snyderi (samples from Callao, Perú, and Antofagasta, Chile), Peprilus medius (Chorrillos, Perú), Peprilus paru (Rio de Janeiro, Brazil) and Stromateus stellatus (Talcahuano, Chile). Our multivariate analysis strongly suggests that the diversity of the parasite fauna of the studied fishes is driven mainly by the host’s geographical distribution and not the host phylogeny. Full article
(This article belongs to the Special Issue Diversity, Taxonomy and Systematics of Fish Parasites)
Show Figures

Graphical abstract

13 pages, 17710 KiB  
Article
The First Complete Mitochondrial Genome of Genus Isocapnia (Plecoptera: Capniidae) and Phylogenetic Assignment of Superfamily Nemouroidea
by Abdur Rehman, Qing-Bo Huo and Yu-Zhou Du
Genes 2023, 14(5), 965; https://doi.org/10.3390/genes14050965 - 24 Apr 2023
Cited by 3 | Viewed by 2063
Abstract
Capniidae are a family of stoneflies, also known as snow flies, who emerge in winter. The phylogeny of Capniidae is widely accepted to be based on morphological analysis. Until now, only five Capniidae mitochondrial genomes have been sequenced so far. In addition, sampling [...] Read more.
Capniidae are a family of stoneflies, also known as snow flies, who emerge in winter. The phylogeny of Capniidae is widely accepted to be based on morphological analysis. Until now, only five Capniidae mitochondrial genomes have been sequenced so far. In addition, sampling is required to determine an accurate phylogenetic association because the generic classification of this family is still controversial and needs to be investigated further. In this study, the first mitogenome of genus Isocapnia was sequenced with a length of 16,200 bp and contained 37 genes, including a control region, two rRNAs, 22 tRNAs, and 13 PCGs, respectively. Twelve PCGs originated with the common start codon ATN (ATG, ATA, or ATT), while nad5 used GTG. Eleven PCGs had TAN (TAA or TAG) as their last codon; however, cox1 and nad5 had T as their final codon due to a shortened termination codon. All tRNA genes demonstrated the cloverleaf structure, which is distinctive for metazoans excluding the tRNASer1 (AGN) that missed the dihydrouridine arm. A Phylogenetic analysis of the superfamily Nemouroidea was constructed using thirteen PCGs from 32 formerly sequenced Plecoptera species. The Bayesian inference and maximum likelihood phylogeny tree structures derived similar results across the thirteen PCGs. Our findings strongly supported Leuctridae + ((Capniidae + Taeniopterygidae) + (Nemouridae + Notonemouridae)). Ultimately, the best well-supported generic phylogenetic relationship within Capniidae is as follows; (Isocapnia + (Capnia + Zwicknia) + (Apteroperla + Mesocapnia)). These findings will enable us to better understand the evolutionary relationships within the superfamily Nemouroidea and the generic classification and mitogenome structure of the family Capniidae. Full article
Show Figures

Figure 1

24 pages, 3910 KiB  
Article
The Evolution of Collembola Higher Taxa (Arthropoda, Hexapoda) Based on Mitogenome Data
by Bruno Cavalcante Bellini, Feng Zhang, Paolla Gabryelle Cavalcante de Souza, Renata Clicia dos Santos-Costa, Gleyce da Silva Medeiros and Nerivânia Nunes Godeiro
Diversity 2023, 15(1), 7; https://doi.org/10.3390/d15010007 - 21 Dec 2022
Cited by 15 | Viewed by 3807
Abstract
Mitogenomes represent useful tools for investigating the phylogeny of many metazoan clades. Regarding Collembola, the use of mitogenomics has already shown promising results, but few published works include sufficient taxon sampling to study its evolution and systematics on a broader scale. Here, we [...] Read more.
Mitogenomes represent useful tools for investigating the phylogeny of many metazoan clades. Regarding Collembola, the use of mitogenomics has already shown promising results, but few published works include sufficient taxon sampling to study its evolution and systematics on a broader scale. Here, we present a phylogenetic study based on the mitogenomes of 124 species from 24 subfamilies, 16 families, and four orders—one of the most comprehensive datasets used in a molecular study of Collembola evolution to date—and compare our results with the trees from recently published papers and traditional systematic hypotheses. Our main analysis supported the validity of the four orders and the clustering of Poduromorpha with Entomobryomorpha (the traditional Arthropleona). Our data also supported the split of Symphypleona s. str. into the Appendiciphora and Sminthuridida suborders, and the division of the Neelipleona into two subfamilies: Neelinae and Neelidinae subfam. nov. On the other hand, the traditional Symphypleona s. lat., Isotomoidea, and all the Isotomidae subfamilies were refuted by our analyses, indicating a need for a systematic revision of the latter family. Though our results are endorsed by many traditional and recent systematic findings, we highlight a need for additional mitogenomic data for some key taxa and the inclusion of nuclear markers to resolve some residual problematic relationships. Full article
(This article belongs to the Special Issue Systematics, Ecology and Taxonomy of Collembola)
Show Figures

