Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (66,531)

Search Parameters:
Keywords = metallizing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2879 KiB  
Article
Smartphone-Compatible Colorimetric Detection of CA19-9 Using Melanin Nanoparticles and Deep Learning
by Turgut Karademir, Gizem Kaleli-Can and Başak Esin Köktürk-Güzel
Biosensors 2025, 15(8), 507; https://doi.org/10.3390/bios15080507 - 5 Aug 2025
Abstract
Paper-based colorimetric biosensors represent a promising class of low-cost diagnostic tools that do not require external instrumentation. However, their broader applicability is limited by the environmental concerns associated with conventional metal-based nanomaterials and the subjectivity of visual interpretation. To address these challenges, this [...] Read more.
Paper-based colorimetric biosensors represent a promising class of low-cost diagnostic tools that do not require external instrumentation. However, their broader applicability is limited by the environmental concerns associated with conventional metal-based nanomaterials and the subjectivity of visual interpretation. To address these challenges, this study introduces a proof-of-concept platform—using CA19-9 as a model biomarker—that integrates naturally derived melanin nanoparticles (MNPs) with machine learning-based image analysis to enable environmentally sustainable and analytically robust colorimetric quantification. Upon target binding, MNPs induce a concentration-dependent color transition from yellow to brown. This visual signal was quantified using a machine learning pipeline incorporating automated region segmentation and regression modeling. Sensor areas were segmented using three different algorithms, with the U-Net model achieving the highest accuracy (average IoU: 0.9025 ± 0.0392). Features extracted from segmented regions were used to train seven regression models, among which XGBoost performed best, yielding a Mean Absolute Percentage Error (MAPE) of 17%. Although reduced sensitivity was observed at higher analyte concentrations due to sensor saturation, the model showed strong predictive accuracy at lower concentrations, which are especially challenging for visual interpretation. This approach enables accurate, reproducible, and objective quantification of colorimetric signals, thereby offering a sustainable and scalable alternative for point-of-care diagnostic applications. Full article
(This article belongs to the Special Issue AI-Enabled Biosensor Technologies for Boosting Medical Applications)
Show Figures