Figure 1

16 pages, 4271 KiB  
Article
The Complete Mitochondrial Genome of Hyotissa hyotis (Bivalvia: Gryphaeidae) Reveals a Unique Gene Order within Ostreoidea
by Fengping Li, Mingfu Fan, Shunshun Wang, Zhifeng Gu, Aimin Wang, Chunsheng Liu, Yi Yang and Shikai Liu
Fishes 2022, 7(6), 317; https://doi.org/10.3390/fishes7060317 - 31 Oct 2022
Cited by 9 | Viewed by 3335
Abstract
The mitochondrial (mt) genome is an important tool when studying the evolution of metazoan animals. The oyster family Gryphaeidae, together with Ostreidae, is one of the two extant taxa of superfamily Ostreoidea. Up until now, the available mitochondrial genomes of oysters were all [...] Read more.
The mitochondrial (mt) genome is an important tool when studying the evolution of metazoan animals. The oyster family Gryphaeidae, together with Ostreidae, is one of the two extant taxa of superfamily Ostreoidea. Up until now, the available mitochondrial genomes of oysters were all limited to family Ostreidae. In the present study, the first complete mtDNA of family Gryphaeidae represented by Hyotissa hyotis was sequenced and compared with other available ostreoid mtDNA. The mtDNA of H. hyotis is 22,185 bp in length, encoding 13 protein-coding-genes (PCGs), two ribosomal RNA (rRNA) and 23 transfer RNA (tRNA) genes. Within all the intergenic regions that range from 2 to 1528 bp, two large non-coding regions were identified. The first large non-coding region, located between Cox1 and trnA, contains 1528 nucleotides, while the second one is 1191 bp in length and positioned between Cytb and Nad2. The nucleotide composition of the whole mtDNA is A + T biased, accounting for 59.2%, with a negative AT skew value of −0.20 and a positive GC skew value of 0.33. In contrast to the mtDNA of Ostreidae, neither the split of rrnL nor rrnS was detected in that of H. hyotis. The duplication of trnW of H. hyotis was also discovered for the first time within Ostreoidea. The gene order of H. hyotis is quite different from those of ostreids, indicating extensive rearrangements within superfamily Ostreoidea. The reconstructed phylogeny supported H. hyotis as sister to Ostreidae, with the latter clade formed by Ostrea + (Saccostrea + Crassostrea). This study could provide important information for further understanding the mitochondrial evolution of oysters. Full article
(This article belongs to the Section Genetics and Biotechnology)
Show Figures