Figure 1

19 pages, 2998 KiB  
Article
Coordination Polymers Bearing Angular 4,4′-Oxybis[N-(pyridin-3-ylmethyl)benzamide] and Isomeric Dicarboxylate Ligands: Synthesis, Structures and Properties
by Yung-Hao Huang, Yi-Ju Hsieh, Yen-Hsin Chen, Shih-Miao Liu and Jhy-Der Chen
Molecules 2025, 30(15), 3283; https://doi.org/10.3390/molecules30153283 - 5 Aug 2025
Abstract
Reactions of the angular 4,4′-oxybis[N-(pyridin-3-ylmethyl)benzamide] (L) with dicarboxylic acids and transition metal salts afforded non-entangled {[Cd(L)(1,3-BDC)(H2O)]∙2H2O}n (1,3-BDC = 1,3-benzenedicarboxylic acid), 1; {[Cd(L)(1,4-HBDC)(1,4-BDC)0.5]∙2H2O}n (1,4-BDC = [...] Read more.
Reactions of the angular 4,4′-oxybis[N-(pyridin-3-ylmethyl)benzamide] (L) with dicarboxylic acids and transition metal salts afforded non-entangled {[Cd(L)(1,3-BDC)(H2O)]∙2H2O}n (1,3-BDC = 1,3-benzenedicarboxylic acid), 1; {[Cd(L)(1,4-HBDC)(1,4-BDC)0.5]∙2H2O}n (1,4-BDC = 1,4-benzenedicarboxylic acid), 2; {[Cu2(L)2(1,3-BDC)2]∙1.5H2O}n, 3; {[Ni(L)(1,3-BDC)(H2O)]∙2H2O}n, 4; {[Zn(L)(1,3-BDC)]∙4H2O}n, 5; {[Zn(L)(1,4-BDC)]∙2H2O}n, 6; and [Cd3(L)2(1,4-BDC)3]n, 7, which have been structurally characterized by using single-crystal X-ray diffraction. Complexes 15 and 7 are 2D layers, giving (64·8·10)(6)-2,4L3, (42·82·102)(42·84)2(4)2, (4·5·6)(4·55·63·7)-3,5L66, (64·8·10)(6)-2,4L3, interdigitated (84·122)(8)2-2,4L2 and (36·46·53)-hxl topologies, respectively, and 6 is a 1D chain with the (43·62·8)(4)-2,4C3 topology. The factors that govern the structures of 17 are discussed and the thermal properties of 17 and the luminescent properties of complexes 1, 2, 5 and 6 are investigated. The stabilities of complexes 1 and 5 toward the detection of Fe3+ ions are also evaluated. Full article
(This article belongs to the Special Issue Advances in Functional Polymers and Their Applications)
21 pages, 4762 KiB  
Article
Directed Energy Deposition: A Scientometric Study and Its Practical Implications
by Mehran Ghasempour-Mouziraji, Daniel Afonso, Behrouz Nemati and Ricardo Alves de Sousa
Metrics 2025, 2(3), 14; https://doi.org/10.3390/metrics2030014 - 5 Aug 2025
Abstract
Directed Energy Deposition is an additive manufacturing subgroup that uses a laser beam to melt the wire or powder to create a melt pool. In the current study, a scientometric analysis has been carried out to analyze the contribution of countries, publication type [...] Read more.
Directed Energy Deposition is an additive manufacturing subgroup that uses a laser beam to melt the wire or powder to create a melt pool. In the current study, a scientometric analysis has been carried out to analyze the contribution of countries, publication type analysis, distribution of publications over the years, keywords analysis, author analysis, cited journal, categories, institutes of publication, and report the practical implications. Firstly, the database was extracted from the Web of Science and then post-processed with CiteSpace 6.2.R4 and VOSviewer 1.6.20 software. Afterward, the associated results had been extracted and reported. It was found that China is the leader according to publication, followed by the USA and Germany, which mostly published their achievements in article and proceeding paper formats, which are increasing annually. According to the keywords, additive manufacturing, Laser Metal Deposition, and fabrication are the most commonly used. Based on the CiteSapce and VOSviewer results, Lin, Xin and Huang, Weidong are the authors with the highest publication rates. In addition, Additive Manufacturing, Materials & Design, and Materials Science and Engineering: A are the most cited journals, and regarding the categories, materials science, multidisciplinary, applied physics, and manufacturing engineering are the most commonly used DED processes. Northwestern Polytechnical University, Fraunhofer Gesellschaft, and the United States Department of Energy (DOE) have performed the most research in the field of DED. Full article
Show Figures

Figure 1

42 pages, 7526 KiB  
Review
Novel Nanomaterials for Developing Bone Scaffolds and Tissue Regeneration
by Nazim Uddin Emon, Lu Zhang, Shelby Dawn Osborne, Mark Allen Lanoue, Yan Huang and Z. Ryan Tian
Nanomaterials 2025, 15(15), 1198; https://doi.org/10.3390/nano15151198 - 5 Aug 2025
Abstract
Nanotechnologies bring a rapid paradigm shift in hard and soft bone tissue regeneration (BTR) through unprecedented control over the nanoscale structures and chemistry of biocompatible materials to regenerate the intricate architecture and functional adaptability of bone. This review focuses on the transformative analyses [...] Read more.
Nanotechnologies bring a rapid paradigm shift in hard and soft bone tissue regeneration (BTR) through unprecedented control over the nanoscale structures and chemistry of biocompatible materials to regenerate the intricate architecture and functional adaptability of bone. This review focuses on the transformative analyses and prospects of current and next-generation nanomaterials in designing bioactive bone scaffolds, emphasizing hierarchical architecture, mechanical resilience, and regenerative precision. Mainly, this review elucidated the innovative findings, new capabilities, unmet challenges, and possible future opportunities associated with biocompatible inorganic ceramics (e.g., phosphates, metallic oxides) and the United States Food and Drug Administration (USFDA) approved synthetic polymers, including their nanoscale structures. Furthermore, this review demonstrates the newly available approaches for achieving customized standard porosity, mechanical strengths, and accelerated bioactivity to construct an optimized nanomaterial-oriented scaffold. Numerous strategies including three-dimensional bioprinting, electro-spinning techniques and meticulous nanomaterials (NMs) fabrication are well established to achieve radical scientific precision in BTR engineering. The contemporary research is unceasingly decoding the pathways for spatial and temporal release of osteoinductive agents to enhance targeted therapy and prompt healing processes. Additionally, successful material design and integration of an osteoinductive and osteoconductive agents with the blend of contemporary technologies will bring radical success in this field. Furthermore, machine learning (ML) and artificial intelligence (AI) can further decode the current complexities of material design for BTR, notwithstanding the fact that these methods call for an in-depth understanding of bone composition, relationships and impacts on biochemical processes, distribution of stem cells on the matrix, and functionalization strategies of NMs for better scaffold development. Overall, this review integrated important technological progress with ethical considerations, aiming for a future where nanotechnology-facilitated bone regeneration is boosted by enhanced functionality, safety, inclusivity, and long-term environmental responsibility. Therefore, the assimilation of a specialized research design, while upholding ethical standards, will elucidate the challenge and questions we are presently encountering. Full article
(This article belongs to the Special Issue Applications of Functional Nanomaterials in Biomedical Science)
Show Figures