Figure 1

11 pages, 1440 KiB  
Article
A Functional Carbohydrate Degrading Enzyme Potentially Acquired by Horizontal Gene Transfer in the Genome of the Soil Invertebrate Folsomia candida
by Ngoc Giang Le, Peter van Ulsen, Rob van Spanning, Abraham Brouwer, Nico M. van Straalen and Dick Roelofs
Genes 2022, 13(8), 1402; https://doi.org/10.3390/genes13081402 - 7 Aug 2022
Cited by 3 | Viewed by 2772
Abstract
Horizontal gene transfer (HGT) is defined as the acquisition by an organism of hereditary material from a phylogenetically unrelated organism. This process is mostly observed among bacteria and archaea, and considered less likely between microbes and multicellular eukaryotes. However, recent studies provide compelling [...] Read more.
Horizontal gene transfer (HGT) is defined as the acquisition by an organism of hereditary material from a phylogenetically unrelated organism. This process is mostly observed among bacteria and archaea, and considered less likely between microbes and multicellular eukaryotes. However, recent studies provide compelling evidence of the evolutionary importance of HGT in eukaryotes, driving functional innovation. Here, we study an HGT event in Folsomia candida (Collembola, Hexapoda) of a carbohydrate-active enzyme homologous to glycosyl hydrase group 43 (GH43). The gene encodes an N-terminal signal peptide, targeting the product for excretion, which suggests that it contributes to the diversity of digestive capacities of the detritivore host. The predicted α-L-arabinofuranosidase shows high similarity to genes in two other Collembola, an insect and a tardigrade. The gene was cloned and expressed in Escherichia coli using a cell-free protein expression system. The expressed protein showed activity against p-nitrophenyl-α-L-arabinofuranoside. Our work provides evidence for functional activity of an HGT gene in a soil-living detritivore, most likely from a bacterial donor, with genuine eukaryotic properties, such as a signal peptide. Co-evolution of metazoan GH43 genes with the Panarthropoda phylogeny suggests the HGT event took place early in the evolution of this ecdysozoan lineage. Full article
(This article belongs to the Special Issue Evolution and Ecology of Soil Invertebrates)
Show Figures

Graphical abstract

16 pages, 1443 KiB  
Review
Evolution of Multicellular Complexity in The Dictyostelid Social Amoebas
by Koryu Kin and Pauline Schaap
Genes 2021, 12(4), 487; https://doi.org/10.3390/genes12040487 - 27 Mar 2021
Cited by 24 | Viewed by 7103
Abstract
Multicellularity evolved repeatedly in the history of life, but how it unfolded varies greatly between different lineages. Dictyostelid social amoebas offer a good system to study the evolution of multicellular complexity, with a well-resolved phylogeny and molecular genetic tools being available. We compare [...] Read more.
Multicellularity evolved repeatedly in the history of life, but how it unfolded varies greatly between different lineages. Dictyostelid social amoebas offer a good system to study the evolution of multicellular complexity, with a well-resolved phylogeny and molecular genetic tools being available. We compare the life cycles of the Dictyostelids with closely related amoebozoans to show that complex life cycles were already present in the unicellular common ancestor of Dictyostelids. We propose frost resistance as an early driver of multicellular evolution in Dictyostelids and show that the cell signalling pathways for differentiating spore and stalk cells evolved from that for encystation. The stalk cell differentiation program was further modified, possibly through gene duplication, to evolve a new cell type, cup cells, in Group 4 Dictyostelids. Studies in various multicellular organisms, including Dictyostelids, volvocine algae, and metazoans, suggest as a common principle in the evolution of multicellular complexity that unicellular regulatory programs for adapting to environmental change serve as “proto-cell types” for subsequent evolution of multicellular organisms. Later, new cell types could further evolve by duplicating and diversifying the “proto-cell type” gene regulatory networks. Full article
(This article belongs to the Special Issue Evolution of Multicellularity)
Show Figures

Figure 1

16 pages, 2328 KiB  
Article
Evolutionary Analysis of Cystatins of Early-Emerging Metazoans Reveals a Novel Subtype in Parasitic Cnidarians
by Pavla Bartošová-Sojková, Jiří Kyslík, Gema Alama-Bermejo, Ashlie Hartigan, Stephen D. Atkinson, Jerri L. Bartholomew, Amparo Picard-Sánchez, Oswaldo Palenzuela, Marc Nicolas Faber, Jason W. Holland and Astrid S. Holzer
Biology 2021, 10(2), 110; https://doi.org/10.3390/biology10020110 - 3 Feb 2021
Cited by 8 | Viewed by 4720
Abstract
The evolutionary aspects of cystatins are greatly underexplored in early-emerging metazoans. Thus, we surveyed the gene organization, protein architecture, and phylogeny of cystatin homologues mined from 110 genomes and the transcriptomes of 58 basal metazoan species, encompassing free-living and parasite taxa of Porifera, [...] Read more.
The evolutionary aspects of cystatins are greatly underexplored in early-emerging metazoans. Thus, we surveyed the gene organization, protein architecture, and phylogeny of cystatin homologues mined from 110 genomes and the transcriptomes of 58 basal metazoan species, encompassing free-living and parasite taxa of Porifera, Placozoa, Cnidaria (including Myxozoa), and Ctenophora. We found that the cystatin gene repertoire significantly differs among phyla, with stefins present in most of the investigated lineages but with type 2 cystatins missing in several basal metazoan groups. Similar to liver and intestinal flukes, myxozoan parasites possess atypical stefins with chimeric structure that combine motifs of classical stefins and type 2 cystatins. Other early metazoan taxa regardless of lifestyle have only the classical representation of cystatins and lack multi-domain ones. Our comprehensive phylogenetic analyses revealed that stefins and type 2 cystatins clustered into taxonomically defined clades with multiple independent paralogous groups, which probably arose due to gene duplications. The stefin clade split between the subclades of classical stefins and the atypical stefins of myxozoans and flukes. Atypical stefins represent key evolutionary innovations of the two parasite groups for which their origin might have been linked with ancestral gene chimerization, obligate parasitism, life cycle complexity, genome reduction, and host immunity. Full article
Show Figures

Graphical abstract

32 pages, 1775 KiB  
Article
Phylogenetic Analyses of Sites in Different Protein Structural Environments Result in Distinct Placements of the Metazoan Root
by Akanksha Pandey and Edward L. Braun
Biology 2020, 9(4), 64; https://doi.org/10.3390/biology9040064 - 28 Mar 2020
Cited by 22 | Viewed by 6387
Abstract
Phylogenomics, the use of large datasets to examine phylogeny, has revolutionized the study of evolutionary relationships. However, genome-scale data have not been able to resolve all relationships in the tree of life; this could reflect, at least in part, the poor-fit of the [...] Read more.
Phylogenomics, the use of large datasets to examine phylogeny, has revolutionized the study of evolutionary relationships. However, genome-scale data have not been able to resolve all relationships in the tree of life; this could reflect, at least in part, the poor-fit of the models used to analyze heterogeneous datasets. Some of the heterogeneity may reflect the different patterns of selection on proteins based on their structures. To test that hypothesis, we developed a pipeline to divide phylogenomic protein datasets into subsets based on secondary structure and relative solvent accessibility. We then tested whether amino acids in different structural environments had distinct signals for the topology of the deepest branches in the metazoan tree. We focused on a dataset that appeared to have a mixture of signals and we found that the most striking difference in phylogenetic signal reflected relative solvent accessibility. Analyses of exposed sites (residues located on the surface of proteins) yielded a tree that placed ctenophores sister to all other animals whereas sites buried inside proteins yielded a tree with a sponge+ctenophore clade. These differences in phylogenetic signal were not ameliorated when we conducted analyses using a set of maximum-likelihood profile mixture models. These models are very similar to the Bayesian CAT model, which has been used in many analyses of deep metazoan phylogeny. In contrast, analyses conducted after recoding amino acids to limit the impact of deviations from compositional stationarity increased the congruence in the estimates of phylogeny for exposed and buried sites; after recoding amino acid trees estimated using the exposed and buried site both supported placement of ctenophores sister to all other animals. Although the central conclusion of our analyses is that sites in different structural environments yield distinct trees when analyzed using models of protein evolution, our amino acid recoding analyses also have implications for metazoan evolution. Specifically, our results add to the evidence that ctenophores are the sister group of all other animals and they further suggest that the placozoa+cnidaria clade found in some other studies deserves more attention. Taken as a whole, these results provide striking evidence that it is necessary to achieve a better understanding of the constraints due to protein structure to improve phylogenetic estimation. Full article
(This article belongs to the Special Issue Feature Papers 2019)
Show Figures