Graphical abstract

17 pages, 972 KiB  
Article
A Preliminary Investigation into Heavy Metal Tolerance in Pseudomonas Isolates: Does the Isolation Site Have an Effect?
by Alessandro De Santis, Antonio Bevilacqua, Angela Racioppo, Barbara Speranza, Maria Rosaria Corbo, Clelia Altieri and Milena Sinigaglia
Agriculture 2025, 15(15), 1692; https://doi.org/10.3390/agriculture15151692 - 5 Aug 2025
Abstract
One hundred presumptive Pseudomonas isolates, recovered from 15 sites impacted by anthropogenic activity in the Foggia district (Italy), were screened for key adaptive and functional traits important for environmental applications. The isolates were phenotypically characterized for their ability to grow under combined pH [...] Read more.
One hundred presumptive Pseudomonas isolates, recovered from 15 sites impacted by anthropogenic activity in the Foggia district (Italy), were screened for key adaptive and functional traits important for environmental applications. The isolates were phenotypically characterized for their ability to grow under combined pH (5.0–8.0) and temperature (15–37 °C) conditions, to produce proteolytic enzymes, pigments, and exopolysaccharides, and to tolerate SDS. Moreover, the resistance to six environmentally relevant heavy metals (Cd, Co, Cu, Ni, Zn, As) was qualitatively assessed. The results highlighted wide inter-strain variability, with distinct clusters of isolates showing unique combinations of stress tolerance, enzymatic potential, and resistance profile. PERMANOVA analysis revealed significant effects of both the isolation site and the metal type, as well as their interaction, on the observed resistance patterns. A subset of isolates showed co-tolerance to elevated temperatures and heavy metals. These findings offer an initial yet insightful overview of the adaptive diversity of soil-derived Pseudomonas, laying the groundwork for the rational selection of strains for bioaugmentation in contaminated soils. Full article
Show Figures

Figure 1

14 pages, 1563 KiB  
Article
A Portable and Thermally Degradable Hydrogel Sensor Based on Eu-Doped Carbon Dots for Visual and Ultrasensitive Detection of Ferric Ion
by Hongyuan Zhang, Qian Zhang, Juan Tang, Huanxin Yang, Xiaona Ji, Jieqiong Wang and Ce Han
Molecules 2025, 30(15), 3280; https://doi.org/10.3390/molecules30153280 - 5 Aug 2025
Abstract
Degradable fluorescent sensors present a promising portable approach for heavy metal ion detection, aiming to prevent secondary environmental pollution. Additionally, the excessive intake of ferric ions (Fe3+), an essential trace element for human health, poses critical health risks that urgently require [...] Read more.
Degradable fluorescent sensors present a promising portable approach for heavy metal ion detection, aiming to prevent secondary environmental pollution. Additionally, the excessive intake of ferric ions (Fe3+), an essential trace element for human health, poses critical health risks that urgently require effective monitoring. In this study, we developed a thermally degradable fluorescent hydrogel sensor (Eu-CDs@DPPG) based on europium-doped carbon dots (Eu-CDs). The Eu-CDs, synthesized via a hydrothermal method, exhibited selective fluorescence quenching by Fe3+ through the inner filter effect (IFE). Embedding Eu-CDs into the hydrogel significantly enhanced their stability and dispersibility in aqueous environments, effectively resolving issues related to aggregation and matrix interference in traditional sensing methods. The developed sensor demonstrated a broad linear detection range (0–2.5 µM), an extremely low detection limit (1.25 nM), and rapid response (<40 s). Furthermore, a smartphone-assisted LAB color analysis allowed portable, visual quantification of Fe3+ with a practical LOD of 6.588 nM. Importantly, the hydrogel was thermally degradable at 80 °C, thus minimizing environmental impact. The sensor’s practical applicability was validated by accurately detecting Fe3+ in spinach and human urine samples, achieving recoveries of 98.7–108.0% with low relative standard deviations. This work provides an efficient, portable, and sustainable sensing platform that overcomes the limitations inherent in conventional analytical methods. Full article
(This article belongs to the Section Photochemistry)
29 pages, 1459 KiB  
Article
The Impact of a Mobile Laboratory on Water Quality Assessment in Remote Areas of Panama
by Jorge E. Olmos Guevara, Kathia Broce, Natasha A. Gómez Zanetti, Dina Henríquez, Christopher Ellis and Yazmin L. Mack-Vergara
Sustainability 2025, 17(15), 7096; https://doi.org/10.3390/su17157096 - 5 Aug 2025
Abstract
Monitoring water quality is crucial for achieving clean water and sanitation goals, particularly in remote areas. The project “Morbidity vs. Water Quality for Human Consumption in Tonosí: A Pilot Study” aimed to enhance water quality assessments in Panama using advanced analytical techniques to [...] Read more.
Monitoring water quality is crucial for achieving clean water and sanitation goals, particularly in remote areas. The project “Morbidity vs. Water Quality for Human Consumption in Tonosí: A Pilot Study” aimed to enhance water quality assessments in Panama using advanced analytical techniques to assess volatile organic compounds, heavy metals, and microbiological pathogens. To support this, the Technical Unit for Water Quality (UTECH) was established, featuring a novel mobile laboratory with cutting-edge technology for accurate testing, minimal chemical reagent use, reduced waste generation, and equipped with a solar-powered battery system. The aim of this paper is to explore the design, deployment, and impact of the UTECH. Furthermore, this study presents results from three sampling points in Tonosí, where several parameters exceeded regulatory limits, demonstrating the capabilities of the UTECH and highlighting the need for ongoing monitoring and intervention. The study also assesses the environmental, social, and economic impacts of the UTECH in alignment with the Sustainable Development Goals and national initiatives. Finally, a SWOT analysis illustrates the UTECH’s potential to improve water quality assessments in Panama while identifying areas for sustainable growth. The study showcases the successful integration of advanced mobile laboratory technologies into water quality monitoring, contributing to sustainable development in Panama and offering a replicable model for similar initiatives in other regions. Full article
14 pages, 1984 KiB  
Article
The Effect of Copper Adsorption on Iron Oxide Magnetic Nanoparticles Embedded in a Sodium Alginate Bead
by Michele Modestino, Armando Galluzzi, Marco Barozzi, Sabrina Copelli, Francesco Daniele, Eleonora Russo, Elisabetta Sieni, Paolo Sgarbossa, Patrizia Lamberti and Massimiliano Polichetti
Nanomaterials 2025, 15(15), 1196; https://doi.org/10.3390/nano15151196 - 5 Aug 2025
Abstract
The preparation and use of iron oxide magnetic nanoparticles for water remediation is a widely investigated research field. To improve the efficacy of such nanomaterials, different synthetic processes and functionalization methods have been developed in the framework of green chemistry to exploit their [...] Read more.
The preparation and use of iron oxide magnetic nanoparticles for water remediation is a widely investigated research field. To improve the efficacy of such nanomaterials, different synthetic processes and functionalization methods have been developed in the framework of green chemistry to exploit their magnetic properties and adsorption capacity in a sustainable way. In this work, iron oxide magnetic nanoparticles embedded in cross-linked sodium alginate beads designed to clean water from metal ions were magnetically characterized. In particular, the effect of copper adsorption on their magnetic properties was investigated. The magnetic characterization in a DC field of the beads before adsorption showed the presence of a superparamagnetic state at 300 K—a state that was also preserved after copper adsorption. The main differences in terms of magnetic properties before and after Cu2+ adsorption were the reduction of the magnetic signal (observed by comparing the saturation magnetization) and a different shape of the blocking temperature distribution obtained by magnetization versus temperature measurements. The evaluation of the reduction in magnetization can be important from the application perspective since it can affect the efficiency of the beads’ removal from the water medium after treatment. Full article
(This article belongs to the Special Issue Advanced Nanomaterials for Water Remediation (2nd Edition))
Show Figures