Figure 1

16 pages, 4135 KiB  
Article
Mechanisms and Drivers for the Establishment of Life Cycle Complexity in Myxozoan Parasites
by Martina Lisnerová, Ivan Fiala, Delfina Cantatore, Manuel Irigoitia, Juan Timi, Hana Pecková, Pavla Bartošová-Sojková, Christian M. Sandoval, Carl Luer, Jack Morris and Astrid S. Holzer
Biology 2020, 9(1), 10; https://doi.org/10.3390/biology9010010 - 1 Jan 2020
Cited by 14 | Viewed by 5859
Abstract
It is assumed that complex life cycles in cnidarian parasites belonging to the Myxozoa result from incorporation of vertebrates into simple life cycles exploiting aquatic invertebrates. However, nothing is known about the driving forces and implementation of this event, though it fostered massive [...] Read more.
It is assumed that complex life cycles in cnidarian parasites belonging to the Myxozoa result from incorporation of vertebrates into simple life cycles exploiting aquatic invertebrates. However, nothing is known about the driving forces and implementation of this event, though it fostered massive diversification. We performed a comprehensive search for myxozoans in evolutionary ancient fishes (Chondrichthyes), and more than doubled existing 18S rDNA sequence data, discovering seven independent phylogenetic lineages. We performed cophylogenetic and character mapping methods in the largest monophyletic dataset and demonstrate that host and parasite phylogenies are strongly correlated, and that tectonic changes may explain phylogeographic clustering in recent skates and softnose skates, in the Atlantic. The most basal lineages of myxozoans inhabit the bile of chondrichthyans, an immunologically privileged site and protective niche, easily accessible from the gut via the bile duct. We hypothesize that feed-integration is a likely mechanism of host acquisition, an idea supported by feeding habits of chimaeras and ancient sharks and by multiple entries of different parasite lineages from invertebrates into the new host group. We provide exciting first insights into the early evolutionary history of ancient metazoan parasites in a host group that embodies more evolutionary distinctiveness than most other vertebrates. Full article
(This article belongs to the Section Evolutionary Biology)
Show Figures

Graphical abstract

21 pages, 35363 KiB  
Article
Identification and Evolution of TGF-β Signaling Pathway Members in Twenty-Four Animal Species and Expression in Tilapia
by Shuqing Zheng, Juan Long, Zhilong Liu, Wenjing Tao and Deshou Wang
Int. J. Mol. Sci. 2018, 19(4), 1154; https://doi.org/10.3390/ijms19041154 - 11 Apr 2018
Cited by 57 | Viewed by 6600
Abstract
Transforming growth factor β (TGF-β) signaling controls diverse cellular processes during embryogenesis as well as in mature tissues of multicellular animals. Here we carried out a comprehensive analysis of TGF-β pathway members in 24 representative animal species. The appearance of the TGF-β pathway [...] Read more.
Transforming growth factor β (TGF-β) signaling controls diverse cellular processes during embryogenesis as well as in mature tissues of multicellular animals. Here we carried out a comprehensive analysis of TGF-β pathway members in 24 representative animal species. The appearance of the TGF-β pathway was intrinsically linked to the emergence of metazoan. The total number of TGF-β ligands, receptors, and smads changed slightly in all invertebrates and jawless vertebrates analyzed. In contrast, expansion of the pathway members, especially ligands, was observed in jawed vertebrates most likely due to the second round of whole genome duplication (2R) and additional rounds in teleosts. Duplications of TGFB2, TGFBR2, ACVR1, SMAD4 and SMAD6, which were resulted from 2R, were first isolated. Type II receptors may be originated from the ACVR2-like ancestor. Interestingly, AMHR2 was not identified in Chimaeriformes and Cypriniformes even though they had the ligand AMH. Based on transcriptome data, TGF-β ligands exhibited a tissue-specific expression especially in the heart and gonads. However, most receptors and smads were expressed in multiple tissues indicating they were shared by different ligands. Spatial and temporal expression profiles of 8 genes in gonads of different developmental stages provided a fundamental clue for understanding their important roles in sex determination and reproduction. Taken together, our findings provided a global insight into the phylogeny and expression patterns of the TGF-β pathway genes, and hence contribute to the greater understanding of their biological roles in the organism especially in teleosts. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

Back to TopTop