Figure 1

14 pages, 1527 KiB  
Article
The Effect of the Metal Impurities on the Stability, Chemical, and Sensing Properties of MoSe2 Surfaces
by Danil W. Boukhvalov, Murat K. Rakhimzhanov, Aigul Shongalova, Abay S. Serikkanov, Nikolay A. Chuchvaga and Vladimir Yu. Osipov
Surfaces 2025, 8(3), 56; https://doi.org/10.3390/surfaces8030056 - 5 Aug 2025
Abstract
In this study, we present a comprehensive theoretical analysis of modifications in the physical and chemical properties of MoSe2 upon the introduction of substitutional transition metal impurities, specifically, Ti, V, Cr, Fe, Co, Ni, Cu, W, Pd, and Pt. Wet systematically calculated [...] Read more.
In this study, we present a comprehensive theoretical analysis of modifications in the physical and chemical properties of MoSe2 upon the introduction of substitutional transition metal impurities, specifically, Ti, V, Cr, Fe, Co, Ni, Cu, W, Pd, and Pt. Wet systematically calculated the adsorption enthalpies for various representative analytes, including O2, H2, CO, CO2, H2O, NO2, formaldehyde, and ethanol, and further evaluated their free energies across a range of temperatures. By employing the formula for probabilities, we accounted for the competition among molecules for active adsorption sites during simultaneous adsorption events. Our findings underscore the importance of integrating temperature effects and competitive adsorption dynamics to predict the performance of highly selective sensors accurately. Additionally, we investigated the influence of temperature and analyte concentration on sensor performance by analyzing the saturation of active sites for specific scenarios using Langmuir sorption theory. Building on our calculated adsorption energies, we screened the catalytic potential of doped MoSe2 for CO2-to-methanol conversion reactions. This paper also examines the correlations between the electronic structure of active sites and their associated sensing and catalytic capabilities, offering insights that can inform the design of advanced materials for sensors and catalytic applications. Full article
Show Figures

Graphical abstract

26 pages, 4818 KiB  
Article
Novel Anion-Exchange Resins for the Effective Recovery of Re(VII) from Simulated By-Products of Cu-Mo Ore Processing
by Piotr Cyganowski, Pawel Pohl, Szymon Pawlik and Dorota Jermakowicz-Bartkowiak
Int. J. Mol. Sci. 2025, 26(15), 7563; https://doi.org/10.3390/ijms26157563 (registering DOI) - 5 Aug 2025
Abstract
The efficient recovery of rhenium (Re), a critical metal in high-tech industries, is essential to address its growing demand and reduce reliance on primary mining. In this study, we developed novel anion-exchange resins for the selective adsorption and recovery of Re(VII) ions from [...] Read more.
The efficient recovery of rhenium (Re), a critical metal in high-tech industries, is essential to address its growing demand and reduce reliance on primary mining. In this study, we developed novel anion-exchange resins for the selective adsorption and recovery of Re(VII) ions from acidic solutions, simulating industrial by-products. The resins were synthesized from a vinylbenzyl chloride-co-divinylbenzene copolymer modified with aliphatic, heterocyclic, and aromatic weakly basic amines, selected from among bis(3-aminopropyl)amine (BAPA), 1-(2-pyrimidinyl)piperazine (PIP), thiosemicarbazide (TSC), 2-amino-3-hydroxypyridine (AHP), 1-(2-hydroxyethyl)piperazine (HEP), 4-amino-2,6-dihydroxypyrimidine (AHPI), and 2-thiazolamine (TA). The adsorption of Re on BAPA, PIP, and HEP resins obeyed the Langmuir model, and the resins exhibited high adsorption capacities, with maximum values reaching 435.4 mg Re g−1 at pH 6. Furthermore, strong selectivity for ReO4 ions over competing species, including Mo, Cu, and V, was noted in solutions simulating the leachates of the by-products of Cu-Mo ores. Additionally, complete elution of Re was possible. The developed resins turned out to be highly suitable for the continuous-flow-mode adsorption of ReO4, revealing outstanding adsorption capacities before reaching column breakthrough. In this context, the novel anion-exchange resins developed offer a reference for further Re recovery strategies. Full article
Show Figures

Figure 1

25 pages, 816 KiB  
Article
Bioactive Compounds and Antioxidant Activity of Boletus edulis, Imleria badia, Leccinum scabrum in the Context of Environmental Conditions and Heavy Metals Bioaccumulation
by Zofia Sotek, Katarzyna Malinowska, Małgorzata Stasińska and Ireneusz Ochmian
Molecules 2025, 30(15), 3277; https://doi.org/10.3390/molecules30153277 - 5 Aug 2025
Abstract
Wild edible mushrooms are increasingly recognised for their nutritional and therapeutic potential, owing to their richness in bioactive compounds and antioxidant properties. This study assessed the chemical composition, antioxidant capacity, and bioaccumulation of heavy metals (Cd, Pb, Ni) in Boletus edulis, Imleria [...] Read more.
Wild edible mushrooms are increasingly recognised for their nutritional and therapeutic potential, owing to their richness in bioactive compounds and antioxidant properties. This study assessed the chemical composition, antioxidant capacity, and bioaccumulation of heavy metals (Cd, Pb, Ni) in Boletus edulis, Imleria badia, and Leccinum scabrum collected from two forested regions of north-western Poland differing in anthropogenic influence and soil characteristics. The analysis encompassed structural polysaccharides (β- and α-glucans, chitin), carotenoids, L-ascorbic acid, phenolic and organic acids. B. edulis exhibited the highest β-glucan and lycopene contents, but also the greatest cadmium accumulation. I. badia was distinguished by elevated ascorbic and citric acid levels and the strongest DPPH radical scavenging activity, while L. scabrum showed the highest ABTS and FRAP antioxidant capacities and accumulated quinic acid and catechin. Principal component analysis indicated strong correlations between antioxidant activity and phenolic acids, while cadmium levels were inversely associated with antioxidant potential and positively correlated with chitin. Although all metal concentrations remained within EU food safety limits, B. edulis showed consistent cadmium bioaccumulation. From a practical perspective, the results highlight the importance of species selection and sourcing location when considering wild mushrooms for consumption or processing, particularly in the context of nutritional value and contaminant load. Importantly, regular or excessive consumption of B. edulis may result in exceeding the tolerable weekly intake (TWI) levels for cadmium and nickel, which warrants particular attention from a food safety perspective. These findings underscore the influence of species-specific traits and environmental conditions on mushroom biochemical profiles and support their potential as functional foods, provided that metal contents are adequately monitored. Full article
Show Figures

Figure 1

22 pages, 7171 KiB  
Article
Distribution Characteristics, Mobility, and Influencing Factors of Heavy Metals at the Sediment–Water Interface in South Dongting Lake
by Xiaohong Fang, Xiangyu Han, Chuanyong Tang, Bo Peng, Qing Peng, Linjie Hu, Yuru Zhong and Shana Shi
Water 2025, 17(15), 2331; https://doi.org/10.3390/w17152331 - 5 Aug 2025
Abstract
South Dongting Lake is an essential aquatic ecosystem that receives substantial water inflows from the Xiangjiang and Zishui Rivers. However, it is significantly impacted by human activities, including mining, smelting, and farming. These activities have led to serious contamination of the lake’s sediments [...] Read more.
South Dongting Lake is an essential aquatic ecosystem that receives substantial water inflows from the Xiangjiang and Zishui Rivers. However, it is significantly impacted by human activities, including mining, smelting, and farming. These activities have led to serious contamination of the lake’s sediments with heavy metals (HMs). This study investigated the distribution, mobility, and influencing factors of HMs at the sediment–water interface. To this end, sediment samples were analyzed from three key regions (Xiangjiang River estuary, Zishui River estuary, and northeastern South Dongting Lake) using traditional sampling methods and Diffusive Gradients in Thin Films (DGT) technology. Analysis of fifteen HMs (Pb, Bi, Ni, As, Se, Cd, Sb, Mn, Zn, V, Cr, Cu, Tl, Co, and Fe) revealed significant spatial heterogeneity. The results showed that Cr, Cu, Pb, Bi, Ni, As, Se, Cd, Sb, Mn, Zn, and Fe exhibited high variability (CV > 0.20), whereas V, Tl, and Co demonstrated stable concentrations (CV < 0.20). Concentrations were found to exceed background values of the upper continental crust of eastern China (UCC), Yangtze River sediments (YZ), and Dongting Lake sediments (DT), particularly at the Xiangjiang estuary (XE) and in the northeastern regions. Speciation analysis revealed that V, Cr, Cu, Ni, and As were predominantly found in the residual fraction (F4), while Pb and Co were concentrated in the oxidizable fraction (F3), Mn and Zn appeared primarily in the exchangeable fractions (F1 and F2), and Cd was notably dominant in the exchangeable fraction (F1), suggesting a high potential for mobility. Additionally, DGT results confirmed a significant potential for the release of Pb, Zn, and Cd. Contamination assessment using the Pollution Load Index (PLI) and Geoaccumulation Index (Igeo) identified Pb, Bi, Ni, As, Se, Cd, and Sb as major pollutants. Among these, Bi and Cd were found to pose the highest risks. Furthermore, the Risk Assessment Code (RAC) and the Potential Ecological Risk Index (PERI) highlighted Cd as the primary ecological risk contributor, especially in the XE. The study identified sediment grain size, pH, electrical conductivity, and nutrient levels as the primary influencing factors. The PMF modeling revealed HM sources as mixed smelting/natural inputs, agricultural activities, natural weathering, and mining/smelting operations, suggesting that remediation should prioritize Cd control in the XE with emphasis on external inputs. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

18 pages, 3140 KiB  
Article
Spatial and Temporal Distribution of Conversational and Emerging Pollutants in Fecal Sludge from Rural Toilets, China
by Lin Lin, Yilin Shen, Guoji Ding, Shakib Alghashm, Seinn Lei Aye and Xiaowei Li
Sustainability 2025, 17(15), 7088; https://doi.org/10.3390/su17157088 - 5 Aug 2025
Abstract
Effective management of fecal pollutants in rural sanitation is crucial for environmental health and public safety, especially in developing regions. In this study, temporal and regional variations in nutrient elements, heavy metals, pathogenic microorganisms (PMs), and antibiotic resistance genes (ARGs) of fecal samples [...] Read more.
Effective management of fecal pollutants in rural sanitation is crucial for environmental health and public safety, especially in developing regions. In this study, temporal and regional variations in nutrient elements, heavy metals, pathogenic microorganisms (PMs), and antibiotic resistance genes (ARGs) of fecal samples from rural toilets in China were investigated. The moisture contents of the fecal samples average 92.7%, decreasing seasonally from 97.4% in summer to 90.6% in winter. The samples’ pH values range from 6.5 to 7.5, with a slight decrease in winter (6.8), while their electrical conductivity varies from 128.1 to 2150 μs/cm, influenced by regional diets. Chromium (9.0–49.7 mg/kg) and copper (31.9–784.4 mg/kg) levels vary regionally, with higher concentrations in Anhui and Guangxi Provinces due to dietary and industrial factors. Zinc contents range from 108.5 to 1648.9 mg/kg, with higher levels in autumn and winter, resulting from agricultural practices and Zn-containing fungicides, posing potential health and phytotoxicity risks. Seasonal and regional variations in PMs and ARGs were observed. Guangxi Province shows the high PM diversity in summer samples, while Jiangsu Province exhibits the high ARGs types in autumn samples. These findings highlight the need for improved waste management and sanitation solutions in rural areas to mitigate environmental risks and protect public health. Continued research in these regions is essential to inform effective sanitation strategies. Full article
Show Figures

Graphical abstract

5 pages, 995 KiB  
Case Report
Foreign Body Presenting as Golden Hypopyon
by Anas Alkhabaz, Lucie Y. Guo and Charles DeBoer
Surgeries 2025, 6(3), 68; https://doi.org/10.3390/surgeries6030068 - 5 Aug 2025
Abstract
Background/Objectives: Penetrating intraocular foreign bodies (IOFBs) are ocular emergencies, often leading to preventable vision loss. This case report highlights a unique presentation of a work-related penetrating IOFB that mimicked a golden hypopyon. Methods: A 35-year-old male presented to the emergency department [...] Read more.
Background/Objectives: Penetrating intraocular foreign bodies (IOFBs) are ocular emergencies, often leading to preventable vision loss. This case report highlights a unique presentation of a work-related penetrating IOFB that mimicked a golden hypopyon. Methods: A 35-year-old male presented to the emergency department with sudden-onset pain and vision loss in the left eye while he was cutting a tree with metallic scissors. He had a visual acuity of 20/30 in the right eye and counting fingers in the left eye. A dilated slit-lamp examination and CT scan confirmed the presence of a 6–8 mm metallic IOFB in the anterior chamber, with no involvement of the lens or the posterior segment. Surgical removal was performed. Results: The metallic IOFB was removed surgically with IOFB forceps using a single paracentesis. The patient reported resolving pain and regained baseline visual acuity of 20/20 postoperatively, which remained stable at one-month follow-up. Conclusions: This case illustrates the successful surgical management of a penetrating metallic IOFB with a unique presentation mimicking a hypopyon. Emphasis on unique presentations of IOFBs can aid in timely management, ultimately reducing the risk of complications. Full article
Show Figures

Figure 1

38 pages, 9212 KiB  
Review
Advanced Materials-Based Nanofiltration Membranes for Efficient Removal of Organic Micropollutants in Water and Wastewater Treatment
by Haochun Wei, Haibiao Nong, Li Chen and Shiyu Zhang
Membranes 2025, 15(8), 236; https://doi.org/10.3390/membranes15080236 - 5 Aug 2025
Abstract
The increasing use of pharmaceutically active compounds (PhACs), endocrine-disrupting compounds (EDCs), and personal care products (PCPs) has led to the widespread presence of organic micropollutants (OMPs) in aquatic environments, posing a significant global challenge for environmental conservation. In recent years, advanced materials-based nanofiltration [...] Read more.
The increasing use of pharmaceutically active compounds (PhACs), endocrine-disrupting compounds (EDCs), and personal care products (PCPs) has led to the widespread presence of organic micropollutants (OMPs) in aquatic environments, posing a significant global challenge for environmental conservation. In recent years, advanced materials-based nanofiltration (NF) technologies have emerged as a promising solution for water and wastewater treatment. This review begins by examining the sources of OMPs, as well as the risk of OMPs. Subsequently, the key criteria of NF membranes for OMPs are discussed, with a focus on the roles of pore size, charge property, molecular interaction, and hydrophilicity in the separation performance. Against that background, this review summarizes and analyzes recent advancements in materials such as metal organic frameworks (MOFs), covalent organic frameworks (COFs), graphene oxide (GO), MXenes, hybrid materials, and environmentally friendly materials. It highlights the porous nature and structural diversity of organic framework materials, the advantage of inorganic layered materials in forming controllable nanochannels through stacking, the synergistic effects of hybrid materials, and the importance of green materials. Finally, the challenges related to the performance optimization, scalable fabrication, environmental sustainability, and complex separation of advanced materials-based membranes for OMP removal are discussed, along with future research directions and potential breakthroughs. Full article
Show Figures

Figure 1

Back to TopTop